224 results on '"Omar, Abdirahman"'
Search Results
2. Rapid fCO2 rise in the northern Barents Sea and Nansen Basin
- Author
-
Ericson, Ylva, Fransson, Agneta, Chierici, Melissa, Jones, Elizabeth M., Skjelvan, Ingunn, Omar, Abdirahman, Olsen, Are, and Becker, Meike
- Published
- 2023
- Full Text
- View/download PDF
3. Suitability analysis and revised strategies for marine environmental carbon capture and storage (CCS) monitoring
- Author
-
Lichtschlag, Anna, Pearce, Christopher R., Suominen, Mikael, Blackford, Jerry, Borisov, Sergey M., Bull, Jonathan M., de Beer, Dirk, Dean, Marcella, Esposito, Mario, Flohr, Anita, Gros, Jonas, Haeckel, Matthias, Huvenne, Veerle A.I., James, Rachael H., Koopmans, Dirk, Linke, Peter, Mowlem, Matthew, Omar, Abdirahman M., Schaap, Allison, Schmidt, Mark, Sommer, Stefan, Strong, James, and Connelly, Douglas P.
- Published
- 2021
- Full Text
- View/download PDF
4. Detection and quantification of CO2 seepage in seawater using the stoichiometric Cseep method: Results from a recent subsea CO2 release experiment in the North Sea
- Author
-
Omar, Abdirahman M., García-Ibáñez, Maribel I., Schaap, Allison, Oleynik, Anna, Esposito, Mario, Jeansson, Emil, Loucaides, Socratis, Thomas, Helmuth, and Alendal, Guttorm
- Published
- 2021
- Full Text
- View/download PDF
5. Sea surface pCO2 variability and air-sea CO2 exchange in the coastal Sudanese Red Sea
- Author
-
Ali, Elsheikh B., Skjelvan, Ingunn, Omar, Abdirahman M., Olsen, Are, de Lange, Tor E., Johannessen, Truls, and Elageed, Salma
- Published
- 2021
- Full Text
- View/download PDF
6. Optimal sensors placement for detecting CO2 discharges from unknown locations on the seafloor
- Author
-
Oleynik, Anna, García-Ibáñez, Maribel I., Blaser, Nello, Omar, Abdirahman, and Alendal, Guttorm
- Published
- 2020
- Full Text
- View/download PDF
7. In the Wake of Deeper Convection: Nonsteady State Anthropogenic Carbon in the Greenland Sea.
- Author
-
Olsen, Are, Rajasakaren, Balamuralli, Jeansson, Emil, Lauvset, Siv K., Omar, Abdirahman M., and Becker, Meike
- Subjects
CARBON cycle ,CARBON emissions ,CARBON ,ATMOSPHERIC carbon dioxide ,CLIMATE research ,WATER depth - Abstract
We evaluate changes in dissolved inorganic carbon (DIC) in the Greenland Sea between 2002 and 2016, a period characterized by increasing convection depths. We find a mid‐depth maximum in anthropogenic carbon (Cant) accumulation that occurred as waters at these depths were rejuvenated by deeper reaching convection; broadly, these waters have caught up with the atmospheric CO2 rise that had happened between the last time they were ventilated and 2002 and also tracked the atmospheric CO2 rise 2002–2016. The overlying waters only tracked the atmospheric CO2 rise 2002–2016. The mid‐depth maximum in Cant accumulation was not evident in estimates generated with commonly used multiple linear regression (MLR) methods. We analyze the reasons why and show that the eMLR(C*) method may not fully capture nonsteady state changes in Cant when applied along a single hydrographic section as done here. This nonsteady component equates to redistribution of C*, whose spatial gradients in the Greenland Sea are dominated by Cant. We also show that the regular extended multiple linear regression method is sensitive to loss of spatial DIC gradients, which now happens as more and more Cant enters the ocean. Our findings demonstrate that MLR‐based estimates of the Cant accumulation rate should not be taken at face value in highly dynamical ocean regions, such as the Greenland Sea, and the need for also considering the total change in DIC and how this is affected by natural processes. Further investigations into the ability of MLR methods to reproduce nonsteady state changes in Cant are encouraged. Plain Language Summary: The ocean holds vast quantities of carbon. Each year this inventory increases as the ocean absorbs a quarter of our CO2 emissions. Keeping track of ocean carbon is a key climate change research priority. Observations from the Greenland Sea indicate at first glance a steady rise in DIC concentrations in the upper approximately 1,500–2,000 m of the water column, roughly equal to what one would expect from the atmospheric CO2 rise. This is unusually deep compared to the rest of the global ocean but reflects the deep‐water formation that occurs in this region. A closer inspection of the data, however, reveals that the seemingly uneventful rise in carbon in this region is the net result of several counteracting processes. In response to deeper convection, mid‐depth waters have lost inorganic carbon generated by the remineralization of organic matter, natural carbon. This has been counteracted by an unusually large rise in their content of man‐made, or anthropogenic carbon. Widely adopted methods for estimating decadal rises in anthropogenic carbon struggle to quantify these changes, such that our ability to detect the nature of effects of climate variability and change on the efficiency of the ocean carbon sink can be questioned. Key Points: Deeper convection caused a mid‐depth maximum in the rate of anthropogenic carbon increase in the Greenland Sea from 2002 to 2016The mid‐depth maximum in anthropogenic carbon accumulation was not evident in estimates generated with multiple linear regression methodsNonsteady state anthropogenic carbon accumulation may bias the eMLR(C*) method when applied along a single hydrographic section [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
8. Global Carbon Budget 2023
- Author
-
Friedlingstein, Pierre, primary, O'Sullivan, Michael, additional, Jones, Matthew W., additional, Andrew, Robbie M., additional, Bakker, Dorothee C. E., additional, Hauck, Judith, additional, Landschützer, Peter, additional, Le Quéré, Corinne, additional, Luijkx, Ingrid T., additional, Peters, Glen P., additional, Peters, Wouter, additional, Pongratz, Julia, additional, Schwingshackl, Clemens, additional, Sitch, Stephen, additional, Canadell, Josep G., additional, Ciais, Philippe, additional, Jackson, Robert B., additional, Alin, Simone R., additional, Anthoni, Peter, additional, Barbero, Leticia, additional, Bates, Nicholas R., additional, Becker, Meike, additional, Bellouin, Nicolas, additional, Decharme, Bertrand, additional, Bopp, Laurent, additional, Brasika, Ida Bagus Mandhara, additional, Cadule, Patricia, additional, Chamberlain, Matthew A., additional, Chandra, Naveen, additional, Chau, Thi-Tuyet-Trang, additional, Chevallier, Frédéric, additional, Chini, Louise P., additional, Cronin, Margot, additional, Dou, Xinyu, additional, Enyo, Kazutaka, additional, Evans, Wiley, additional, Falk, Stefanie, additional, Feely, Richard A., additional, Feng, Liang, additional, Ford, Daniel J., additional, Gasser, Thomas, additional, Ghattas, Josefine, additional, Gkritzalis, Thanos, additional, Grassi, Giacomo, additional, Gregor, Luke, additional, Gruber, Nicolas, additional, Gürses, Özgür, additional, Harris, Ian, additional, Hefner, Matthew, additional, Heinke, Jens, additional, Houghton, Richard A., additional, Hurtt, George C., additional, Iida, Yosuke, additional, Ilyina, Tatiana, additional, Jacobson, Andrew R., additional, Jain, Atul, additional, Jarníková, Tereza, additional, Jersild, Annika, additional, Jiang, Fei, additional, Jin, Zhe, additional, Joos, Fortunat, additional, Kato, Etsushi, additional, Keeling, Ralph F., additional, Kennedy, Daniel, additional, Klein Goldewijk, Kees, additional, Knauer, Jürgen, additional, Korsbakken, Jan Ivar, additional, Körtzinger, Arne, additional, Lan, Xin, additional, Lefèvre, Nathalie, additional, Li, Hongmei, additional, Liu, Junjie, additional, Liu, Zhiqiang, additional, Ma, Lei, additional, Marland, Greg, additional, Mayot, Nicolas, additional, McGuire, Patrick C., additional, McKinley, Galen A., additional, Meyer, Gesa, additional, Morgan, Eric J., additional, Munro, David R., additional, Nakaoka, Shin-Ichiro, additional, Niwa, Yosuke, additional, O'Brien, Kevin M., additional, Olsen, Are, additional, Omar, Abdirahman M., additional, Ono, Tsuneo, additional, Paulsen, Melf, additional, Pierrot, Denis, additional, Pocock, Katie, additional, Poulter, Benjamin, additional, Powis, Carter M., additional, Rehder, Gregor, additional, Resplandy, Laure, additional, Robertson, Eddy, additional, Rödenbeck, Christian, additional, Rosan, Thais M., additional, Schwinger, Jörg, additional, Séférian, Roland, additional, Smallman, T. Luke, additional, Smith, Stephen M., additional, Sospedra-Alfonso, Reinel, additional, Sun, Qing, additional, Sutton, Adrienne J., additional, Sweeney, Colm, additional, Takao, Shintaro, additional, Tans, Pieter P., additional, Tian, Hanqin, additional, Tilbrook, Bronte, additional, Tsujino, Hiroyuki, additional, Tubiello, Francesco, additional, van der Werf, Guido R., additional, van Ooijen, Erik, additional, Wanninkhof, Rik, additional, Watanabe, Michio, additional, Wimart-Rousseau, Cathy, additional, Yang, Dongxu, additional, Yang, Xiaojuan, additional, Yuan, Wenping, additional, Yue, Xu, additional, Zaehle, Sönke, additional, Zeng, Jiye, additional, and Zheng, Bo, additional
- Published
- 2023
- Full Text
- View/download PDF
9. Seasonal variations of hydrographic parameters off the Sudanese coast of the Red Sea, 2009–2015
- Author
-
Ali, Elsheikh B., Churchill, James H., Barthel, Knut, Skjelvan, Ingunn, Omar, Abdirahman M., de Lange, Tor E., and Eltaib, Elfatih B.A.
- Published
- 2018
- Full Text
- View/download PDF
10. Supplementary material to "Global Carbon Budget 2023"
- Author
-
Friedlingstein, Pierre, primary, O'Sullivan, Michael, additional, Jones, Matthew W., additional, Andrew, Robbie M., additional, Bakker, Dorothee C. E., additional, Hauck, Judith, additional, Landschützer, Peter, additional, Le Quéré, Corinne, additional, Luijkx, Ingrid T., additional, Peters, Glen P., additional, Peters, Wouter, additional, Pongratz, Julia, additional, Schwingshackl, Clemens, additional, Sitch, Stephen, additional, Canadell, Josep G., additional, Ciais, Philippe, additional, Jackson, Robert B., additional, Alin, Simone R., additional, Anthoni, Peter, additional, Barbero, Leticia, additional, Bates, Nicholas R., additional, Becker, Meike, additional, Bellouin, Nicolas, additional, Decharme, Bertrand, additional, Bopp, Laurent, additional, Brasika, Ida Bagus Mandhara, additional, Cadule, Patricia, additional, Chamberlain, Matthew A., additional, Chandra, Naveen, additional, Chau, Thi-Tuyet-Trang, additional, Chevallier, Frédéric, additional, Chini, Louise P., additional, Cronin, Margot, additional, Dou, Xinyu, additional, Enyo, Kazutaka, additional, Evans, Wiley, additional, Falk, Stefanie, additional, Feely, Richard A., additional, Feng, Liang, additional, Ford, Daniel. J., additional, Gasser, Thomas, additional, Ghattas, Josefine, additional, Gkritzalis, Thanos, additional, Grassi, Giacomo, additional, Gregor, Luke, additional, Gruber, Nicolas, additional, Gürses, Özgür, additional, Harris, Ian, additional, Hefner, Matthew, additional, Heinke, Jens, additional, Houghton, Richard A., additional, Hurtt, George C., additional, Iida, Yosuke, additional, Ilyina, Tatiana, additional, Jacobson, Andrew R., additional, Jain, Atul, additional, Jarníková, Tereza, additional, Jersild, Annika, additional, Jiang, Fei, additional, Jin, Zhe, additional, Joos, Fortunat, additional, Kato, Etsushi, additional, Keeling, Ralph F., additional, Kennedy, Daniel, additional, Klein Goldewijk, Kees, additional, Knauer, Jürgen, additional, Korsbakken, Jan Ivar, additional, Körtzinger, Arne, additional, Lan, Xin, additional, Lefèvre, Nathalie, additional, Li, Hongmei, additional, Liu, Junjie, additional, Liu, Zhiqiang, additional, Ma, Lei, additional, Marland, Greg, additional, Mayot, Nicolas, additional, McGuire, Patrick C., additional, McKinley, Galen A., additional, Meyer, Gesa, additional, Morgan, Eric J., additional, Munro, David R., additional, Nakaoka, Shin-Ichiro, additional, Niwa, Yosuke, additional, O'Brien, Kevin M., additional, Olsen, Are, additional, Omar, Abdirahman M., additional, Ono, Tsuneo, additional, Paulsen, Melf E., additional, Pierrot, Denis, additional, Pocock, Katie, additional, Poulter, Benjamin, additional, Powis, Carter M., additional, Rehder, Gregor, additional, Resplandy, Laure, additional, Robertson, Eddy, additional, Rödenbeck, Christian, additional, Rosan, Thais M., additional, Schwinger, Jörg, additional, Séférian, Roland, additional, Smallman, T. Luke, additional, Smith, Stephen M., additional, Sospedra-Alfonso, Reinel, additional, Sun, Qing, additional, Sutton, Adrienne J., additional, Sweeney, Colm, additional, Takao, Shintaro, additional, Tans, Pieter P., additional, Tian, Hanqin, additional, Tilbrook, Bronte, additional, Tsujino, Hiroyuki, additional, Tubiello, Francesco, additional, van der Werf, Guido R., additional, van Ooijen, Erik, additional, Wanninkhof, Rik, additional, Watanabe, Michio, additional, Wimart-Rousseau, Cathy, additional, Yang, Dongxu, additional, Yang, Xiaojuan, additional, Yuan, Wenping, additional, Yue, Xu, additional, Zaehle, Sönke, additional, Zeng, Jiye, additional, and Zheng, Bo, additional
- Published
- 2023
- Full Text
- View/download PDF
11. Using Bayes Theorem to Quantify and Reduce Uncertainties when Monitoring Varying Marine Environments for Indications of a Leak
- Author
-
Alendal, Guttorm, Blackford, Jeremy, Chen, Baixin, Avlesen, Helge, and Omar, Abdirahman
- Published
- 2017
- Full Text
- View/download PDF
12. Mapping of the air–sea CO2 flux in the Arctic Ocean and its adjacent seas: Basin-wide distribution and seasonal to interannual variability
- Author
-
Yasunaka, Sayaka, Murata, Akihiko, Watanabe, Eiji, Chierici, Melissa, Fransson, Agneta, van Heuven, Steven, Hoppema, Mario, Ishii, Masao, Johannessen, Truls, Kosugi, Naohiro, Lauvset, Siv K., Mathis, Jeremy T., Nishino, Shigeto, Omar, Abdirahman M., Olsen, Are, Sasano, Daisuke, Takahashi, Taro, and Wanninkhof, Rik
- Published
- 2016
- Full Text
- View/download PDF
13. Global Carbon Budget 2023
- Author
-
Friedlingstein, Pierre, O'Sullivan, Michael, Jones, Matthew W., Andrew, Robbie M., Bakker, Dorothee C. E., Hauck, Judith, Landschützer, Peter, Le Quéré, Corinne, Luijkx, Ingrid T., Peters, Glen P., Peters, Wouter, Pongratz, Julia, Schwingshackl, Clemens, Sitch, Stephen, Canadell, Josep G., Ciais, Philippe, Jackson, Robert B., Alin, Simone R., Anthoni, Peter, Barbero, Leticia, Bates, Nicholas R., Becker, Meike, Bellouin, Nicolas, Decharme, Bertrand, Bopp, Laurent, Brasika, Ida Bagus Mandhara, Cadule, Patricia, Chamberlain, Matthew A., Chandra, Naveen, Chau, Thi-Tuyet-Trang, Chevallier, Frédéric, Chini, Louise P., Cronin, Margot, Dou, Xinyu, Enyo, Kazutaka, Evans, Wiley, Falk, Stefanie, Feely, Richard A., Feng, Liang, Ford, Daniel J., Gasser, Thomas, Ghattas, Josefine, Gkritzalis, Thanos, Grassi, Giacomo, Gregor, Luke, Gruber, Nicolas, Gürses, Özgür, Harris, Ian, Hefner, Matthew, Heinke, Jens, Houghton, Richard A., Hurtt, George C., Iida, Yosuke, Ilyina, Tatiana, Jacobson, Andrew R., Jain, Atul, Jarníková, Tereza, Jersild, Annika, Jiang, Fei, Jin, Zhe, Joos, Fortunat, Kato, Etsushi, Keeling, Ralph F., Kennedy, Daniel, Klein Goldewijk, Kees, Knauer, Jürgen, Korsbakken, Jan Ivar, Körtzinger, Arne, Lan, Xin, Lefèvre, Nathalie, Li, Hongmei, Liu, Junjie, Liu, Zhiqiang, Ma, Lei, Marland, Greg, Mayot, Nicolas, McGuire, Patrick C., McKinley, Galen A., Meyer, Gesa, Morgan, Eric J., Munro, David R., Nakaoka, Shin-Ichiro, Niwa, Yosuke, O'Brien, Kevin M., Olsen, Are, Omar, Abdirahman M., Ono, Tsuneo, Paulsen, Melf, Pierrot, Denis, Pocock, Katie, Poulter, Benjamin, Powis, Carter M., Rehder, Gregor, Resplandy, Laure, Robertson, Eddy, Rödenbeck, Christian, Rosan, Thais M., Schwinger, Jörg, Séférian, Roland, Smallman, T. Luke, Smith, Stephen M., Sospedra-Alfonso, Reinel, Sun, Qing, Sutton, Adrienne J., Sweeney, Colm, Takao, Shintaro, Tans, Pieter P., Tian, Hanqin, Tilbrook, Bronte, Tsujino, Hiroyuki, Tubiello, Francesco, van der Werf, Guido R., van Ooijen, Erik, Wanninkhof, Rik, Watanabe, Michio, Wimart-Rousseau, Cathy, Yang, Dongxu, Yang, Xiaojuan, Yuan, Wenping, Yue, Xu, Zaehle, Sönke, Zeng, Jiye, Zheng, Bo, Friedlingstein, Pierre, O'Sullivan, Michael, Jones, Matthew W., Andrew, Robbie M., Bakker, Dorothee C. E., Hauck, Judith, Landschützer, Peter, Le Quéré, Corinne, Luijkx, Ingrid T., Peters, Glen P., Peters, Wouter, Pongratz, Julia, Schwingshackl, Clemens, Sitch, Stephen, Canadell, Josep G., Ciais, Philippe, Jackson, Robert B., Alin, Simone R., Anthoni, Peter, Barbero, Leticia, Bates, Nicholas R., Becker, Meike, Bellouin, Nicolas, Decharme, Bertrand, Bopp, Laurent, Brasika, Ida Bagus Mandhara, Cadule, Patricia, Chamberlain, Matthew A., Chandra, Naveen, Chau, Thi-Tuyet-Trang, Chevallier, Frédéric, Chini, Louise P., Cronin, Margot, Dou, Xinyu, Enyo, Kazutaka, Evans, Wiley, Falk, Stefanie, Feely, Richard A., Feng, Liang, Ford, Daniel J., Gasser, Thomas, Ghattas, Josefine, Gkritzalis, Thanos, Grassi, Giacomo, Gregor, Luke, Gruber, Nicolas, Gürses, Özgür, Harris, Ian, Hefner, Matthew, Heinke, Jens, Houghton, Richard A., Hurtt, George C., Iida, Yosuke, Ilyina, Tatiana, Jacobson, Andrew R., Jain, Atul, Jarníková, Tereza, Jersild, Annika, Jiang, Fei, Jin, Zhe, Joos, Fortunat, Kato, Etsushi, Keeling, Ralph F., Kennedy, Daniel, Klein Goldewijk, Kees, Knauer, Jürgen, Korsbakken, Jan Ivar, Körtzinger, Arne, Lan, Xin, Lefèvre, Nathalie, Li, Hongmei, Liu, Junjie, Liu, Zhiqiang, Ma, Lei, Marland, Greg, Mayot, Nicolas, McGuire, Patrick C., McKinley, Galen A., Meyer, Gesa, Morgan, Eric J., Munro, David R., Nakaoka, Shin-Ichiro, Niwa, Yosuke, O'Brien, Kevin M., Olsen, Are, Omar, Abdirahman M., Ono, Tsuneo, Paulsen, Melf, Pierrot, Denis, Pocock, Katie, Poulter, Benjamin, Powis, Carter M., Rehder, Gregor, Resplandy, Laure, Robertson, Eddy, Rödenbeck, Christian, Rosan, Thais M., Schwinger, Jörg, Séférian, Roland, Smallman, T. Luke, Smith, Stephen M., Sospedra-Alfonso, Reinel, Sun, Qing, Sutton, Adrienne J., Sweeney, Colm, Takao, Shintaro, Tans, Pieter P., Tian, Hanqin, Tilbrook, Bronte, Tsujino, Hiroyuki, Tubiello, Francesco, van der Werf, Guido R., van Ooijen, Erik, Wanninkhof, Rik, Watanabe, Michio, Wimart-Rousseau, Cathy, Yang, Dongxu, Yang, Xiaojuan, Yuan, Wenping, Yue, Xu, Zaehle, Sönke, Zeng, Jiye, and Zheng, Bo
- Abstract
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (E-FOS) are based on energy statistics and cement production data, while emissions from land-use change (E-LUC), mainly deforestation, are based on land-use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly, and its growth rate (G(ATM)) is computed from the annual changes in concentration. The ocean CO2 sink (S-OCEAN) is estimated with global ocean biogeochemistry models and observation-based fCO(2) products. The terrestrial CO2 sink (S-LAND) is estimated with dynamic global vegetation models. Additional lines of evidence on land and ocean sinks are provided by atmospheric inversions, atmospheric oxygen measurements, and Earth system models. The resulting carbon budget imbalance (B-IM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and incomplete understanding of the contemporary carbon cycle. All uncertainties are reported as +/- 1 sigma. For the year 2022, E-FOS increased by 0.9% relative to 2021, with fossil emissions at 9.9 +/- 0.5 GtC yr(-1) (10.2 +/- 0.5 GtC yr(-1) when the cement carbonation sink is not included), and E-LUC was 1.2 +/- 0.7 GtC yr(-1), for a total anthropogenic CO2 emission (including the cement carbonation sink) of 11.1 +/- 0.8 GtC yr(-1) (40.7 +/- 3.2 GtCO(2) yr(-1)). Also, for 2022, G(ATM) was 4.6 +/- 0.2 GtC yr(-1) (2.18 +/- 0.1 ppm yr(-1); ppm denotes parts per million), S-OCEAN was 2.8 +/- 0.4 GtC yr(-1)
- Published
- 2023
- Full Text
- View/download PDF
14. Assurance offshore CO2 monitoring, a cross-disciplinary approach.
- Author
-
Alendal, Guttorm, primary, Blackford, Jerry, additional, Carpentier, Stefan, additional, Dankel, Dorothy J., additional, Dewar, Marius, additional, El Droubi, Sufyan, additional, Fagerås, Bjarte, additional, Gasda, Sarah E., additional, Olyenik, Anna, additional, Omar, Abdirahman, additional, Pawar, Rajesh, additional, Romanak, Katherine, additional, Snee, Darren, additional, Schütz, Sigrid E., additional, and Torabi, Parisa, additional
- Published
- 2023
- Full Text
- View/download PDF
15. Air-Sea Interactions of Natural Long-Lived Greenhouse Gases (CO2, N2O, CH4) in a Changing Climate
- Author
-
Bakker, Dorothee C. E., Bange, Hermann W., Gruber, Nicolas, Johannessen, Truls, Upstill-Goddard, Rob C., Borges, Alberto V., Delille, Bruno, Löscher, Carolin R., Naqvi, S. Wajih A., Omar, Abdirahman M., Santana-Casiano, J. Magdalena, Liss, Peter S., editor, and Johnson, Martin T., editor
- Published
- 2014
- Full Text
- View/download PDF
16. Annular pancreas causing duodenal obstruction in a 23 year old women managed surgically for gastrojejunostomy; a case report
- Author
-
Nur, Nuradin Mohamed, primary, artan, Abdinasir, additional, Omar, Abdirahman Ahmed, additional, and ahmed, Mohamed Rage, additional
- Published
- 2022
- Full Text
- View/download PDF
17. The effect of submarine CO₂ vents on seawater : Implications for detection of subsea carbon sequestration leakage
- Author
-
Botnen, Helle Augdal, Omar, Abdirahman M., Thorseth, Ingunn, Johannessen, Truls, and Alendal, Guttorm
- Published
- 2015
18. Strategic importance of the Bergen‐Shetland Corridor to marine biology and oceanography of the Atlantic Ocean
- Author
-
Lennox, Robert J., primary, Junge, Claudia, additional, Reubens, Jan, additional, Omar, Abdirahman, additional, Skjelvan, Ingunn, additional, and Vollset, Knut Wiik, additional
- Published
- 2022
- Full Text
- View/download PDF
19. Towards better understanding of carbon and oxygen biogeochemical rates in the Red Sea
- Author
-
Elageed, Salma, primary, Omar, Abdirahman, additional, Jeansson, Emil, additional, Ali, Elsheikh, additional, Skjelvan, Ingunn, additional, Barthel, Knut, additional, Johannessen, Truls, additional, and Zhai, Ping, additional
- Published
- 2022
- Full Text
- View/download PDF
20. Acidification of the Nordic Seas
- Author
-
Fransner, Filippa, primary, Fröb, Friederike, additional, Tjiputra, Jerry, additional, Goris, Nadine, additional, Lauvset, Siv K., additional, Skjelvan, Ingunn, additional, Jeansson, Emil, additional, Omar, Abdirahman, additional, Chierici, Melissa, additional, Jones, Elizabeth, additional, Fransson, Agneta, additional, Ólafsdóttir, Sólveig R., additional, Johannessen, Truls, additional, and Olsen, Are, additional
- Published
- 2022
- Full Text
- View/download PDF
21. Trender i havforsuring og antropogent karbon i de nordiske hav, Nordsjøen og Skagerrak
- Author
-
Skjelvan, Ingunn, Jeansson, Emil, Chierici, Melissa, Fransnes, Filippa, Fröb, Friedrike, Tjiputra, Jerry, Goris, Nadine, Lauvset, Siv Kari, Omar, Abdirahman, Jones, Elizabeth, Fransson, Agneta, Olafsdóttir, Solveig R., Johannessen, Truls, Olsen, Are, Norli, Marit, and Apelthun, Lise B.
- Abstract
Denne rapporten baserer seg på artikkelen “Acidification of the Nordic Seas” av Fransner mfl. (2022). I tillegg presenteres havforsuringstrender (=endring over tid) i Nordsjøen og Skagerrak og trender i antropogent karbon (Cant) i de nordiske hav, Nordsjøen og Skagerrak. Måledata fra de nordiske hav i perioden 1981 til 2019 viser at pH i snitt har avtatt med 0,0028 yr-1 som tilsvarer en pH-reduksjon på 0,11 over 39 år. Dette er dobbelt så mye som den modellerte pH-reduksjonen over perioden 1850-1980 i samme område (–0,05 over 130 år). Modellkjøringer viser at fram til slutten av dette århundret forventes det ytterlige endringer i pH i overflatevann på mellom –0.04 og –0.4 avhengig av hvilket utslippsscenario som brukes. Måledata fra ulike regioner i de nordiske hav viser at pH-trenden i overflatevann er av størrelse –0,002 til –0,003 yr-1. Trenden er primært drevet av økende løst uorganisk karbon (CT) som delvis skyldes opptak av atmosfærisk, og dermed også antropogent, CO2. I overflatevann i Norskebassenget og Islandshavet avtar pH raskere enn det som kan forklares av CO2-opptak fra atmosfæren alene, og resten av endringa skyldes at partialtrykket av CO2 (pCO2) i havoverflata over tid øker raskere enn atmosfærisk CO2. Dette kan skyldes både redusert primærproduksjon og økende havtemperatur. pH-endringene i overflatevann i de nordiske hav er statistisk signifikante bortsett fra i Barentshavsåpningen, der en relativt kraftig økning i total alkalinitet (AT) motvirker den negative pH-trenden. Havforsuringssignalet kan i noen regioner måles helt ned til 2000 m. Vann på 1000-2000 m dyp nærmer seg nå grensen for undermetning av aragonitt (kalsiumkarbonat). I Nordsjøen og Skagerrak finnes måledata fra periodene 2001-2015 og 2001-2019. Trendene i pH og metningsgrad av aragonitt (ΩAr) i Nordsjøen er svake og ikke signifikante, mens i Skagerrak på dyp større enn 200 m avtar pH signifikant, og dypere enn 500 m er pH-trenden –0.0044 yr-1. Trenden er primært drevet av endring i varmt og salt atlantisk vann som strømmer inn i området. Antropogent karbon (Cant) øker i de fleste deler av de nordiske hav, bortsett fra i Barentshavsåpningen. I Norskebassenget øker Cant signifikant på alle dyp, mens i Lofotenbassenget er Cant-økningen signifikant mellom 200 og 2000 m dyp. I Nordsjøen er ikke trendene i Cant signifikante, men i Skagerrak øker Cant signifikant på alle dyp. Det er generelt godt samsvar mellom trender i CT og Cant, og dette viser at økende mengde Cant i havet er den dominerende driveren for økende CT. Observerte forekomstene av korallrev i de nordiske hav lever stort sett på dyp som i dag er overmetta med aragonitt. Dette vil endres i framtida avhengig av hvilket utslippsscenario for CO2 som følges. Hvis CO2-utslippene fortsetter som i dag (RCP8.5) vil alt vann dypere enn ca. 20 m i de nordiske hav bli undermetta med aragonitt når vi nærmer oss slutten på dette århundret, og dette vil få dramatiske konsekvenser for korallrev i hele de nordiske hav.
- Published
- 2022
22. Global Carbon Budget 2016
- Author
-
Quéré, Corinne Le, Andrew, Robbie M, Canadell, Josep G, Sitch, Stephen, Korsbakken, Jan Ivar, Peters, Glen P, Manning, Andrew C, Boden, Thomas A, Tans, Pieter P, Houghton, Richard A, Keeling, Ralph F, Alin, Simone, Andrews, Oliver D, Anthoni, Peter, Barbero, Leticia, Bopp, Laurent, Chevallier, Frédéric, Chini, Louise P, Ciais, Philippe, Currie, Kim, Delire, Christine, Doney, Scott C, Friedlingstein, Pierre, Gkritzalis, Thanos, Harris, Ian, Hauck, Judith, Haverd, Vanessa, Hoppema, Mario, Goldewijk, Kees Klein, Jain, Atul K, Kato, Etsushi, Koertzinger, Arne, Landschuetzer, Peter, Lefèvre, Nathalie, Lenton, Andrew, Lienert, Sebastian, Lombardozzi, Danica, Melton, Joe R, Metzl, Nicolas, Millero, Frank, Monteiro, Pedro M. S, Munro, David R, Nabel, Julia E. M. S, Nakaoka, Shin-ichiro, O’Brien, Kevin, Olsen, Are, Omar, Abdirahman M, Ono, Tsuneo, Pierrot, Denis, Poulter, Benjamin, Roedenbeck, Christian, Salisbury, Joe, Schuster, Ute, Schwinger, Joerg, Séférian, Roland, Skjelvan, Ingunn, Stocker, Benjamin D, Sutton, Adrienne J, Takahashi, Taro, Tian, Hanqin, Tilbrook, Bronte, van der Laan-Luijkx, Ingrid T, van der Werf, Guido R, Viovy, Nicolas, Walker, Anthony P, Wiltshire, Andrew J, and Zaehle, Soenke
- Subjects
Meteorology And Climatology - Abstract
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere the global carbon budget is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates and consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models. We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as +/- 1(sigma), reflecting the current capacity to characterize the annual estimates of each component of the global carbon budget. For the last decade available (2006-2015), EFF was 9.3+/-0.5 GtC/yr, ELUC 1.0+/-0.5 GtC/yr,GATM 4.5+/-0.1 GtC/yr, SOCEAN 2.6+/-0.5 GtC/yr, and SLAND 3.1+/-0.9 GtC/yr. For year 2015 alone, the growth in EFF was approximately zero and emissions remained at 9.9+/-0.5 GtC/yr, showing a slowdown in growth of these emissions compared to the average growth of 1.8/yr that took place during 2006-2015.Also, for 2015, ELUC was 1.3+/-0.5 GtC/yr, GATM was 6.3+/-0.2 GtC/yr, SOCEAN was 3.0+/-0.5 GtC/yr, and SLAND was 1.9+/-0.9 GtC/yr. GATM was higher in 2015 compared to the past decade (2006-2015), reflecting a smaller SLAND for that year. The global atmospheric CO2 concentration reached 399.4+/-0.1 ppm averaged over 2015. For 2016, preliminary data indicate the continuation of low growth in EFF with +0.2% (range of -1.0 to +1.8% ) based on national emissions projections for China and USA, and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. In spite of the low growth of EFF in 2016, the growth rate in atmospheric CO2 concentration is expected to be relatively high because of the persistence of the smaller residual terrestrial sink (SLAND) in response to El Nino conditions of 2015-2016. From this projection of EFF and assumed constant ELUC for 2016, cumulative emissions of CO2 will reach 565+/-55 GtC (2075+/-205 GtCO2) for 1870-2016, about 75% from EFF and 25% from ELUC. This living data update documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this data set.
- Published
- 2016
- Full Text
- View/download PDF
23. Demonstration of a Semi-Automated Decision Support Toolbox to Aid Operators in the Design of Efficient Environmental Offshore Monitoring Programs for Co2 Storage Sites
- Author
-
Dewar, Marius, primary, Alendal, Guttorm, additional, Blackford, Jerry, additional, Carpentier, Stefan, additional, Iversen, Ketil, additional, Oleynik, Anna, additional, Omar, Abdirahman, additional, Snee, Darren, additional, and Torabi, Parisa, additional
- Published
- 2022
- Full Text
- View/download PDF
24. The Impact of Pre-Project Data Quality and Quantity on Developing Environmental Monitoring Strategies for Offshore Carbon Storage: Case Studies from the Gulf of Mexico and the North Sea.
- Author
-
Alendal, Guttorm, primary, Gasda, Sarah, additional, Romanak, Katherine, additional, Blackford, Jerry, additional, Pawar, Rajesh, additional, Carpentier, Stefan, additional, Dankel, Dorothy, additional, Dewar, Marius, additional, Fagerås, Bjarte, additional, Iversen, Ketil Fagerli, additional, Oleynik, Anna, additional, Omar, Abdirahman M., additional, Snee, Darren, additional, Torabi, Parisa, additional, and Tveit, Svenn, additional
- Published
- 2022
- Full Text
- View/download PDF
25. The northern European shelf as an increasing net sink for CO2
- Author
-
Becker, Meike, Olsen, Are, Landschützer, Peter, Omar, Abdirahman, Rehder, Gregor, Rödenbeck, Christian, and Skjelvan, Ingunn
- Subjects
TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES - Abstract
We developed a simple method to refine existing open-ocean maps and extend them towards different coastal seas. Using a multi-linear regression we produced monthly maps of surface ocean fCO2 in the northern European coastal seas (the North Sea, the Baltic Sea, the Norwegian Coast and the Barents Sea) covering a time period from 1998 to 2016. A comparison with gridded Surface Ocean CO2 Atlas (SOCAT) v5 data revealed mean biases and standard deviations of 0 ± 26 µatm in the North Sea, 0 ± 16 µatm along the Norwegian Coast, 0 ± 19 µatm in the Barents Sea and 2 ± 42 µatm in the Baltic Sea. We used these maps to investigate trends in fCO2, pH and air–sea CO2 flux. The surface ocean fCO2 trends are smaller than the atmospheric trend in most of the studied regions. The only exception to this is the western part of the North Sea, where sea surface fCO2 increases by 2 µatm yr−1, which is similar to the atmospheric trend. The Baltic Sea does not show a significant trend. Here, the variability was much larger than the expected trends. Consistently, the pH trends were smaller than expected for an increase in fCO2 in pace with the rise of atmospheric CO2 levels. The calculated air–sea CO2 fluxes revealed that most regions were net sinks for CO2. Only the southern North Sea and the Baltic Sea emitted CO2 to the atmosphere. Especially in the northern regions the sink strength increased during the studied period.
- Published
- 2021
26. Air-Sea Interactions of Natural Long-Lived Greenhouse Gases (CO2, N2O, CH4) in a Changing Climate
- Author
-
Bakker, Dorothee C. E., primary, Bange, Hermann W., additional, Gruber, Nicolas, additional, Johannessen, Truls, additional, Upstill-Goddard, Rob C., additional, Borges, Alberto V., additional, Delille, Bruno, additional, Löscher, Carolin R., additional, Naqvi, S. Wajih A., additional, Omar, Abdirahman M., additional, and Santana-Casiano, J. Magdalena, additional
- Published
- 2013
- Full Text
- View/download PDF
27. Seasonal and interannual variability of the air–sea CO 2 flux in the Atlantic sector of the Barents Sea
- Author
-
Omar, Abdirahman M., Johannessen, Truls, Olsen, Are, Kaltin, Staffan, and Rey, Francisco
- Published
- 2007
- Full Text
- View/download PDF
28. A Toolbox to Assist in Designing Marine Monitoring Programs for Offshore Storage Sites
- Author
-
Blackford, Jerry, primary, Alendal, Guttorm, additional, Carpentier, Stefan, additional, Cremer, Holger, additional, Dankel, Dorothy, additional, Dewar, Marius, additional, Fargeras, Bjarte, additional, Gasda, Sarah, additional, Heffron, Raphael J., additional, Lien, Martha, additional, Oleynik, Anna, additional, Omar, Abdirahman, additional, Pawar, Rajesh, additional, Romanak, Katherine, additional, Snee, Darren, additional, Schutz, Sigrid, additional, and Torabi, Parisa, additional
- Published
- 2021
- Full Text
- View/download PDF
29. Detection and Quantification of CO 2 Seepage in Seawater Using the Stoichiometric Cseep Method: Results from a Recent Subsea CO 2 Release Experiment in the North Sea
- Author
-
Omar, Abdirahman M., primary, García-Ibáñeza, Maribel I., additional, Oleynik, Anna, additional, Jeansson, Emil, additional, Esposito, Mario, additional, Schaap, Allison, additional, Loucaides, Socratis, additional, Thomas, Helmuth, additional, and Alendal, Guttorm, additional
- Published
- 2021
- Full Text
- View/download PDF
30. Nordic Seas Acidification
- Author
-
Fransner, Filippa, primary, Fröb, Friederike, additional, Tjiputra, Jerry, additional, Chierici, Melissa, additional, Fransson, Agneta, additional, Jeansson, Emil, additional, Johannessen, Truls, additional, Jones, Elizabeth, additional, Lauvset, Siv K., additional, Ólafsdóttir, Sólveig R., additional, Omar, Abdirahman, additional, Skjelvan, Ingunn, additional, and Olsen, Are, additional
- Published
- 2020
- Full Text
- View/download PDF
31. Supplementary material to "Nordic Seas Acidification"
- Author
-
Fransner, Filippa, primary, Fröb, Friederike, additional, Tjiputra, Jerry, additional, Chierici, Melissa, additional, Fransson, Agneta, additional, Jeansson, Emil, additional, Johannessen, Truls, additional, Jones, Elizabeth, additional, Lauvset, Siv K., additional, Ólafsdóttir, Sólveig R., additional, Omar, Abdirahman, additional, Skjelvan, Ingunn, additional, and Olsen, Are, additional
- Published
- 2020
- Full Text
- View/download PDF
32. Monitoring offshore CO2 storage projects, aligning capabilities with regulations and public expectations.
- Author
-
Alendal, Guttorm, primary, Blackford, Jerry, additional, Carpentier, Stefan, additional, Cremer, Holger, additional, Dankel, Dorothy J., additional, Dewar, Marius, additional, Fagerås, Bjarte, additional, Gasda, Sarah E., additional, Gundersen, Kristian, additional, Heffron, Raphael, additional, Lien, Martha, additional, Oleynik, Anna, additional, Omar, Abdirahman, additional, Pawar, Rajesh, additional, Romanak, Katherine, additional, Snee, Darren, additional, Schütz, Sigrid E., additional, and Torabi, Parisa, additional
- Published
- 2020
- Full Text
- View/download PDF
33. A review of the inorganic carbon cycle of the Nordic Seas and Barents Sea
- Author
-
Skjelvan, Ingunn, primary, Olsen, Are, additional, Anderson, Leif G., additional, Bellerby, Richard G. J., additional, Falck, Eva, additional, Kasajima, Yoshie, additional, Kivimäe, Caroline, additional, Omar, Abdirahman, additional, Rey, Francisco, additional, Olsson, K. Anders, additional, Johannessen, Truls, additional, and Heinze, Christoph, additional
- Published
- 2005
- Full Text
- View/download PDF
34. Sea-ice and brine formation in Storfjorden: Implications for the Arctic wintertime air—sea CO2 flux
- Author
-
Omar, Abdirahman, primary, Johannessen, Truls, additional, Bellerby, Richard G. J., additional, Olsen, Are, additional, Anderson, Leif G., additional, and Kivimäe, Caroline, additional
- Published
- 2005
- Full Text
- View/download PDF
35. Constraining the Oceanic Uptake and Fluxes of Greenhouse Gases by Building an Ocean Network of Certified Stations: The Ocean Component of the Integrated Carbon Observation System, ICOS-Oceans
- Author
-
Steinhoff, Tobias, Gkritzalis, Thanos, Lauvset, Siv K., Jones, Stephen D., Schuster, Ute, Olsen, Are, Becker, Meike, Bozzano, Roberto, Brunetti, Fabio, Cantoni, Carolina, Cardin, Vanessa, Diverrès, Denis, Fiedler, Björn, Fransson, Agneta, Giani, Michele, Hartman, Sue, Hoppema, Mario, Jeansson, Emil, Johannessen, Truls, Kitidis, Vassilis, Körtzinger, Arne, Landa, Camilla S., Lefèvre, Nathalie, Luchetta, Anna, Naudts, Lieven, Nightingale, Philip, Omar, Abdirahman M., Pensieri, Sara, Pfeil, Benjamin, Castaño-Primo, Rocío, Rehder, Gregor, Rutgersson, Anna, Sanders, Richard, Schewe, Ingo, Siena, Giuseppe, Skjelvan, Ingunn, Soltwedel, Thomas, Van Heuven, Steven M. A. C., Watson, Andrew J., Helmholtz Centre for Ocean Research [Kiel] (GEOMAR), Flanders Marine Institute, VLIZ, Bjerknes Centre for Climate Research (BCCR), Department of Biological Sciences [Bergen] (BIO / UiB), University of Bergen (UiB)-University of Bergen (UiB), College of Life and Environmental Sciences [Exeter], University of Exeter, University of Leeds, Instrumentation, Moyens analytiques, Observatoires en Géophysique et Océanographie (IMAGO), Norwegian Polar Institute, Istituto Nazionale di Geofisica e di Oceanografia Sperimentale (OGS), Meteorological Research Institute [Tsukuba] (MRI), Japan Meteorological Agency (JMA), Plymouth Marine Laboratory (PML), Austral, Boréal et Carbone (ABC), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Royal Belgian Institute of Natural Sciences (RBINS), University of Bergen (UiB), Department of Earth Sciences [Uppsala], Uppsala University, Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), Centre for Isotope Research [Groningen] (CIO), University of Groningen [Groningen], European Project: 654410,H2020,H2020-INFRAIA-2014-2015,JERICO-NEXT(2015), Plymouth Marine Laboratory, Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU), GEOMAR - Helmholtz Centre for Ocean Research [Kiel] (GEOMAR), University of Bergen (UIB), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Department of Earth Sciences [ Uppsala], and NASA Ames Research Center (ARC)
- Subjects
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] ,autonomous surface vehicle ,Climate Research ,ATC ,dissolved inorganic ,carbon portal ,ocean observation ,network design ,Oceanografi, hydrologi och vattenresurser ,flux maps ,Klimatforskning ,Oceanography, Hydrology and Water Resources ,CO2 fluxes ,Atmospheric Thematic Centre ,DIC ,CP ,carbon sink ,ComputingMilieux_MISCELLANEOUS ,ASV - Abstract
The European Research Infrastructure Consortium “Integrated Carbon Observation System” (ICOS) aims at delivering high quality greenhouse gas (GHG) observations and derived data products (e.g., regional GHG-flux maps) for constraining the GHG balance on a European level, on a sustained long-term basis. The marine domain (ICOS-Oceans) currently consists of 11 Ship of Opportunity lines (SOOP – Ship of Opportunity Program) and 10 Fixed Ocean Stations (FOSs) spread across European waters, including the North Atlantic and Arctic Oceans and the Barents, North, Baltic, and Mediterranean Seas. The stations operate in a harmonized and standardized way based on community-proven protocols and methods for ocean GHG observations, improving operational conformity as well as quality control and assurance of the data. This enables the network to focus on long term research into the marine carbon cycle and the anthropogenic carbon sink, while preparing the network to include other GHG fluxes. ICOS data are processed on a near real-time basis and will be published on the ICOS Carbon Portal (CP), allowing monthly estimates of CO2 air-sea exchange to be quantified for European waters. ICOS establishes transparent operational data management routines following the FAIR (Findable, Accessible, Interoperable, and Reusable) guiding principles allowing amongst others reproducibility, interoperability, and traceability. The ICOS-Oceans network is actively integrating with the atmospheric (e.g., improved atmospheric measurements onboard SOOP lines) and ecosystem (e.g., oceanic direct gas flux measurements) domains of ICOS, and utilizes techniques developed by the ICOS Central Facilities and the CP. There is a strong interaction with the international ocean carbon cycle community to enhance interoperability and harmonize data flow. The future vision of ICOS-Oceans includes ship-based ocean survey sections to obtain a three-dimensional understanding of marine carbon cycle processes and optimize the existing network design. publishedVersion
- Published
- 2019
- Full Text
- View/download PDF
36. Interannual variability in the wintertime air–sea flux of carbon dioxide in the northern North Atlantic, 1981–2001
- Author
-
Olsen, Are, Bellerby, Richard G.J., Johannessen, Truls, Omar, Abdirahman M., and Skjelvan, Ingunn
- Published
- 2003
- Full Text
- View/download PDF
37. Wintertime fCO2 variability in the subpolar North Atlantic since 2004
- Author
-
Fröb, Friederike, Olsen, Are, Becker, Meike, Chafik, Leon Martin, Johannessen, Truls, Reverdin, Gilles, Omar, Abdirahman, Bjerknes Centre for Climate Research (BCCR), Department of Biological Sciences [Bergen] (BIO / UiB), University of Bergen (UiB)-University of Bergen (UiB), Geophysical Institute [Bergen] (GFI / BiU), University of Bergen (UiB), Processus et interactions de fine échelle océanique (PROTEO), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), ICOS-Norway (Norwegian Research Council) 245927, SNACS project part of the KLIMAFORSK program of the Norwegian Research Council 229752, Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)
- Subjects
[SDU]Sciences of the Universe [physics] ,[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] - Abstract
Winter data of surface ocean temperature (SST), salinity (SSS) and CO 2 fugacity (fCO 2 ) collected on the VOS M/V Nuka Arctica in the subpolar North Atlantic between 2004 and 2017 are used to establish trends, drivers, and interannual variability. Over the period, waters cooled and freshened, and the fCO 2 increased at a rate similar to the atmospheric CO 2 growth rate. When accounting for the freshening, the inferred increase in dissolved inorganic carbon (DIC) was found to be approximately twice that expected from atmospheric CO 2 alone. This is attributed to the cooling. In the Irminger Sea, fCO 2 exhibited additional interannual variations driven by atmospheric forcing through winter mixing. As winter fCO 2 in the region is close to the atmospheric, the subpolar North Atlantic has varied between being slightly supersaturated and slightly undersaturated over the investigated period. ©2019. American Geophysical Union. All Rights Reserved.
- Published
- 2019
- Full Text
- View/download PDF
38. Global carbon budget 2019
- Author
-
Friedlingstein, Pierre, Jones, Matthew W., O'Sullivan, Michael, Andrew, Robbie, Hauck, Judith, Peters, Glen Philip, Peters, Wouter, Pongratz, Julia, Sitch, Stephen, Le Quéré, Corinne, Bakker, Dorothée C.E., Canadell, Josep G., Ciais, Philippe, Jackson, Robert B., Anthoni, Peter, Barbero, Leticia, Bastos, Ana, Bastrikov, Vladislav, Becker, Meike, Bopp, Laurent, Buitenhuis, Erik, Chandra, Naveen, Chevallier, Frédéric, Chini, Louise P., Currie, Kim I., Feely, Richard A., Gehlen, Marion, Gilfillan, Dennis, Gkritzalis, Thanos, Goll, Daniel S., Gruber, Nicolas, Gutekunst, Sören, Harris, Ian, Haverd, Vanessa, Houghton, Richard A., Hurtt, George, Ilyina, Tatiana, Jain, Atul K., Joetzjer, Emilie, Kaplan, Jed O., Kato, Etsushi, Goldewijk, Kees Klein, Korsbakken, Jan Ivar, Landschutzer, Peter, Lauvset, Siv Kari, Lefevre, Nathalie, Lenton, Andrew, Lienert, Sebastian, Lombardozzi, Danica, Marland, Gregg, McGuire, Patrick C., Melton, Joe R., Metzl, Nicolas, Munro, David R., Nabel, Julia E.M.S., Nakaoka, Shin-Ichiro, Neill, Craig, Omar, Abdirahman, Ono, Tsuneo, Peregon, Anna, Pierrot, Denis, Poulter, Benjamin, Rehder, Gregor, Resplandy, Laure, Robertson, Eddy, Rödenbeck, Christian, Séférian, Roland, Schwinger, Jörg, Smith, Naomi, Tans, Pieter P., Tian, Hanqin, Tilbrook, Bronte, Tubiello, Francesco N., van der Werf, Guido R., Wiltshire, Andrew J., and Zaehle, Sönke
- Abstract
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFF) are based on energy statistics and cement production data, while emissions from land use change (ELUC), mainly deforestation, are based on land use and land use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2009–2018), EFF was 9.5±0.5 GtC yr−1, ELUC 1.5±0.7 GtC yr−1, GATM 4.9±0.02 GtC yr−1 (2.3±0.01 ppm yr−1), SOCEAN 2.5±0.6 GtC yr−1, and SLAND 3.2±0.6 GtC yr−1, with a budget imbalance BIM of 0.4 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For the year 2018 alone, the growth in EFF was about 2.1 % and fossil emissions increased to 10.0±0.5 GtC yr−1, reaching 10 GtC yr−1 for the first time in history, ELUC was 1.5±0.7 GtC yr−1, for total anthropogenic CO2 emissions of 11.5±0.9 GtC yr−1 (42.5±3.3 GtCO2). Also for 2018, GATM was 5.1±0.2 GtC yr−1 (2.4±0.1 ppm yr−1), SOCEAN was 2.6±0.6 GtC yr−1, and SLAND was 3.5±0.7 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 407.38±0.1 ppm averaged over 2018. For 2019, preliminary data for the first 6–10 months indicate a reduced growth in EFF of +0.6 % (range of −0.2 % to 1.5 %) based on national emissions projections for China, the USA, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. Overall, the mean and trend in the five components of the global carbon budget are consistently estimated over the period 1959–2018, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations shows (1) no consensus in the mean and trend in land use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Le Quéré et al., 2018a, b, 2016, 2015a, b, 2014, 2013). The data generated by this work are available at https://doi.org/10.18160/gcp-2019 (Friedlingstein et al., 2019).
- Published
- 2019
39. Winter weather controls net influx of atmospheric CO2 on the north-west European shelf
- Author
-
Kitidis, Vassilis, primary, Shutler, Jamie D., additional, Ashton, Ian, additional, Warren, Mark, additional, Brown, Ian, additional, Findlay, Helen, additional, Hartman, Sue E., additional, Sanders, Richard, additional, Humphreys, Matthew, additional, Kivimäe, Caroline, additional, Greenwood, Naomi, additional, Hull, Tom, additional, Pearce, David, additional, McGrath, Triona, additional, Stewart, Brian M., additional, Walsham, Pamela, additional, McGovern, Evin, additional, Bozec, Yann, additional, Gac, Jean-Philippe, additional, van Heuven, Steven M. A. C., additional, Hoppema, Mario, additional, Schuster, Ute, additional, Johannessen, Truls, additional, Omar, Abdirahman, additional, Lauvset, Siv K., additional, Skjelvan, Ingunn, additional, Olsen, Are, additional, Steinhoff, Tobias, additional, Körtzinger, Arne, additional, Becker, Meike, additional, Lefevre, Nathalie, additional, Diverrès, Denis, additional, Gkritzalis, Thanos, additional, Cattrijsse, André, additional, Petersen, Wilhelm, additional, Voynova, Yoana G., additional, Chapron, Bertrand, additional, Grouazel, Antoine, additional, Land, Peter E., additional, Sharples, Jonathan, additional, and Nightingale, Philip D., additional
- Published
- 2019
- Full Text
- View/download PDF
40. Global Carbon Budget 2019
- Author
-
Friedlingstein, Pierre, primary, Jones, Matthew W., additional, O'Sullivan, Michael, additional, Andrew, Robbie M., additional, Hauck, Judith, additional, Peters, Glen P., additional, Peters, Wouter, additional, Pongratz, Julia, additional, Sitch, Stephen, additional, Le Quéré, Corinne, additional, Bakker, Dorothee C. E., additional, Canadell, Josep G., additional, Ciais, Philippe, additional, Jackson, Robert B., additional, Anthoni, Peter, additional, Barbero, Leticia, additional, Bastos, Ana, additional, Bastrikov, Vladislav, additional, Becker, Meike, additional, Bopp, Laurent, additional, Buitenhuis, Erik, additional, Chandra, Naveen, additional, Chevallier, Frédéric, additional, Chini, Louise P., additional, Currie, Kim I., additional, Feely, Richard A., additional, Gehlen, Marion, additional, Gilfillan, Dennis, additional, Gkritzalis, Thanos, additional, Goll, Daniel S., additional, Gruber, Nicolas, additional, Gutekunst, Sören, additional, Harris, Ian, additional, Haverd, Vanessa, additional, Houghton, Richard A., additional, Hurtt, George, additional, Ilyina, Tatiana, additional, Jain, Atul K., additional, Joetzjer, Emilie, additional, Kaplan, Jed O., additional, Kato, Etsushi, additional, Klein Goldewijk, Kees, additional, Korsbakken, Jan Ivar, additional, Landschützer, Peter, additional, Lauvset, Siv K., additional, Lefèvre, Nathalie, additional, Lenton, Andrew, additional, Lienert, Sebastian, additional, Lombardozzi, Danica, additional, Marland, Gregg, additional, McGuire, Patrick C., additional, Melton, Joe R., additional, Metzl, Nicolas, additional, Munro, David R., additional, Nabel, Julia E. M. S., additional, Nakaoka, Shin-Ichiro, additional, Neill, Craig, additional, Omar, Abdirahman M., additional, Ono, Tsuneo, additional, Peregon, Anna, additional, Pierrot, Denis, additional, Poulter, Benjamin, additional, Rehder, Gregor, additional, Resplandy, Laure, additional, Robertson, Eddy, additional, Rödenbeck, Christian, additional, Séférian, Roland, additional, Schwinger, Jörg, additional, Smith, Naomi, additional, Tans, Pieter P., additional, Tian, Hanqin, additional, Tilbrook, Bronte, additional, Tubiello, Francesco N., additional, van der Werf, Guido R., additional, Wiltshire, Andrew J., additional, and Zaehle, Sönke, additional
- Published
- 2019
- Full Text
- View/download PDF
41. A Surface Ocean CO2 Reference Network, SOCONET and Associated Marine Boundary Layer CO2 Measurements
- Author
-
Wanninkhof, Rik, primary, Pickers, Penelope A., additional, Omar, Abdirahman M., additional, Sutton, Adrienne, additional, Murata, Akihiko, additional, Olsen, Are, additional, Stephens, Britton B., additional, Tilbrook, Bronte, additional, Munro, David, additional, Pierrot, Denis, additional, Rehder, Gregor, additional, Santana-Casiano, J. Magdalena, additional, Müller, Jens D., additional, Trinanes, Joaquin, additional, Tedesco, Kathy, additional, O’Brien, Kevin, additional, Currie, Kim, additional, Barbero, Leticia, additional, Telszewski, Maciej, additional, Hoppema, Mario, additional, Ishii, Masao, additional, González-Dávila, Melchor, additional, Bates, Nicholas R., additional, Metzl, Nicolas, additional, Suntharalingam, Parvadha, additional, Feely, Richard A., additional, Nakaoka, Shin-ichiro, additional, Lauvset, Siv K., additional, Takahashi, Taro, additional, Steinhoff, Tobias, additional, and Schuster, Ute, additional
- Published
- 2019
- Full Text
- View/download PDF
42. A Surface Ocean CO2 Reference Network, SOCONET and Associated Marine Boundary Layer CO2 Measurements
- Author
-
Wanninkhof, Rik, Pickers, Penelope A., Omar, Abdirahman M., Sutton, Adrienne, Murata, Akihiko, Olsen, Are, Stephens, Britton B., Tilbrook, Bronte, Munro, David, Pierrot, Denis, Rehder, Gregor, Santana-Casiano, J. Magdalena, Müller, Jens D., Trinanes, Joaquin, Tedesco, Kathy, O’Brien, Kevin, Currie, Kim, Barbero, Leticia, Telszewski, Maciej, Hoppema, Mario, Ishii, Masao, González-Dávila, Melchor, Bates, Nicholas R., Metzl, Nicolas, Suntharalingam, Parvadha, Feely, Richard A., Nakaoka, Shin-ichiro, Lauvset, Siv K., Takahashi, Taro, Steinhoff, Tobias, Schuster, Ute, Wanninkhof, Rik, Pickers, Penelope A., Omar, Abdirahman M., Sutton, Adrienne, Murata, Akihiko, Olsen, Are, Stephens, Britton B., Tilbrook, Bronte, Munro, David, Pierrot, Denis, Rehder, Gregor, Santana-Casiano, J. Magdalena, Müller, Jens D., Trinanes, Joaquin, Tedesco, Kathy, O’Brien, Kevin, Currie, Kim, Barbero, Leticia, Telszewski, Maciej, Hoppema, Mario, Ishii, Masao, González-Dávila, Melchor, Bates, Nicholas R., Metzl, Nicolas, Suntharalingam, Parvadha, Feely, Richard A., Nakaoka, Shin-ichiro, Lauvset, Siv K., Takahashi, Taro, Steinhoff, Tobias, and Schuster, Ute
- Published
- 2019
- Full Text
- View/download PDF
43. Winter weather controls net influx of atmospheric CO2 on the northwest European shelf
- Author
-
Kitidis, Vassilis, Shutler, Jamie D., Ashton, Ian, Warren, Mark, Brown, Ian, Findlay, Helen, Hartman, Sue E., Sanders, Richard, Humphreys, Matthew, Kivimae, Caroline, Greenwood, Naomi, Hull, Tom, Pearce, David, Mcgrath, Triona, Stewart, Brian M., Walsham, Pamela, Mcgovern, Evin, Bozec, Yann, Gac, Jean-philippe, Van Heuven, Steven M. A. C., Hoppema, Mario, Schuster, Ute, Johannessen, Truls, Omar, Abdirahman, Lauvset, Siv K., Skjelvan, Ingunn, Olsen, Are, Steinhoff, Tobias, Koertzinger, Arne, Becker, Meike, Lefevre, Nathalie, Diverres, Denis, Gkritzalis, Thanos, Cattrijsse, Andre, Petersen, Wilhelm, Voynova, Yoana G., Chapron, Bertrand, Grouazel, Antoine, Land, Peter E., Sharples, Jonathan, Nightingale, Philip D., Kitidis, Vassilis, Shutler, Jamie D., Ashton, Ian, Warren, Mark, Brown, Ian, Findlay, Helen, Hartman, Sue E., Sanders, Richard, Humphreys, Matthew, Kivimae, Caroline, Greenwood, Naomi, Hull, Tom, Pearce, David, Mcgrath, Triona, Stewart, Brian M., Walsham, Pamela, Mcgovern, Evin, Bozec, Yann, Gac, Jean-philippe, Van Heuven, Steven M. A. C., Hoppema, Mario, Schuster, Ute, Johannessen, Truls, Omar, Abdirahman, Lauvset, Siv K., Skjelvan, Ingunn, Olsen, Are, Steinhoff, Tobias, Koertzinger, Arne, Becker, Meike, Lefevre, Nathalie, Diverres, Denis, Gkritzalis, Thanos, Cattrijsse, Andre, Petersen, Wilhelm, Voynova, Yoana G., Chapron, Bertrand, Grouazel, Antoine, Land, Peter E., Sharples, Jonathan, and Nightingale, Philip D.
- Abstract
Shelf seas play an important role in the global carbon cycle, absorbing atmospheric carbon dioxide (CO2) and exporting carbon (C) to the open ocean and sediments. The magnitude of these processes is poorly constrained, because observations are typically interpolated over multiple years. Here, we used 298500 observations of CO2 fugacity (fCO(2)) from a single year (2015), to estimate the net influx of atmospheric CO2 as 26.2 +/- 4.7 Tg C yr(-1) over the open NW European shelf. CO2 influx from the atmosphere was dominated by influx during winter as a consequence of high winds, despite a smaller, thermally-driven, air-sea fCO(2) gradient compared to the larger, biologically-driven summer gradient. In order to understand this climate regulation service, we constructed a carbon-budget supplemented by data from the literature, where the NW European shelf is treated as a box with carbon entering and leaving the box. This budget showed that net C-burial was a small sink of 1.3 +/- 3.1 Tg C yr(-1), while CO2 efflux from estuaries to the atmosphere, removed the majority of river C-inputs. In contrast, the input from the Baltic Sea likely contributes to net export via the continental shelf pump and advection (34.4 +/- 6.0 Tg C yr(-1)).
- Published
- 2019
- Full Text
- View/download PDF
44. Global carbon budget 2019
- Author
-
Environmental Sciences, Friedlingstein, Pierre, Jones, Matthew W., O'Sullivan, Michael, Andrew, Robbie M., Hauck, Judith, Peters, Glen P., Peters, Wouter, Pongratz, Julia, Sitch, Stephen, Le Quéré, Corinne, DBakker, Orothee C.E., Canadell1, Josep G., Ciais1, Philippe, Jackson, Robert B., Anthoni1, Peter, Barbero, Leticia, Bastos, Ana, Bastrikov, Vladislav, Becker, Meike, Bopp, Laurent, Buitenhuis, Erik, Chandra, Naveen, Chevallier, Frédéric, Chini, Louise P., Currie, Kim I., Feely, Richard A., Gehlen, Marion, Gilfillan, Dennis, Gkritzalis, Thanos, Goll, Daniel S., Gruber, Nicolas, Gutekunst, Sören, Harris, Ian, Haverd, Vanessa, Houghton, Richard A., Hurtt, George, Ilyina, Tatiana, Jain, Atul K., Joetzjer, Emilie, Kaplan, Jed O., Kato, Etsushi, Goldewijk, Kees Klein, Korsbakken, Jan Ivar, Landschützer, Peter, Lauvset, Siv K., Lefèvre, Nathalie, Lenton, Andrew, Lienert, Sebastian, Lombardozzi, Danica, Marland, Gregg, McGuire, Patrick C., Melton, Joe R., Metzl, Nicolas, Munro, David R., Nabel, Julia E.M.S., Nakaoka, Shin Ichiro, Neill, Craig, Omar, Abdirahman M., Ono, Tsuneo, Peregon, Anna, Pierrot, Denis, Poulter, Benjamin, Rehder, Gregor, Resplandy, Laure, Robertson, Eddy, Rödenbeck, Christian, Séférian, Roland, Schwinger, Jörg, Smith, Naomi, Tans, Pieter P., Tian, Hanqin, Tilbrook, Bronte, Tubiello, Francesco N., Van Der Werf, Guido R., Wiltshire, Andrew J., Zaehle, Sönke, Environmental Sciences, Friedlingstein, Pierre, Jones, Matthew W., O'Sullivan, Michael, Andrew, Robbie M., Hauck, Judith, Peters, Glen P., Peters, Wouter, Pongratz, Julia, Sitch, Stephen, Le Quéré, Corinne, DBakker, Orothee C.E., Canadell1, Josep G., Ciais1, Philippe, Jackson, Robert B., Anthoni1, Peter, Barbero, Leticia, Bastos, Ana, Bastrikov, Vladislav, Becker, Meike, Bopp, Laurent, Buitenhuis, Erik, Chandra, Naveen, Chevallier, Frédéric, Chini, Louise P., Currie, Kim I., Feely, Richard A., Gehlen, Marion, Gilfillan, Dennis, Gkritzalis, Thanos, Goll, Daniel S., Gruber, Nicolas, Gutekunst, Sören, Harris, Ian, Haverd, Vanessa, Houghton, Richard A., Hurtt, George, Ilyina, Tatiana, Jain, Atul K., Joetzjer, Emilie, Kaplan, Jed O., Kato, Etsushi, Goldewijk, Kees Klein, Korsbakken, Jan Ivar, Landschützer, Peter, Lauvset, Siv K., Lefèvre, Nathalie, Lenton, Andrew, Lienert, Sebastian, Lombardozzi, Danica, Marland, Gregg, McGuire, Patrick C., Melton, Joe R., Metzl, Nicolas, Munro, David R., Nabel, Julia E.M.S., Nakaoka, Shin Ichiro, Neill, Craig, Omar, Abdirahman M., Ono, Tsuneo, Peregon, Anna, Pierrot, Denis, Poulter, Benjamin, Rehder, Gregor, Resplandy, Laure, Robertson, Eddy, Rödenbeck, Christian, Séférian, Roland, Schwinger, Jörg, Smith, Naomi, Tans, Pieter P., Tian, Hanqin, Tilbrook, Bronte, Tubiello, Francesco N., Van Der Werf, Guido R., Wiltshire, Andrew J., and Zaehle, Sönke
- Published
- 2019
45. Winter weather controls net influx of atmospheric CO2 on the north-west European shelf
- Author
-
Kitidis, Vassilis, Shutler, Jamie D., Ashton, Ian, Warren, Mark, Brown, Ian, Findlay, Helen, Hartman, Sue E., Sanders, Richard, Humphreys, Matthew, Kivimäe, Caroline, Greenwood, Naomi, Hull, Tom, Pearce, David, McGrath, Triona, Stewart, Brian M., Walsham, Pamela, McGovern, Evin, Bozec, Yann, Gac, Jean-Philippe, van Heuven, Steven M. A. C., Hoppema, Mario, Schuster, Ute, Johannessen, Truls, Omar, Abdirahman, Lauvset, Siv K., Skjelvan, Ingunn, Olsen, Are, Steinhoff, Tobias, Körtzinger, Arne, Becker, Meike, Lefevre, Nathalie, Diverrès, Denis, Gkritzalis, Thanos, Cattrijsse, André, Petersen, Wilhelm, Voynova, Yoana G., Chapron, Bertrand, Grouazel, Antoine, Land, Peter E., Sharples, Jonathan, Nightingale, Philip D., Kitidis, Vassilis, Shutler, Jamie D., Ashton, Ian, Warren, Mark, Brown, Ian, Findlay, Helen, Hartman, Sue E., Sanders, Richard, Humphreys, Matthew, Kivimäe, Caroline, Greenwood, Naomi, Hull, Tom, Pearce, David, McGrath, Triona, Stewart, Brian M., Walsham, Pamela, McGovern, Evin, Bozec, Yann, Gac, Jean-Philippe, van Heuven, Steven M. A. C., Hoppema, Mario, Schuster, Ute, Johannessen, Truls, Omar, Abdirahman, Lauvset, Siv K., Skjelvan, Ingunn, Olsen, Are, Steinhoff, Tobias, Körtzinger, Arne, Becker, Meike, Lefevre, Nathalie, Diverrès, Denis, Gkritzalis, Thanos, Cattrijsse, André, Petersen, Wilhelm, Voynova, Yoana G., Chapron, Bertrand, Grouazel, Antoine, Land, Peter E., Sharples, Jonathan, and Nightingale, Philip D.
