1. Regeneration of Critical Calvarial Bone Defects Using Bovine Xenograft, Magnesium-Enriched Bovine Xenograft and Autologous Dentin in Rats: Micro-CT, Gene Expression and Immunohistochemical Analysis.
- Author
-
Čandrlić, Marija, Jerbić Radetić, Ana Terezija, Omrčen, Hrvoje, Franović, Barbara, Batičić, Lara, Gulić, Tamara, Čaljkušić-Mance, Tea, Zoričić Cvek, Sanja, Malešić, Lucija, Perić Kačarević, Željka, and Cvijanović Peloza, Olga
- Subjects
VASCULAR endothelial growth factors ,GENE expression profiling ,X-ray computed microtomography ,POLYMERASE chain reaction ,GENE expression ,BONE regeneration - Abstract
The aim of this study was to evaluate the efficacy of autologous dentin (AD), bovine xenograft (BX) and magnesium-enriched bovine xenograft (BX + Mg) in the healing of critical cranial bone defects (CCBDs) in rats. Eighty male Wistar rats were divided into four groups: BX, BX + Mg, AD and the control group (no intervention). Eight mm CCBDs were created and treated with the respective biomaterials. Healing was assessed 7, 15, 21 and 30 days after surgery by micro-computed tomography (micro-CT), real-time polymerase chain reaction (RT-PCR) and immunohistochemical analysis. Micro-CT analysis showed that AD had the highest bone volume and the least amount of residual biomaterial at day 30, indicating robust bone formation and efficient resorption. BX + Mg showed significant bone volume but had more residual biomaterial compared to AD. RT-PCR showed that the expression of osteocalcin (OC), the receptor activator of nuclear factor κB (RANK) and sclerostin (SOST), was highest in the AD group at day 21 and vascular endothelial growth factor (VEGF) at day 15, indicating increased osteogenesis and angiogenesis in the AD group. Immunohistochemical staining confirmed intense BMP-2/4 and SMAD-1/5/8 expression in the AD group, indicating osteoinductive properties. The favorable gene expression profile and biocompatibility of AD and BX + Mg make them promising candidates for clinical applications in bone tissue engineering. Further research is required to fully exploit their potential in regenerative surgery. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF