Marie-Caroline Jullien, Olivier Mesdjian, Rachele Allena, Jacques Fattaccioli, Nicolas Ruyssen, Processus d'Activation Sélective par Transfert d'Energie Uni-électronique ou Radiatif (UMR 8640) (PASTEUR), Département de Chimie - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut Pierre-Gilles de Gennes pour la Microfluidique, Institut de Biomécanique Humaine Georges Charpak (IBHGC), Université Sorbonne Paris Nord-Arts et Métiers Sciences et Technologies, HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM), Institut de Physique de Rennes (IPR), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS), Institut Pierre-Gilles de Gennes [ANR-10-LABX-31, ANR-10-IDEX-0001-02, ANR-10-EQPX-34], Agence Nationale de la Recherche (ANR Jeune Chercheur PHAGODROP) French National Research Agency (ANR) [ANR-15-CE18-0014-01], Ecole Doctorale ED 388 (Chimie Paris Centre), Ecole Normale Superieure de Rennes (ENS Rennes, Contrat Doctoral Specifique Normalien), ANR-10-LABX-0031,IPGG_LABEX,Pierre-Gilles de Gennes Institute for microfluidics(2010), ANR-10-IDEX-0001,PSL,Paris Sciences et Lettres(2010), ANR-10-EQPX-0034,IPGG,Institut Pierre Gilles de Gennes pour la microfluidique(2010), ANR-15-CE18-0014,PhagoDrop,Phagocytose de gouttes d'émulsions fonctionnalisées par des IgG(2015), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), HESAM Université (HESAM)-HESAM Université (HESAM), Université de Rennes 1 (UR1), and Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)
With the aim to parallelize and monitor biological or biochemical phenomena, trapping and immobilization of objects such as particles, droplets or cells in microfluidic devices has been an intense area of research and engineering so far. Either being passive or active, these microfluidic devices are usually composed of arrays of elementary traps with various levels of sophistication. For a given array, it is important to have an efficient and fast immobilization of the highest number of objects, while optimizing the spatial homogeneity of the trapping over the whole chip. For passive devices, this has been achieved with two-layers structures, making the fabrication process more complex. In this work, we designed small microfluidic traps by single-layer direct laser writing into a photoresist, and we show that even in this simplest case, the orientation of the main flow of particles with respect to the traps have a drastic effect on the trapping efficiency and homogeneity. To better understand this phenomenon, we have considered two different flow geometries: parallel and oblique with respect to the traps array, and compared quantitatively the immobilization of particles with various sizes and densities. Using image analysis, we show that diagonal flows gives a spatial distribution of the trap loading that is more homogeneous over the whole chip as compared to the straight ones, and by performing FEM and trapping simulation, we propose a qualitative explanation of this phenomenon., Post-reviewing revised version