25 results on '"Olivier Flasseur"'
Search Results
2. Combining Multi-Spectral Data With Statistical and Deep-Learning Models for Improved Exoplanet Detection in Direct Imaging at High Contrast.
- Author
-
Olivier Flasseur, Théo Bodrito, Julien Mairal, Jean Ponce, Maud Langlois, and Anne-Marie Lagrange
- Published
- 2023
- Full Text
- View/download PDF
3. MODEL&CO: Exoplanet detection in angular differential imaging by learning across multiple observations.
- Author
-
Théo Bodrito, Olivier Flasseur, Julien Mairal, Jean Ponce, Maud Langlois, and Anne-Marie Lagrange
- Published
- 2024
- Full Text
- View/download PDF
4. Finding Meaningful Detections: False Discovery Rate Control in Correlated Detection Maps.
- Author
-
Olivier Flasseur, Loïc Denis, éric Thiébaut, and Maud Langlois
- Published
- 2020
- Full Text
- View/download PDF
5. ExPACO: detection of an extended pattern under nonstationary correlated noise by patch covariance modeling.
- Author
-
Olivier Flasseur, Loïc Denis, éric Thiébaut, Thomas Olivier, and Corinne Fournier
- Published
- 2019
- Full Text
- View/download PDF
6. An Unsupervised Patch-Based Approach for Exoplanet Detection by Direct Imaging.
- Author
-
Olivier Flasseur, Loïc Denis, éric Thiébaut, and Maud Langlois
- Published
- 2018
- Full Text
- View/download PDF
7. Robust object characterization from lensless microscopy videos.
- Author
-
Olivier Flasseur, Loïc Denis, Corinne Fournier, and éric Thiébaut
- Published
- 2017
- Full Text
- View/download PDF
8. Optimal multi-epoch combination of direct imaging observations for improved exoplanet detection
- Author
-
Jules Dallant, Maud Langlois, Éric M. Thiébaut, Olivier Flasseur, Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), and This work was supported by the Programme National de Plan´etologie (PNP) and the Action Sp´ecifique Haute R´esolution Angulaire (ASHRA) of CNRS/INSU co-funded by CNES.
- Subjects
Direct imaging of exoplanets ,Optimization Problem ,High-contrast imaging ,Keplerian motion ,[PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Maximum likelihood ML estimation ,Exoplanet detection ,[PHYS.PHYS.PHYS-DATA-AN]Physics [physics]/Physics [physics]/Data Analysis, Statistics and Probability [physics.data-an] - Abstract
International audience; Exoplanets detection by direct imaging remains one of the most challenging field of modern astronomy. The signal of the star can prevent the detection of orbiting companions in single datasets, but combining information from several observations helps boost the detection limits. We propose a new algorithm named PACOME, based on PACO’s approach, which optimally combines, in a maximum likelihood sense, multi-epoch datasets and improves the detection sensitivity of potential exoplanets by taking into account their orbital motions. The efficiency of the algorithm is tested on the well-known exoplanetary system 51 Eridani.
- Published
- 2022
- Full Text
- View/download PDF
9. REXPACO: an algorithm for high contrast reconstruction of the circumstellar environment by angular differential imaging
- Author
-
Olivier Flasseur, Samuel Thé, Loïc Denis, Éric Thiébaut, Maud Langlois, Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Hubert Curien (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Laboratoire Hubert Curien [Saint Etienne] (LHC), and Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Image formation ,FOS: Physical sciences ,techniques: image processing ,Context (language use) ,01 natural sciences ,Photometry (optics) ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Angular resolution ,Adaptive optics ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Astrophysics::Galaxy Astrophysics ,Physics ,methods: statistical ,[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,010308 nuclear & particles physics ,Noise (signal processing) ,techniques: high angular resolution ,Astronomy and Astrophysics ,Inverse problem ,methods: data analysis ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Stars ,Space and Planetary Science ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,Algorithm - Abstract
Context. Direct imaging is a method of choice for probing the close environment of young stars. Even with the coupling of adaptive optics and coronagraphy, the direct detection of off-axis sources such as circumstellar disks and exoplanets remains challenging due to the required high contrast and small angular resolution. Angular differential imaging (ADI) is an observational technique that introduces an angular diversity to help disentangle the signal of off-axis sources from the residual signal of the star in a post-processing step. Aims. While various detection algorithms have been proposed in the last decade to process ADI sequences and reach high contrast for the detection of point-like sources, very few methods are available to reconstruct meaningful images of extended features such as circumstellar disks. The purpose of this paper is to describe a new