39 results on '"Olivier Lebeltel"'
Search Results
2. Exploring the Dynamics of Mass Action Systems
- Author
-
Oded Maler, Ádám M. Halász, Olivier Lebeltel, and Ouri Maler
- Subjects
Mathematics ,QA1-939 ,Electronic computers. Computer science ,QA75.5-76.95 - Abstract
We present the Populus toolkit for exploring the dynamics of mass action systems under different assumptions.
- Published
- 2013
- Full Text
- View/download PDF
3. Testing a Formally Verified Compiler.
- Author
-
David Monniaux, Léo Gourdin, Sylvain Boulmé, and Olivier Lebeltel
- Published
- 2023
- Full Text
- View/download PDF
4. AMT 2.0: qualitative and quantitative trace analysis with extended signal temporal logic.
- Author
-
Dejan Nickovic, Olivier Lebeltel, Oded Maler, Thomas Ferrère, and Dogan Ulus
- Published
- 2020
- Full Text
- View/download PDF
5. AMT 2.0: Qualitative and Quantitative Trace Analysis with Extended Signal Temporal Logic.
- Author
-
Dejan Nickovic, Olivier Lebeltel, Oded Maler, Thomas Ferrère, and Dogan Ulus
- Published
- 2018
- Full Text
- View/download PDF
6. Exploring Synthetic Mass Action Models.
- Author
-
Oded Maler, ádám M. Halász, Olivier Lebeltel, and Ouri Maler
- Published
- 2014
- Full Text
- View/download PDF
7. SpaceEx: Scalable Verification of Hybrid Systems.
- Author
-
Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray 0001, Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, Thao Dang 0001, and Oded Maler
- Published
- 2011
- Full Text
- View/download PDF
8. Basic Concepts of Bayesian Programming.
- Author
-
Pierre Bessière and Olivier Lebeltel
- Published
- 2008
- Full Text
- View/download PDF
9. Parking a car using Bayesian Programming.
- Author
-
Priscilla Pek Su-Jin, Olivier Lebeltel, and Christian Laugier
- Published
- 2002
- Full Text
- View/download PDF
10. AMT 2.0: qualitative and quantitative trace analysis with extended signal temporal logic
- Author
-
Olivier Lebeltel, Oded Maler, Dejan Nickovic, Dogan Ulus, and Thomas Ferrère
- Subjects
Computer science ,Property (programming) ,SIGNAL (programming language) ,020207 software engineering ,02 engineering and technology ,Signal temporal logic ,Quantitative analysis (finance) ,Theory of computation ,0202 electrical engineering, electronic engineering, information engineering ,Trace analysis ,Regular expression ,Algorithm ,Software ,Information Systems ,TRACE (psycholinguistics) - Abstract
We introduce in this paper $$\text {AMT} \; 2.0$$ , a tool for qualitative and quantitative analysis of hybrid continuous and Boolean signals that combine numerical values and discrete events. The evaluation of the signals is based on rich temporal specifications expressed in extended signal temporal logic, which integrates timed regular expressions within signal temporal logic. The tool features qualitative monitoring (property satisfaction checking), trace diagnostics for explaining and justifying property violations and specification-driven measurement of quantitative features of the signal. We demonstrate the tool functionality on several running examples and case studies, and evaluate its performance.
- Published
- 2020
- Full Text
- View/download PDF
11. Wings Were Not Designed to Let Animals Fly.
- Author
-
Eric Dedieu, Olivier Lebeltel, and Pierre Bessière
- Published
- 1997
- Full Text
- View/download PDF
12. Teaching Bayesian behaviours to video game characters.
- Author
-
Ronan Le Hy, Anthony Arrigoni, Pierre Bessière, and Olivier Lebeltel
- Published
- 2004
- Full Text
- View/download PDF
13. Bayesian Robot Programming.
- Author
-
Olivier Lebeltel, Pierre Bessière, Julien Diard, and Emmanuel Mazer
- Published
- 2004
- Full Text
- View/download PDF
14. Programmation bayésienne des robots.
- Author
-
Olivier Lebeltel, Pierre Bessière, Julien Diard, and Emmanuel Mazer
- Published
- 2004
- Full Text
- View/download PDF
15. Exploring the Dynamics of Mass Action Systems
- Author
-
Ádám M. Halász, Oded Maler, Ouri Maler, and Olivier Lebeltel
- Subjects
FOS: Computer and information sciences ,0209 industrial biotechnology ,Class (set theory) ,Pure mathematics ,Quantitative Biology::Tissues and Organs ,Population ,Of the form ,02 engineering and technology ,lcsh:QA75.5-76.95 ,Transformation (music) ,Computational Engineering, Finance, and Science (cs.CE) ,Computer Science - Computers and Society ,03 medical and health sciences ,020901 industrial engineering & automation ,Computers and Society (cs.CY) ,Chemistry (relationship) ,Computer Science - Computational Engineering, Finance, and Science ,education ,Set (psychology) ,Computer Science::Distributed, Parallel, and Cluster Computing ,030304 developmental biology ,Physics::Computational Physics ,0303 health sciences ,education.field_of_study ,lcsh:Mathematics ,lcsh:QA1-939 ,Action (philosophy) ,Social system ,lcsh:Electronic computers. Computer science - Abstract
We present the Populus toolkit for exploring the dynamics of mass action systems under different assumptions., Comment: In Proceedings HSB 2013, arXiv:1308.5724
- Published
- 2013
- Full Text
- View/download PDF
16. Exploring Synthetic Mass Action Models
- Author
-
Olivier Lebeltel, Ádám M. Halász, Ouri Maler, and Oded Maler
- Subjects
Theoretical computer science ,Particle type ,Action (philosophy) ,Computer science ,Probabilistic automaton ,Sensitivity (control systems) ,Type (model theory) ,Computer Science::Databases - Abstract
In this work we propose a model that can be used to study the dynamics of mass action systems, systems consisting of a large number of individuals whose behavior is influenced by other individuals that they encounter. Our approach is rather synthetic and abstract, viewing each individual as a probabilistic automaton that can be in one of finitely many discrete states. We demonstrate the type of investigations that can be carried out on such a model using the Populus toolkit. In particular, we illustrate how sensitivity to initial spatial distribution can be observed in simulation.
- Published
- 2015
- Full Text
- View/download PDF
17. Formal and Informal Methods for Multi-Core Design Space Exploration
- Author
-
Olivier Lebeltel, Oded Maler, and Jean-Francois Kempf
- Subjects
FOS: Computer and information sciences ,Multi-core processor ,Computer Science - Performance ,Scope (project management) ,Design space exploration ,Computer science ,lcsh:Mathematics ,Distributed computing ,Extension (predicate logic) ,lcsh:QA1-939 ,lcsh:QA75.5-76.95 ,Scheduling (computing) ,Domain (software engineering) ,Software Engineering (cs.SE) ,Performance (cs.PF) ,Computer Science - Software Engineering ,Software deployment ,lcsh:Electronic computers. Computer science ,Formal verification - Abstract
We propose a tool-supported methodology for design-space exploration for embedded systems. It provides means to define high-level models of applications and multi-processor architectures and evaluate the performance of different deployment (mapping, scheduling) strategies while taking uncertainty into account. We argue that this extension of the scope of formal verification is important for the viability of the domain., In Proceedings QAPL 2014, arXiv:1406.1567
- Published
- 2014
18. I. Proposition pour une théorie probabiliste des systèmes cognitifs sensori-moteurs
- Author
-
Emmanuel Mazeret, Kamel Mekhnacha, Olivier Lebeltel, Pierre Bessière, and Eric Dedieu
- Subjects
science cognitive ,intelligence artificielle ,robotique ,logique ,inference probabiliste ,inférence bayésienne ,entropie maximum ,perception ,action ,décision ,Philosophy ,decision ,cognitive science ,artificial intelligence ,robotics ,logic ,probabilistic inference ,bayesian inference ,maximum entropy ,General Medicine ,Probabilistic inference ,Humanities - Abstract