- Abstract
Shelf seas play an important role in the global carbon cycle, absorbing atmospheric carbon dioxide (CO2) and exporting carbon (C) to the open ocean and sediments. The magnitude of these processes is poorly constrained, because observations are typically interpolated over multiple years. Here, we used 298500 observations of CO2 fugacity (fCO2) from a single year (2015), to estimate the net influx of atmospheric CO2 as 26.2 ± 4.7 Tg C yr−1 over the open NW European shelf. CO2 influx from the atmosphere was dominated by influx during winter as a consequence of high winds, despite a smaller, thermally-driven, air-sea fCO2 gradient compared to the larger, biologically-driven summer gradient. In order to understand this climate regulation service, we constructed a carbon-budget supplemented by data from the literature, where the NW European shelf is treated as a box with carbon entering and leaving the box. This budget showed that net C-burial was a small sink of 1.3 ± 3.1 Tg C yr−1, while CO2 efflux from estuaries to the atmosphere, removed the majority of river C-inputs. In contrast, the input from the Baltic Sea likely contributes to net export via the continental shelf pump and advection (34.4 ± 6.0 Tg C yr−1).
- Published
- 2019
46. Arctic Ocean CO2 uptake: An improved multiyear estimate of the air-sea CO2 flux incorporating chlorophyll a concentrations
- Author
-
Yasunaka, Sayaka, Siswanto, Eko, Olsen, Are, Hoppema, Mario, Watanabe, Eiji, Fransson, Agneta, Chierici, Melissa, Murata, Akihiko, Lauvset, Siv K., Wanninkhof, Rik, Takahashi, Taro, Kosugi, Naohiro, Omar, Abdirahman M., Heuven, Steven, Mathis, Jeremy T., and Isotope Research
- Subjects
CARBON-DIOXIDE ,TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES ,NEURAL-NETWORK ,WIND-SPEED ,PHYTOPLANKTON BLOOMS ,COCCOLITHOPHORE BLOOMS ,UPTAKE CAPACITY ,INTERANNUAL VARIABILITY ,GLOBAL OCEAN ,NORTH-ATLANTIC ,GAS-EXCHANGE - Abstract
We estimated monthly air–sea CO2 fluxes in the Arctic Ocean and its adjacent seas north of 60∘ N from 1997 to 2014. This was done by mapping partial pressure of CO2 in the surface water (pCO2w) using a self-organizing map (SOM) technique incorporating chlorophyll a concentration (Chl a), sea surface temperature, sea surface salinity, sea ice concentration, atmospheric CO2 mixing ratio, and geographical position. We applied new algorithms for extracting Chl a from satellite remote sensing reflectance with close examination of uncertainty of the obtained Chl a values. The overall relationship between pCO2w and Chl a was negative, whereas the relationship varied among seasons and regions. The addition of Chl a as a parameter in the SOM process enabled us to improve the estimate of pCO2w, particularly via better representation of its decline in spring, which resulted from biologically mediated pCO2w reduction. As a result of the inclusion of Chl a, the uncertainty in the CO2 flux estimate was reduced, with a net annual Arctic Ocean CO2 uptake of 180 ± 130 Tg C yr−1. Seasonal to interannual variation in the CO2 influx was also calculated.
- Published
- 2018
47. Ensuring Efficient and Robust Offshore Storage – The Role of Marine System Modelling
- Author
-
Blackford, Jerry, primary, Alendal, Guttorm, additional, Artioli, Yuri, additional, Avlesen, Helge, additional, Cazenave, Pierre, additional, Chen, Baixin, additional, Dale, Andy, additional, Dewar, Marius, additional, García-Ibáñez, Maribel I., additional, Gros, Jonas, additional, Gundersen, Kristian, additional, Haeckel, Matthias, additional, Khajepor, Sorush, additional, Lessin, Gennadi, additional, Oleynik, Anna, additional, Omar, Abdirahman M., additional, and Saleem, Umer, additional
- Published
- 2019
- Full Text
- View/download PDF
48. The stoichiometric Cseep method as a tool to distinguish CO2 seepage signal from the natural variability
- Author
-
Omar, Abdirahman, primary, Ibanez Garcia, Maribel, additional, and Alendal, Guttorm, additional
- Published
- 2019
- Full Text
- View/download PDF
49. Nordic Seas Acidification.
- Author
-
Fransner, Filippa, Fröb, Friederike, Tjiputra, Jerry, Chierici, Melissa, Fransson, Agneta, Jeansson, Emil, Johannessen, Truls, Jones, Elizabeth, Lauvset, Siv K., Ólafsdóttir, Sólveig R., Omar, Abdirahman, Skjelvan, Ingunn, and Olsen, Are
- Subjects
DEEP-sea corals ,ACIDIFICATION ,OCEAN acidification ,SEAS ,WATER ,OCEANOGRAPHIC submersibles - Abstract
Being windows to the deep ocean, the Nordic Seas play an important role in transferring anthropogenic carbon, and thus ocean acidification, to the abyss. Due to its location in high latitudes, it is further more sensitive to acidification compared with many other oceanic regions. Here we make a detailed investigation of the acidification of the Nordic Seas, and its drivers, since pre-Industrial to 2100 by using in situ measurements, gridded climatological data, and simulations from one Earth System Model (ESM). In the last 40 years, pH has decreased by 0.11 units in the Nordic Seas surface waters, a change that is twice as large as that between 1850-1980. We find that present trends are larger than expected from the increase in atmospheric CO
2 alone, which is related to a faster increase in the seawater pCO2 compared with that of the atmosphere, i.e. a weakening of the pCO2 undersaturation of the Nordic Seas. The pH drop, mainly driven by an uptake of anthropogenic CO2 , is significant all over the Nordic Seas, except for in the Barents Sea Opening, where it is counteracted by a significant increase in alkalinity. We also find that the acidification signal penetrates relatively deep, in some regions down to 2000 m. This has resulted in a significant decrease in the aragonite saturation state, which approaches undersaturation at 1000-2000 m in the modern ocean. Future scenarios suggest an additional drop of 0.1-0.4 units, depending on the emission scenario, in surface pH until 2100. In the worst case scenario, RCP8.5, the entire water column will be undersaturated with respect to aragonite by the end of the century, threatening Nordic Seas cold-water corals and their ecosystems. The model simulations suggest that aragonite undersaturation can be avoided at depths where the majority of the cold-water corals live in the RCP2.6 and RCP4.5 scenarios. As these results are based on one model only, we request additional observational and model studies to better quantify the transfer of anthropogenic CO2 to deep waters and its effect on future pH in the Nordic Seas. [ABSTRACT FROM AUTHOR]- Published
- 2020
- Full Text
- View/download PDF
50. Arctic Ocean CO<sub>2</sub> uptake: an improved multiyear estimate of the air–sea CO<sub>2</sub> flux incorporating chlorophyll <i>a</i> concentrations
- Author
-
Yasunaka, Sayaka, primary, Siswanto, Eko, additional, Olsen, Are, additional, Hoppema, Mario, additional, Watanabe, Eiji, additional, Fransson, Agneta, additional, Chierici, Melissa, additional, Murata, Akihiko, additional, Lauvset, Siv K., additional, Wanninkhof, Rik, additional, Takahashi, Taro, additional, Kosugi, Naohiro, additional, Omar, Abdirahman M., additional, van Heuven, Steven, additional, and Mathis, Jeremy T., additional
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.