post-processing algorithm dedicated to the reconstruction of the spatial distribution of light (total intensity) received from off-axis sources, in particular from circumstellar disks. Methods. Built on the recent PACO algorithm dedicated to the detection of point-like sources, the proposed method is based on the local learning of patch covariances capturing the spatial fluctuations of the stellar leakages. From this statistical modeling, we develop a regularized image reconstruction algorithm (REXPACO) following an inverse problems approach based on a forward image formation model of the off-axis sources in the ADI sequences. Results. Injections of fake circumstellar disks in ADI sequences from the VLT/SPHERE-IRDIS instrument show that both the morphology and the photometry of the disks are better preserved by REXPACO compared to standard post-processing methods such as cADI. In particular, the modeling of the spatial covariances proves useful in reducing typical ADI artifacts and in better disentangling the signal of these sources from the residual stellar contamination. The application to stars hosting circumstellar disks with various morphologies confirms the ability of REXPACO to produce images of the light distribution with reduced artifacts. Finally, we show how REXPACO can be combined with PACO to disentangle the signal of circumstellar disks from the signal of candidate point-like sources. Conclusions. REXPACO is a novel post-processing algorithm for reconstructing images of the circumstellar environment from high contrast ADI sequences. It produces numerically deblurred images and exploits the spatial covariances of the stellar leakages and of the noise to efficiently eliminate this nuisance term. The processing is fully unsupervised, all tuning parameters being directly estimated from the data themselves.
- Published
- 2021
- Full Text
- View/download PDF
10. PACO ASDI: an algorithm for exoplanet detection and characterization in direct imaging with integral field spectrographs
- Author
-
Maud Langlois, Loïc Denis, Éric Thiébaut, Olivier Flasseur, Laboratoire Hubert Curien [Saint Etienne] (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Laboratoire Hubert Curien (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,methods: statistical ,010504 meteorology & atmospheric sciences ,techniques: high angular resolution ,Astronomy and Astrophysics ,Statistical model ,Field of view ,Context (language use) ,techniques: image processing ,Astrometry ,01 natural sciences ,methods: data analysis ,Exoplanet ,law.invention ,Photometry (optics) ,Space and Planetary Science ,law ,0103 physical sciences ,Adaptive optics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,010303 astronomy & astrophysics ,Coronagraph ,Algorithm ,0105 earth and related environmental sciences - Abstract
Context.Exoplanet detection and characterization by direct imaging both rely on sophisticated instruments (adaptive optics and coronagraph) and adequate data processing methods. Angular and spectral differential imaging (ASDI) combines observations at different times and a range of wavelengths in order to separate the residual signal from the host star and the signal of interest corresponding to off-axis sources.Aims.Very high contrast detection is only possible with an accurate modeling of those two components, in particular of the background due to stellar leakages of the host star masked out by the coronagraph. Beyond the detection of point-like sources in the field of view, it is also essential to characterize the detection in terms of statistical significance and astrometry and to estimate the source spectrum.Methods.We extend our recent methodPACO, based on local learning of patch covariances, in order to capture the spectral and temporal fluctuations of background structures. From this statistical modeling, we build a detection algorithm and a spectrum estimation method:PACO ASDI. The modeling of spectral correlations proves useful both in reducing detection artifacts and obtaining accurate statistical guarantees (detection thresholds and photometry confidence intervals).Results.An analysis of several ASDI datasets from the VLT/SPHERE-IFS instrument shows thatPACO ASDIproduces very clean detection maps, for which setting a detection threshold is statistically reliable. Compared to other algorithms used routinely to exploit the scientific results of SPHERE-IFS, sensitivity is improved and many false detections can be avoided. Spectrally smoothed spectra are also produced byPACO ASDI. The analysis of datasets with injected fake planets validates the recovered spectra and the computed confidence intervals.Conclusions.PACO ASDIis a high-contrast processing algorithm accounting for the spatio-spectral correlations of the data to produce statistically-grounded detection maps and reliable spectral estimations. Point source detections, photometric and astrometric characterizations are fully automatized.