Interpretation or description (I) Proposition for a probabilistic theory of cognitive sensory-motor systems. Is it necessary to "understand" or even to "represent" the world to perceive and act ? This is one of the fundamental issue in sensorimotor research. Numerous debates in cognitive sciences turn on this subject. After simplification, formalization and translation into mathematical terms, we reformulate this question as : what is the nature of the link between the automatic inferences of a computer and their intended counterparts in the physical world where a robot is to be "embodied" ?, Jusqu'à quel point agir et percevoir supposent-ils de "comprendre" ou même plus simplement de se "représenter" le monde ? Telle est l'une des préoccupations fondamentales des recherches sur la sensori-motricité. Elle est au centre de nombreux débats en sciences cognitives. Cette question une fois formalisée, expurgée, simplifiée et traduite en termes mathématiques, nous amène à nous interroger tout au long de cet article, sur les liens qui peuvent exister entre les inferences formelles mécanisées informatiquement et leurs contreparties dans le monde physique où évolue un robot. Ainsi reformulée, la question centrale débattue devient : comment rendre effectives les inferences formelles ?, Bessière Pierre, Dedieu Éric, Lebeltel Olivier, Mazeret Emmanuel, Mekhnacha Kamel. I. Proposition pour une théorie probabiliste des systèmes cognitifs sensori-moteurs. In: Intellectica. Revue de l'Association pour la Recherche Cognitive, n°26-27, 1998/1-2. Sciences sociales et cognition. pp. 257-311.
- Published
- 1998
- Full Text
- View/download PDF
19. SpaceEx: Scalable Verification of Hybrid Systems
- Author
-
Rodolfo Ripado, Alexandre Donzé, Thao Dang, Antoine Girard, Colas Le Guernic, Goran Frehse, Olivier Lebeltel, Oded Maler, Rajarshi Ray, Scott Cotton, VERIMAG (VERIMAG - IMAG), Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Grenoble (INPG)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Université Joseph Fourier - Grenoble 1 (UJF), Courant Institute of Mathematical Sciences [New York] (CIMS), New York University [New York] (NYU), NYU System (NYU)-NYU System (NYU), Calculs Algébriques et Systèmes Dynamiques (CASYS), Laboratoire Jean Kuntzmann (LJK), Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Université Joseph Fourier - Grenoble 1 (UJF)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Université Joseph Fourier - Grenoble 1 (UJF)-Université Pierre Mendès France - Grenoble 2 (UPMF), and Ganesh Gopalakrishnan, Shaz Qadeer
- Subjects
0209 industrial biotechnology ,Computer science ,Computation ,Variable time ,020207 software engineering ,02 engineering and technology ,Support function ,Polyhedron ,020901 industrial engineering & automation ,Reachability ,Hybrid system ,Scalability ,0202 electrical engineering, electronic engineering, information engineering ,Hybrid automaton ,[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] ,Algorithm - Abstract
International audience; We present a scalable reachability algorithm for hybrid systems with piecewise affine, non-deterministic dynamics. It combines polyhedra and support function representations of continuous sets to compute an over-approximation of the reachable states. The algorithm improves over previous work by using variable time steps to guarantee a given local error bound. In addition, we propose an improved approximation model, which drastically improves the accuracy of the algorithm. The algorithm is implemented as part of SpaceEx, a new verification platform for hybrid systems, available at spaceex.imag.fr. Experimental results of full fixed-point computations with hybrid systems with more than 100 variables illustrate the scalability of the approach.
- Published
- 2011
- Full Text
- View/download PDF
20. Parking a car using Bayesian Programming
- Author
-
Olivier Lebeltel, P.P. Su-Jin, and Christian Laugier
- Subjects
Computer Science::Robotics ,Engineering ,Parallel parking problem ,business.industry ,Bayesian probability ,Path (graph theory) ,Probabilistic logic ,Robotics ,Bayesian programming ,Artificial intelligence ,Motion planning ,business ,Domain (software engineering) - Abstract
The kinematic constraints on a car limits the movements that it can follow, and this difficulty also makes planning a path a challenging problem. More precisely, the parallel parking problem has been widely addressed in the literature, but these approaches rely on more traditional methods using control laws, motion planners or artificial intelligence. There have been recently much interest in the robotics domain on using probabilistic approaches. In this paper, we propose an original formulation and resolution of the parking problem using Bayesian Robot Programming.