- Published
- 2020
- Full Text
- View/download PDF
11. Accounting for the nonstationary correlated noise in digital holography (Conference Presentation)
- Author
-
Loïc Denis, Eric Thiébaut, Corinne Fournier, Thomas Olivier, and Olivier Flasseur
- Subjects
Microscope ,business.industry ,Computer science ,Matched filter ,Holography ,Statistical model ,Image processing ,Inverse problem ,law.invention ,law ,Computer vision ,Noise (video) ,Artificial intelligence ,business ,Digital holography - Abstract
In in-line digital holography, the background of the recorded images is sometimes much higher than the signal of interest. It can originates, for example, from the diffraction of dusts or fringes coming from multiple reflexions in the optical components. It is often correlated, nonstationary and not constant over time. Detecting a weak signal superimposed over such a background is challenging. Detection of the pattern then requires a statistical modeling of the background. In this work, spatial correlations are locally estimated based on several background images. A fast algorithm that computes detection maps is derived. The proposed approach is evaluated on images obtained from experimental data recorded with a holographic microscope.
- Published
- 2020
- Full Text
- View/download PDF
12. Robustness to bad frames in angular differential imaging: a local weighting approach
- Author
-
Eric Thiébaut, Maud Langlois, Loïc Denis, Olivier Flasseur, Laboratoire Hubert Curien (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Hubert Curien [Saint Etienne] (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)
- Subjects
Physics ,[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,010504 meteorology & atmospheric sciences ,Astronomy and Astrophysics ,Astrophysics ,01 natural sciences ,Weighting ,Methods statistical ,Space and Planetary Science ,Robustness (computer science) ,0103 physical sciences ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,010303 astronomy & astrophysics ,Algorithm ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,Differential (mathematics) ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences - Abstract
Context. The detection of exoplanets by direct imaging is very challenging. It requires an extreme adaptive-optics (AO) system and a coronagraph as well as suitable observing strategies. In angular differential imaging, the signal-to-noise ratio is improved by combining several observations. Aims. Due to the evolution of the observation conditions and of the AO correction, the quality of the observations may vary significantly during the observing sequence. It is common practice to reject images of comparatively poor quality. We aim to decipher when this selection should be performed and what its impact on detection performance is. Methods. Rather than discarding a full image, we study the local fluctuations of the signal at each frame and derive weighting maps for each frame. These fluctuations are modeled locally directly from the data through the spatio-temporal covariance of small image patches. The weights derived from the temporal variances can be used to improve the robustness of the detection step and reduce estimation errors of both the astrometry and photometry. The impact of bad frames can be analyzed by statistically characterizing the detection and estimation performance. Results. When used together with a modeling of the spatial covariances (PACO algorithm), these weights improve the robustness of the detection method. Conclusions. The spatio-temporal modeling of the background fluctuations provides a way to exploit all acquired frames. In the case of bad frames, areas with larger fluctuations are discarded by a weighting strategy and do not corrupt the detection map or the astrometric and photometric estimations. Other areas of better quality are preserved and are included to detect and characterize sources.
- Published
- 2020
- Full Text
- View/download PDF
13. ExPACO: detection of an extended pattern under nonstationary correlated noise by patch covariance modeling
- Author
-
Loïc Denis, Olivier Flasseur, Éric Thiébaut, Thomas Olivier, Corinne Fournier, Laboratoire Hubert Curien [Saint Etienne] (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Laboratoire Hubert Curien (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Computer science ,business.industry ,Matched filter ,Detector ,Holography ,020206 networking & telecommunications ,Statistical model ,Pattern recognition ,02 engineering and technology ,Covariance ,matched filter ,law.invention ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,law ,correlation ,0202 electrical engineering, electronic engineering, information engineering ,shrinkage covariance estimator ,020201 artificial intelligence & image processing ,patch ,Noise (video) ,Artificial intelligence ,Scale (map) ,business - Abstract
International audience; In several areas of imaging, it is necessary to detect the weak signal of a known pattern superimposed over a background. Because of its temporal fluctuations, the background may be difficult to suppress. Detection of the pattern then requires a statistical modeling of the background. Due to difficulties related to (i) the estimation of the spatial correlations of the background, and (ii) the application of an optimal detector that accounts forthese correlations, it is common practice to neglect them. In this work, spatial correlations at the scale of an image patch are locally estimated based on several background images. A fast algorithm for the computation of detection maps is derived. The proposed approach is evaluated on images obtained from a holographic microscope.
- Published
- 2019
14. JOINT RECONSTRUCTION IN IN-LINE HOLOGRAPHY COMBINING PARAMETRIC AND NON-PARAMETRIC INVERSE APPROACHES: APPLICATION TO FLUID MECHANICS
- Author
-
Anthony Berdeu, Olivier Flasseur, Loic Denis, Fabien Momey, Méès Loïc, Nathalie Grosjean, Corinne Fournier, Laboratoire Hubert Curien [Saint Etienne] (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mecanique des Fluides et d'Acoustique (LMFA), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Mie propagation ,Inverse problem approach ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Rayleigh-Sommerfeld propagation - Abstract
International audience; In-line digital holography is a simple and powerful tool to image absorbing and/or phase objects in numerous fields such as crystallography, biology or fluid mechanics. Nevertheless, this kind of interference imaging technique leads to a loss of the phase of the complex wave front on the sensor. This lack of phase information can be critical in the reconstruction process. Thus, the simplicity of the setup must be balanced by dedicated reconstruction algorithm to retrieve the object from its hologram, such as inverse approaches. In the case of simple objects for which an analytical model of propagation is known, parametric algorithms are very effective. But these approaches fail at reconstructing more complex objects, where non-parametric solutions must be involved. This may lead to a loss in precision or specificity. In this work we propose a new approach combining these two methods to take benefits from their own advantages. The object to reconstruction is split in two subparts. A part is described by a parametric model. The other part of the object is simulated via a non-parametric model. These two parts which interfere are jointly considered in the reconstruction algorithm by alternating parametric and non-parametric procedures. We apply this new technique to evaporating droplets where the high contrast fringes produced by the droplets tend to mask the fringes produced by the plume. With our method, both the droplet and the plume are jointly reconstructed.
- Published
- 2018
15. Exoplanet detection in angular and spectral differential imaging: local learning of background correlations for improved detections
- Author
-
Maud Langlois, Éric Thiébaut, Loïc Denis, and Olivier Flasseur
- Subjects
Pixel ,business.industry ,Computer science ,Gaussian ,Binary number ,Pattern recognition ,Statistical power ,Exoplanet ,Constant false alarm rate ,Reduction (complexity) ,symbols.namesake ,symbols ,Artificial intelligence ,business ,Statistical hypothesis testing - Abstract
The search for new exoplanets by direct imaging is a very active research topic in astronomy. The detection is particularly challenging because of the very high contrast between the host star and the companions. They thus remain hidden by a nonstationary background displaying strong spatial correlations. We propose a new algorithm named PACO (for PAtch COvariances) for reduction of differential imaging datasets. Contrary to existing approaches, we model the background correlations using a local Gaussian distribution that locally captures the spatial correlations at the scale of a patch of a few tens of pixels. The decision in favor of the presence or the absence of an exoplanet in then performed by a binary hypothesis test. The method is completely parameter-free and produces both stationary and statistically grounded detection maps so that the false alarm rate, the probability of detection and the contrast can be directly assessed without post-processing and/or Monte-Carlo simulations. We describe in a forthcoming paper its detailed principle and implementation. In this paper, we recall the principle of the PACO algorithm and we give new illustrations of its benefits in terms of detection capabilities on datasets from the VLT/SPHERE-IRDIS instrument. We also apply our algorithm on multi-spectral datasets from the VLT/SPHERE-IFS spectrograph. The performance of PACO is compared to state-of-the-art algorithms such as TLOCI and KLIP-PCA.
- Published
- 2018
- Full Text
- View/download PDF
16. Improving color lensless microscopy reconstructions by self-calibration
- Author
-
Corinne Fournier, Loïc Denis, Frédéric Jolivet, Olivier Flasseur, and Fabien Momey
- Subjects
Physics ,Bayer filter ,Spectrometer ,business.industry ,Holography ,Field of view ,Iterative reconstruction ,Laser ,law.invention ,Optics ,law ,Calibration ,business ,Digital holography - Abstract
Lensless color microscopy is a recent 3D quantitative imaging method allowing to retrieve physical parameters characterizing microscopic objects spread in a volume. The main advantages of this technique are related to its simplicity, compactness, low sensitivity of the setup to vibrations and the possibility to accurately characterize objects. The cost-effectiveness of the method can be further increased using low-end laser diodes as coherent sources and CMOS color sensor equipped with a Bayer filter array. However, the central wavelength delivered by this type of laser is generally known only with a limited precision and can evolve because of its dependence on temperature and power supply voltage. In addition, Bayer-type filters of conventional color sensors are not very selective, resulting in spectral mixing (crosstalk phenomenon) of signals from each color channel. Ignoring these phenomena leads to significant errors in holographic reconstructions. We have proposed a maximum likelihood estimation method to calibrate the setup (central wavelength of the laser sources and spectral mixing introduced by the Bayer filters) using spherical objects naturally present in the field of view or added (calibration objects). This calibration method provides accurate estimates of the wavelengths and of the crosstalk, with an uncertainty comparable to that of a high-resolution spectrometer. To perform the image reconstruction from color holograms following the self-calibration of the setup, we describe a regularized inversion method that includes a linear hologram formation model, sparsity constraints and an edge-preserving regularization. We show on holograms of calibrated objects that the self-calibration of the setup leads to an improvement of the reconstructions.