- Published
- 2004
- Full Text
- View/download PDF
21. Bayesian Robot Programming
- Author
-
Pierre Bessière, Julien Diard, Olivier Lebeltel, Emmanuel Mazer, Geometry and Probability for Motion and Action (E-MOTION), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Grenoble (LIG), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF), Laboratoire d'Informatique de Grenoble (LIG), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Inria Grenoble - Rhône-Alpes, and Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Subjects
0209 industrial biotechnology ,Iterative and incremental development ,business.industry ,Computer science ,Probabilistic logic ,[SCCO.COMP]Cognitive science/Computer science ,Robotics ,02 engineering and technology ,Bayesian inference ,Sensor fusion ,Machine learning ,computer.software_genre ,Robot learning ,020901 industrial engineering & automation ,Artificial Intelligence ,0202 electrical engineering, electronic engineering, information engineering ,Robot ,[INFO.INFO-RB]Computer Science [cs]/Robotics [cs.RO] ,020201 artificial intelligence & image processing ,Artificial intelligence ,business ,computer ,Functional reactive programming - Abstract
International audience; We propose a new method to program robots based on Bayesian inference and learning. It is called BRP for Bayesian Robot Programming. The capacities of this programming method are demonstrated through a succession of increasingly complex experiments. Starting from the learning of simple reactive behaviors, we present instances of behavior combinations, sensor fusion, hierarchical behavior composition, situation recognition and temporal sequencing. This series of experiments comprises the steps in the incremental development of a complex robot program. The advantages and drawbacks of BRP are discussed along with these different experiments and summed up as a conclusion. These different robotics programs may be seen as an illustration of probabilistic programming applicable whenever one must deal with problems based on uncertain or incomplete knowledge. The scope of possible applications is obviously much broader than robotics.
- Published
- 2004
- Full Text
- View/download PDF
22. Teaching Bayesian Behaviours to Video Game Characters
- Author
-
Anthony Arrigoni, Pierre Bessière, Olivier Lebeltel, Ronan Le Hy, Geometry and Probability for Motion and Action (E-MOTION), Laboratoire d'informatique GRAphique, VIsion et Robotique de Grenoble (GRAVIR - IMAG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Inria Grenoble - Rhône-Alpes, and Institut National de Recherche en Informatique et en Automatique (Inria)
- Subjects
Finite-state machine ,Computer science ,business.industry ,General Mathematics ,media_common.quotation_subject ,Bayesian probability ,[INFO.INFO-OH]Computer Science [cs]/Other [cs.OH] ,ComputingMilieux_PERSONALCOMPUTING ,020207 software engineering ,02 engineering and technology ,Computer Science Applications ,Game design ,Control and Systems Engineering ,Video game graphics ,0202 electrical engineering, electronic engineering, information engineering ,Selection (linguistics) ,020201 artificial intelligence & image processing ,Bayesian programming ,Artificial intelligence ,Imitation ,business ,Video game ,Software ,media_common - Abstract
voir basilic : http://emotion.inrialpes.fr/bibemotion/2004/LABL04/; This article explores an application of Bayesian programming to behaviours for synthetic video games characters. We address the problem of real-time reactive selection of elementary behaviours for an agent playing a first person shooter game. We show how Bayesian programming can lead to condensed and easier formalisation of finite state machine-like behaviour selection, and lend itself to learning by imitation, in a fully transparent way for the player.