- Published
- 2018
- Full Text
- View/download PDF
17. Optimizing phase object reconstruction using an in-line digital holographic microscope and a reconstruction based on a Lorenz-Mie model
- Author
-
Loic Mees, Corinne Fournier, Thomas Olivier, Olivier Flasseur, Laboratoire Hubert Curien [Saint Etienne] (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mecanique des Fluides et d'Acoustique (LMFA), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Computer science ,Noise (signal processing) ,Holography ,Inverse problem ,01 natural sciences ,law.invention ,010309 optics ,[SPI]Engineering Sciences [physics] ,Signal-to-noise ratio ,law ,0103 physical sciences ,Digital holographic microscopy ,010306 general physics ,Algorithm ,Digital holography ,Statistical signal processing ,Parametric statistics - Abstract
International audience; Among the various configurations that may be used in digital holography, the original in-line “Gabor” configuration is the simplest setup, with a single beam. It requires sparsity of the sample but it is free from beam separation device and associated drawbacks. This option is particularly suited when cost, compact design or stability are important. This configuration is also easier to adapt on a traditional microscope. Finally, from the metrological point of view, this configuration, combined with parametric inverse reconstructions using Lorenz-Mie Theory, has proven to make possible highly accurate estimation of spherical particles parameters (3D location, radius and refractive index) with sub-micron accuracy. Experimental parameters such as the defocus distance, the choice of the objective, or the coherence of the source have a strong influence on the accuracy of the estimation. They are often studied experimentally on specific setups. We previously demonstrated the benefit of using statistical signal processing tools as the Cramér-Rao Lower Bounds to predict best theoretical accuracy reachable for opaque object. This accuracy depends on the image/hologram formation model, the noise model and the signal to noise ratio in the holograms. In a co-design framework, we propose here to investigate the influence of experimental parameters on the estimation of the radius and refractive index of micrometer-sized transparent spherical objects. In this context, we use Lorenz-Mie Theory to simulate spherical object holograms, to compute Cramér-Rao Lower bounds, and to numerically reconstruct the objects parameters using an inverse problem approach. Then, these theoretical studies are used to challenge our digital holographic microscopy setup and conclude about accuracy, limitations and possible enhancements.
- Published
- 2018
- Full Text
- View/download PDF
18. Self-calibration for lensless color microscopy
- Author
-
Frédéric Jolivet, Anthony Cazier, Olivier Flasseur, Thierry Lépine, Nicolas Verrier, Loïc Denis, Corinne Fournier, Laboratoire Hubert Curien [Saint Etienne] (LHC), Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS), Modélisation, Intelligence, Processus et Système (MIPS), Ecole Nationale Supérieure d'Ingénieur Sud Alsace-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-IUT de Colmar-IUT de Mulhouse, ANR: DETECTION,DETECTION-CNRS DEFI IMAGIn 2015, and ANR-11-LABX-0063,PRIMES,Physique, Radiobiologie, Imagerie Médicale et Simulation(2011)
- Subjects
Inverse problems ,Materials Science (miscellaneous) ,Microfluidics ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,Holography ,Color ,02 engineering and technology ,01 natural sciences ,Industrial and Manufacturing Engineering ,law.invention ,010309 optics ,Optics ,Electric Power Supplies ,Etalonnage ,law ,0103 physical sciences ,Microscopy ,Medical imaging ,Calibration ,Image Processing, Computer-Assisted ,Business and International Management ,Holograhie couleur ,Parametric statistics ,Physics ,business.industry ,Image Reconstruction techniques ,Temperature ,Digital holography ,Signal Processing, Computer-Assisted ,Inverse problem ,021001 nanoscience & nanotechnology ,Holographie Numérique ,Problèmes inverses ,Reconstruction d'images ,[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] ,0210 nano-technology ,business ,Color holography - Abstract
International audience; Lensless color microscopy (also called in-line digital color holography) is a recent quantitative 3D imaging method used in several areas including biomedical imaging and microfluidics. By targetting cost effective and compact designs, the wavelength of the low-end sources used is only imprecisely known, in particular because of their temperature and power supply voltage dependence. This imprecision is the source of biases during the reconstruction step. An additional source of error is the crosstalk phenomenon, i.e., the mixture in color sensors of signals originating from different color channels. We propose to use a parametric inverse problem approach to achieve the self-calibration of a digital color holographic setup. This process provides an estimation of the central wavelengths and of the crosstalk. We show that taking the crosstalk phenomenon into account in the reconstruction step improves its accuracy.; La microscopie sans lentille couleur (également appelée holographie numérique couleur en ligne) est une méthode d'imagerie 3D quantitative récente utilisée dans plusieurs domaines, dont l'imagerie biomédicale et la microfluidique. Lorsqu'on s'intéresse à des conceptions bas coût et compactes, les longueurs d'ondes des sources utilisées ne sont pas connues précisemment, notamment en raison de leur dépendance à la température et à la tension d'alimentation. Cette imprécision est la source de biais lors de l'étape de reconstruction. Une source d'erreur supplémentaire qui peut être présente dans ce type de montage, est le phénomène de "cross talk", c'est-à-dire le mélange des signaux des différentes longueurs d'ondes sur les canaux RGB de la matrice de Bayer du capteur. Nous proposons d'utiliser une approche de type problèmes inverses paramétrique pour réaliser un auto-étalonnage de ce type de configuration holographique couleur bas coût. Cette approche fournit une estimation des longueurs d'ondes centrales des sources et du "cross-talk". Nous montrons que la prise en compte du phénomène de "cross-talk" dans la phase de reconstruction améliore sa précision.
- Published
- 2017
- Full Text
- View/download PDF
19. Reconstruction of in-line holograms: combining model-based and regularized inversion
- Author
-
Corinne Fournier, Anthony Berdeu, Loïc Méès, Nathalie Grosjean, Thomas Olivier, Loïc Denis, Fabien Momey, and Olivier Flasseur
- Subjects
Wavefront ,Diffraction ,Computer science ,business.industry ,Holography ,Physics::Optics ,Reconstruction algorithm ,02 engineering and technology ,Iterative reconstruction ,021001 nanoscience & nanotechnology ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,Ptychography ,law.invention ,010309 optics ,Optics ,law ,0103 physical sciences ,Image sensor ,0210 nano-technology ,Phase retrieval ,business ,Algorithm ,Digital holography - Abstract
In-line digital holography is a simple yet powerful tool to image absorbing and/or phase objects. Nevertheless, the loss of the phase of the complex wavefront on the sensor can be critical in the reconstruction process. The simplicity of the setup must thus be counterbalanced by dedicated reconstruction algorithms, such as inverse approaches, in order to retrieve the object from its hologram. In the case of simple objects for which the diffraction pattern produced in the hologram plane can be modeled using few parameters, a model fitting algorithm is very effective. However, such an approach fails to reconstruct objects with more complex shapes, and an image reconstruction technique is then needed. The improved flexibility of these methods comes at the cost of a possible loss of reconstruction accuracy. In this work, we combine the two approaches (model fitting and regularized reconstruction) to benefit from their respective advantages. The sample to be reconstructed is modeled as the sum of simple parameterized objects and a complex-valued pixelated transmittance plane. These two components jointly scatter the incident illumination, and the resulting interferences contribute to the intensity on the sensor. The proposed hologram reconstruction algorithm is based on alternating a model fitting step and a regularized inversion step. We apply this algorithm in the context of fluid mechanics, where holograms of evaporating droplets are analyzed. In these holograms, the high contrast fringes produced by each droplet tend to mask the diffraction pattern produced by the surrounding vapor wake. With our method, the droplet and the vapor wake can be jointly reconstructed.