- Published
- 2004
23. Teaching Bayesian Behaviours to Videogame Characters
- Author
-
Ronan Le Hy, Anthony Arrigoni, Pierre Bessière, Olivier Lebeltel, Geometry and Probability for Motion and Action (E-MOTION), Laboratoire d'informatique GRAphique, VIsion et Robotique de Grenoble (GRAVIR - IMAG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Inria Grenoble - Rhône-Alpes, and Institut National de Recherche en Informatique et en Automatique (Inria)
- Subjects
[INFO.INFO-OH]Computer Science [cs]/Other [cs.OH] - Abstract
voir basilic : http://emotion.inrialpes.fr/bibemotion/2003/LABL03/ address: Las vegas, NV (US)
- Published
- 2003
24. Learning Bayesian Behaviours for Videogame Characters
- Author
-
Ronan Le Hy, Pierre Bessière, Olivier Lebeltel, David Bellot, Geometry and Probability for Motion and Action (E-MOTION), Laboratoire d'informatique GRAphique, VIsion et Robotique de Grenoble (GRAVIR - IMAG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Inria Grenoble - Rhône-Alpes, and Institut National de Recherche en Informatique et en Automatique (Inria)
- Subjects
[SCCO.COMP]Cognitive science/Computer science ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] - Published
- 2003
25. Interprétation versus Description (I) : Proposition pour une théorie probabiliste des systèmes cognitifs sensori-moteurs
- Author
-
Pierre Bessière, Eric Dedieu, Olivier Lebeltel, Emmanuel Mazer, Kamel Mekhnacha, Laboratoire Leibniz (Leibniz - IMAG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS), and Bessiere, Pierre
- Subjects
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI] ,[INFO.INFO-RO] Computer Science [cs]/Operations Research [cs.RO] ,[SCCO.COMP]Cognitive science/Computer science ,science cognitive ,robotique ,logique ,[INFO.INFO-RO]Computer Science [cs]/Operations Research [cs.RO] ,inférence bayésienne ,perception ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,intelligence artificielle ,inférence probabiliste ,[SCCO.COMP] Cognitive science/Computer science ,décision ,action ,entropie maximum - Abstract
Jusqu'à quel point agir et percevoir supposent-ils de "comprendre" ou même plus simplement de se "représenter" le monde ? Telle est l'une des préoccupations fondamentales des recherches sur la sensori-motricité au centre de nombreux débats en sciences cognitives. Cette question une fois formalisée, expurgée, simplifiée et traduite en termes mathématiques, nous amène à nous interroger tout au long de cet article, sur les liens qui peuvent exister entre les inférences formelles mécanisées informatiquement et leurs contreparties dans le monde physique où évolue un robot. Ainsi reformulée, la question centrale débattue devient : comment rendre effectives les inférences formelles ?
- Published
- 1999
26. II. Fondements mathématiques de l'approche F+D
- Author
-
Pierre Bessière, Emmanuel Mazeret, Kamel Mekhnacha, Olivier Lebeltel, and Eric Dedieu
- Subjects
perception ,cognitive science ,artificial intelligence ,robotics ,logic ,probabilistic inference ,bayesian inference ,maximum entropy ,decision ,action ,Philosophy ,General Medicine ,Probabilistic inference ,science cognitive ,intelligence artificielle ,robotique ,logique ,inférence probabiliste ,inférence bayésienne ,entropie maximum ,décision ,Humanities - Abstract
Mathematical foundations of the F+D approach. This paper is a continuation of the paper entitled "Interprétation ou Description (I) : Proposition pour une théorie probabiliste des systèmes cognitifs sensori-moteurs". Its purpose is to introduce the mathematical basis of the F+D approach presented in the first paper. The two fundamental components needed in our approach are discussed. On the one hand, the formal rules to reason about uncertain and incomplete knowledge. On the other hand, the maximum entropy principle, which clarifies the link between "descriptions" and experiments and offers a clear and sound theoretical framework for learning., Cet article fait suite à l'article "Interprétation ou Description (I) : Proposition pour une théorie probabiliste des systèmes cognitifs sensori-moteurs". Son objectif est de présenter les fondements mathématiques de l'approche F+D présentés dans le premier article. Les deux composantes fondamentales dont nous avons besoin pour notre approche F+D sont présentées. D'une part, des règles formelles permettant de raisonner sur des données incertaines et incomplètes. D'autre part, le principe de maximum d'entropie, qui permet de clarifier le lien entre descriptions et expériences et donne un cadre théorique général pour l'apprentissage., Bessière Pierre, Dedieu Éric, Lebeltel Olivier, Mazeret Emmanuel, Mekhnacha Kamel. II. Fondements mathématiques de l'approche F+D. In: Intellectica. Revue de l'Association pour la Recherche Cognitive, n°26-27, 1998/1-2. Sciences sociales et cognition. pp. 313-336.