- Published
- 2019
- Full Text
- View/download PDF
20. Numerical Reconstruction of Holograms Using Inverse Problems Approaches
- Author
-
Fournier, Corinne, primary, Olivier, Flasseur, additional, Anthony, Berdeu, additional, Fabien, Momey, additional, Thomas, Olivier, additional, and Loïc, Denis, additional
- Published
- 2019
- Full Text
- View/download PDF
21. Reconstruction of in-line holograms combining model fitting and image-based regularized inversion
- Author
-
Anthony, Berdeu, primary, Olivier, Flasseur, additional, Loïc, Méès, additional, Loïc, Denis, additional, Fabien, Momey, additional, Thomas, Olivier, additional, Nathalie, Grosjean, additional, and Corinne, Fournier, additional
- Published
- 2019
- Full Text
- View/download PDF
22. HARMONI at ELT: project status and instrument overview
- Author
-
Bryant, Julia J., Motohara, Kentaro, Vernet, Joël R. D., Thatte, Niranjan A., Melotte, Dave, Neichel, Benoit, Le Mignant, David, Rees, Phil, Clarke, Fraser, Ferraro-Wood, Vanessa, Gonzalez, Oscar, Jones, Maia, Álvarez Urueña, Alonso, Argelaguet Vilaseca, Heribert, Arribas Mocoroa, Santiago, Caballero, José Antonio, Carracedo Carballal, Gonzalo José, Estrada Piqueras, Alberto, Ferro, Irene, García García, Miriam, Lamperti, Isabella, Pereira Santaella, Miguel, Perna, Michele, Piqueras Lopez, Javier, Bouché, Nicolas, Boudon, Didier, Daguise, Eric, Domenis, Nicola, Fensch, Jérémy, Olivier Flasseur, Olivier, Giroud, Rémi, Guibert, Matthieu, Jarno, Aurelien, Jeanneau, Alexandre, Krogager, Jens-Kristian, Langlois, Maud, Laurent, Florence, Loupias, Magali, Migniau, Jean-Emmanuel, Nguyen, Dieu, Piqueras, Laure, Remillieux, Alban, Richard, Johan, Pecontal, Arlette, Bardou, Lisa, Barr, David, Cetre, Sylvain, Dimoudi, Sofia, Dubbeldam, Marc, Dunn, Andrew, Gadotti, Dimitri, Guy, Joss, King, David, McLeod, Anna, Morris, Simon, Morris, Tim, O'Brien, Kieran, Ronson, Emily, Smith, Russell, Staykov, Lazar, Swinbank, Mark, Accardo, Matteo, Alvarez Mendez, Domingo, Fuerte Rodriguez, Pablo Alberto, George, Elizabeth, Ives, Derek, Mehrgan, Leander, Mueller, Eric, Reyes, Javier, Conzelmann, Ralf, Gutierrez Cheetham, Pablo, Alonso Sanchez, Angel, Battaglia, Giuseppina, Cagigas, Miguel, Castro-Almazán, Julio A., Chulani, Haresh, Delgado-García, Graciela, Fernandez Izquierdo, Patricia, Esparza-Arredondo, Donaji, García-Lorenzo, Begoña, Hernández González, Alberto, Hernández Suárez, Elvio, Licandro, Javier, Joven, Enrique, López López, Roberto, Lujan Gonzalez, Alejandro Antonio, Martín Hernando, Yolanda, Martín-Navarro, Ignacio, Mediavilla, Evencio, Menéndez Mendoza, Saúl, Montoya Martínez, Luz Maria, Peñate Castro, José, Murgas, Felipe, Pallé, Enric, Pérez, Álvaro, Rasilla, Jose Luis, Rebolo, Rafael, Rodríguez, Horacio, Rodríguez Ramos, Luis Fernando, Sánchez Béjar, Victor, Shahbaz, Tariq, Vega Moreno, Afrodisio, Viera, Teodora, Bonnefoy, Mickaël, Bret, Tony, Carlotti, Alexis, Correia, Jean-Jacques, Curaba, Stéphane, Delboulbé, Alain, Guieu, Sylvain, Hours, Adrien, Hubert, Zoltan, Jocou, Laurent, Magnard, Yves, Michaud, Laurence, Moulin, Thibaut, Pancher, Fabrice, Rabou, Patrick, Rochat, Sylvain, Stadler, Eric, Contini, Thierry, Larrieu, Marie, Mamessier, Sébastien, Boebion, Olivier, Fantei-Caujolle, Yan, Lecron, Daniel, Amram, Philippe, Blanchard, Patrick, Bon, William, Bonnefoi, Anne, Bozier, Alexandre, Ceria, William, Challita, Zalpha, Charles, Yannick, Choquet, Elodie, Costille, Anne, Delsanti, Audrey, Dohlen, Kjetil, Ducret, Franck, El