- Published
- 1998
27. Interprétation ou Description (II) : Fondements mathématiques de l'approche F+D
- Author
-
Pierre Bessière, Eric Dedieu, Olivier Lebeltel, Emmanuel Mazer, Kamel Mekhnacha, Bessiere, Pierre, Laboratoire Leibniz (Leibniz - IMAG), and Université Joseph Fourier - Grenoble 1 (UJF)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI] ,[MATH.MATH-PR] Mathematics [math]/Probability [math.PR] ,[SCCO.COMP] Cognitive science/Computer science ,[SCCO.COMP]Cognitive science/Computer science ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] - Abstract
Cet article fait suite et complète l'article intitulé "Interprétation ou Description : proposition pour une théorie probabiliste des systèmes cognitifs sensori-moteurs". L'objectif poursuivi est de présenter les principes des fondements mathématiques de l'approche F+D. E.T. Jaynes propose dans (Jaynes95) une théorie de la cognition fondée sur les probabilités appelée "Probability as Logic" (PaL). Cette théorie fournit les deux composantes fondamentales dont nous avons besoin pour notre approche F+D, d'une part, des règles formelles permettant de raisonner sur ces données incertaines et incomplètes, d'autre part, le principe de maximum d'entropie, qui permet de clarifier le lien entre descriptions et expériences et donne un cadre théorique général pour l'apprentissage.
- Published
- 1998
28. Wings were not designed to let animals fly
- Author
-
Pierre Bessière, Olivier Lebeltel, Eric Dedieu, Laboratoire Leibniz (Leibniz - IMAG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS), Lecture Notes in Computer Science, and Bessiere, Pierre
- Subjects
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI] ,Computer science ,business.industry ,[SCCO.COMP]Cognitive science/Computer science ,02 engineering and technology ,Biological evolution ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,03 medical and health sciences ,0302 clinical medicine ,[SCCO.COMP] Cognitive science/Computer science ,Feature (computer vision) ,Functional change ,Artificial life ,Obstacle avoidance ,0202 electrical engineering, electronic engineering, information engineering ,Robot ,020201 artificial intelligence & image processing ,Artificial intelligence ,business ,030217 neurology & neurosurgery - Abstract
“Functional change in structural continuity,” i.e., the opportunistic evolution of functions together with structures, is a major feature of biological evolution. However it has seldom struck a robotician's mind as very relevant for building robots, i.e., for design. This paper proposes starting points for investigating this unusual issue.
- Published
- 1997
29. Identité fonctionnelle et identité structurelle: illustration sur le développement d'un robot
- Author
-
Pierre Bessière, Eric Dedieu, Olivier Lebeltel, Bessiere, Pierre, Laboratoire Leibniz (Leibniz - IMAG), and Université Joseph Fourier - Grenoble 1 (UJF)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI] ,[SCCO.COMP] Cognitive science/Computer science ,[INFO.INFO-RB] Computer Science [cs]/Robotics [cs.RO] ,[SCCO.COMP]Cognitive science/Computer science ,[INFO.INFO-RB]Computer Science [cs]/Robotics [cs.RO] ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] - Published
- 1997
30. Modélisation bayésienne d'interactions robot/environnement téléopérées
- Author
-
Pierre Bessière, Eric Dedieu, Olivier Lebeltel, Emmanuel Mazer, Bessiere, Pierre, Laboratoire Leibniz (Leibniz - IMAG), and Université Joseph Fourier - Grenoble 1 (UJF)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI] ,[SCCO.COMP] Cognitive science/Computer science ,[INFO.INFO-RB] Computer Science [cs]/Robotics [cs.RO] ,[SCCO.COMP]Cognitive science/Computer science ,[INFO.INFO-RB]Computer Science [cs]/Robotics [cs.RO] ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] - Published
- 1997
31. Contingency as a Motor for Robot Development
- Author
-
Pierre Bessière, Eric Dedieu, Olivier Lebeltel, Laboratoire Leibniz (Leibniz - IMAG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS), and Bessiere, Pierre
- Subjects
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI] ,[SCCO.COMP] Cognitive science/Computer science ,[INFO.INFO-RB] Computer Science [cs]/Robotics [cs.RO] ,[SCCO.COMP]Cognitive science/Computer science ,[INFO.INFO-RB]Computer Science [cs]/Robotics [cs.RO] ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] - Published
- 1996
32. La poubelle lumineuse : expérience de modélisation quantitative des interactions fonctionnelles sensori-motrices
- Author
-
Olivier Lebeltel, Pierre Bessière, Emmanuel Mazer, Bessiere, Pierre, Laboratoire d'Informatique Fondamentale et d'Intelligence Artificielle (LIFIA), and Institut National Polytechnique de Grenoble (INPG)
- Subjects
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI] ,[SCCO.COMP] Cognitive science/Computer science ,[INFO.INFO-RB] Computer Science [cs]/Robotics [cs.RO] ,[SCCO.COMP]Cognitive science/Computer science ,[INFO.INFO-RB]Computer Science [cs]/Robotics [cs.RO] ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] - Published
- 1994
33. The 'Beam in the Bin' experiment
- Author
-
Pierre Bessière, Eric Dedieu, Olivier Lebeltel, Emmanuel Mazer, Laboratoire d'Informatique Fondamentale et d'Intelligence Artificielle (LIFIA), Institut National Polytechnique de Grenoble (INPG), and Bessiere, Pierre
- Subjects
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI] ,[SCCO.COMP] Cognitive science/Computer science ,[INFO.INFO-RB] Computer Science [cs]/Robotics [cs.RO] ,[SCCO.COMP]Cognitive science/Computer science ,[INFO.INFO-RB]Computer Science [cs]/Robotics [cs.RO] ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] - Published
- 1994
34. La poubelle lumineuse : Acquisition probabiliste d'organisation sensori-motrice
- Author
-
Olivier Lebeltel, Pierre Bessière, Emmanuel Mazer, Laboratoire d'Informatique Fondamentale et d'Intelligence Artificielle (LIFIA), Institut National Polytechnique de Grenoble (INPG), and Bessiere, Pierre
- Subjects
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI] ,[SCCO.COMP] Cognitive science/Computer science ,[SCCO.COMP]Cognitive science/Computer science ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] - Published
- 1994
35. Basic Concepts of Bayesian Programming
- Author
-
Pierre Bessière, Olivier Lebeltel, Geometry and Probability for Motion and Action (E-MOTION), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Grenoble (LIG), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF), Laboratoire d'Informatique de Grenoble (LIG), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Inria Grenoble - Rhône-Alpes, and Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Subjects
Computer science ,business.industry ,Bayesian network ,[SCCO.COMP]Cognitive science/Computer science ,02 engineering and technology ,Machine learning ,computer.software_genre ,Variable-order Bayesian network ,Inductive programming ,03 medical and health sciences ,0302 clinical medicine ,Joint probability distribution ,0202 electrical engineering, electronic engineering, information engineering ,Programming paradigm ,020201 artificial intelligence & image processing ,Bayesian programming ,Artificial intelligence ,business ,computer ,030217 neurology & neurosurgery - Abstract
The purpose of this chapter is to introduce gently the basic concepts of Bayesian programming.
36. L'ancrage perceptif des symboles ? ... Mais au fait, a-t-on vraiment besoin des symboles ?
- Author
-
Pierre Bessière, Olivier Lebeltel, Laboratoire d'Informatique Fondamentale et d'Intelligence Artificielle (LIFIA), Institut National Polytechnique de Grenoble (INPG), Laboratoire de Génie Informatique (LGI - IMAG), and Université Joseph Fourier - Grenoble 1 (UJF)-IMAG
- Subjects
[SCCO.COMP]Cognitive science/Computer science ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]
37. The 'Beam in the Bin' experiment; an application of Probability as Logic to autonomous robotic
- Author
-
Pierre Bessière, Eric Dedieu, Emmanuel Mazer, Olivier Lebeltel, Laboratoire d'Informatique Fondamentale et d'Intelligence Artificielle (LIFIA), Institut National Polytechnique de Grenoble (INPG), and Bessiere, Pierre
- Subjects
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI] ,[SCCO.COMP] Cognitive science/Computer science ,[INFO.INFO-RB] Computer Science [cs]/Robotics [cs.RO] ,[SCCO.COMP]Cognitive science/Computer science ,[INFO.INFO-RB]Computer Science [cs]/Robotics [cs.RO] ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]
38. AMT 2.0: Qualitative and Quantitative Trace Analysis with Extended Signal Temporal Logic
- Author
-
Dejan Nickovic, Thomas Ferrère, Olivier Lebeltel, Dogan Ulus, and Oded Maler
- Subjects
Signal temporal logic ,Quantitative analysis (finance) ,Property (programming) ,Computer science ,0202 electrical engineering, electronic engineering, information engineering ,020207 software engineering ,020201 artificial intelligence & image processing ,Trace analysis ,02 engineering and technology ,Regular expression ,Algorithm ,Signal ,TRACE (psycholinguistics) - Abstract
We introduce in this paper \(\textsc {AMT~2.0}\), a tool for qualitative and quantitative analysis of hybrid continuous and Boolean signals that combine numerical values and discrete events. The evaluation of the signals is based on rich temporal specifications expressed in extended Signal Temporal Logic (xSTL), which integrates Timed Regular Expressions (TRE) within Signal Temporal Logic (STL). The tool features qualitative monitoring (property satisfaction checking), trace diagnostics for explaining and justifying property violations and specification-driven measurement of quantitative features of the signal.
- Full Text
- View/download PDF
39. A Bayesian framework for robotic programming
- Author
-
Julien Diard, Olivier Lebeltel, Emmanuel Mazer, Pierre Bessière, Laboratoire Leibniz (Leibniz - IMAG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS), Automatic Programming and Decisional Systems in Robotics (SHARP), Laboratoire d'informatique GRAphique, VIsion et Robotique de Grenoble (GRAVIR - IMAG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Inria Grenoble - Rhône-Alpes, and Institut National de Recherche en Informatique et en Automatique (Inria)
- Subjects
0209 industrial biotechnology ,Generic programming ,Computer science ,business.industry ,Principle of maximum entropy ,[SCCO.COMP]Cognitive science/Computer science ,Mobile robot ,0102 computer and information sciences ,02 engineering and technology ,Bayesian inference ,Sensor fusion ,01 natural sciences ,Inductive programming ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,Computer Science::Robotics ,020901 industrial engineering & automation ,010201 computation theory & mathematics ,Programming paradigm ,Reactive programming ,[INFO.INFO-RB]Computer Science [cs]/Robotics [cs.RO] ,Artificial intelligence ,business - Abstract
We propose an original method for programming robots based on bayesian inference and learning. This method formally deals with problems of uncertainty and incomplete information that are inherent to the field. Indeed, the principal difficulties of robot programming comes from the unavoidable incompleteness of the models used. We present the formalism for describing a robotic task as well as the resolution methods. This formalism is inspired by the theory of probability, suggested by the physicist E. T. Jaynes: “Probability as Logic” [1]. Learning and maximum entropy principle translate incompleteness into uncertainty. Bayesian inference offers a formal framework for reasoning with this uncertainty. The main contribution of this paper is the definition of a generic system of robotic programming and its experimental application. We illustrate it by programming a surveillance task with a mobile robot: the Khepera. In order to do this, we use generic programming resources called “descriptions”. We show how to define and use these resources in an incremental way (reactive behaviors, sensor fusion, situation recognition and sequences of behaviors) within a systematic and unified framework.
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.