Hadi, Kacem, Foulon, Benjamin, Gimenez, Jean-Luc, Groussin, Olivier, Jaquet, Marc, Renault, Edgard, Rouquette, Paul, Sanchez, Patrice, Vigan, Arthur, Zavagno, Annie, Fétick, Romain, Fusco, Thierry, Héritier, Cedric, Sauvage, Jean-Francois, Vedrenne, Nicolas, Aksoy, Demet, Caldwell, Martin, Fitzpatrick, Ann, Geddert, Carl, Hiscock, Peter, Johnson, Emma, Nalagatla, Murali, Saraff, Louise, Shreeves, Joe, Tildesley, Matthew, Wells, Mark, Aretos, Anastasios, Barrett, Lee, Black, Martin, Bond, Charlotte, Brierley, Saskia, Bryson, Ian, Calderhead, Amelia, Campbell, Kenny, Carruthers, James, Chapman, Lee, Cochrane, William, Gillespie, Rory, Harman, Joel, Harvey, Douglas, Harvey, Eamonn, Johnson, Bethany, Louth, Tom, MacIntosh, Mike, MacIver, Anna, Miller, Chris, Montgomery, David, Murali, Meenu, Murray, John, O'Malley, Norman, Sanchez-Janssen, Ruben, Schwartz, Noah, Smith, Patrick, Strachan, Jonathan, Todd, Stephen, Wasley, Dawn, Wilson, Sandi, Zhou, Junyi, Bell, Eric, Gnedin, Oleg, Gultekin, Kayhan, Mateo, Mario, Meyer, Michael, Birkby, Jayne, Boland, Liam, Cappellari, Michele, Castillo Dominguez, Edgar, Gooding, David, Grisdale, Kearn, Hidalgo, Andrea, Kariuki, James, Lewis, Ian, McCall, Kieran, Meyer, R. Elliot, Muslimov, Eduard, Lowe, Adam, Ozer, Zeynep, Paszynska, Sophie, Rigopoulou, Dimitra, Tecza, Matthias, and York, Alec
- Published
- 2024
- Full Text
- View/download PDF
23. Exoplanet detection in angular differential imaging by statistical learning of the nonstationary patch covariances
- Author
-
Loïc Denis, Maud Langlois, Éric Thiébaut, Olivier Flasseur, Laboratoire Hubert Curien [Saint Etienne] (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Laboratoire Hubert Curien (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,methods: statistical ,Astrophysics::Instrumentation and Methods for Astrophysics ,techniques: high angular resolution ,techniques: image processing ,Astronomy and Astrophysics ,Statistical model ,Context (language use) ,methods: data analysis ,01 natural sciences ,Exoplanet ,Statistical power ,Constant false alarm rate ,010309 optics ,Photometry (optics) ,Speckle pattern ,symbols.namesake ,Space and Planetary Science ,0103 physical sciences ,symbols ,Astrophysics::Earth and Planetary Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,010303 astronomy & astrophysics ,Gaussian network model ,Algorithm - Abstract
Context. The detection of exoplanets by direct imaging is an active research topic in astronomy. Even with the coupling of an extreme adaptive-optics system with a coronagraph, it remains challenging due to the very high contrast between the host star and the exoplanets. Aims. The purpose of this paper is to describe a method, named PACO, dedicated to source detection from angular differential imaging data. Given the complexity of the fluctuations of the background in the datasets, involving spatially variant correlations, we aim to show the potential of a processing method that learns the statistical model of the background from the data. Methods. In contrast to existing approaches, the proposed method accounts for spatial correlations in the data. Those correlations and the average stellar speckles are learned locally and jointly to estimate the flux of the (potential) exoplanets. By preventing from subtracting images including the stellar speckles residuals, the photometry is intrinsically preserved. A nonstationary multi-variate Gaussian model of the background is learned. The decision in favor of the presence or the absence of an exoplanet is performed by a binary hypothesis test. Results. The statistical accuracy of the model is assessed using VLT/SPHERE-IRDIS datasets. It is shown to capture the nonstationarity in the data so that a unique threshold can be applied to the detection maps to obtain consistent detection performance at all angular separations. This statistical model makes it possible to directly assess the false alarm rate, probability of detection, photometric and astrometric accuracies without resorting to Monte-Carlo methods. Conclusions. PACO offers appealing characteristics: it is parameter-free and photometrically unbiased. The statistical performance in terms of detection capability, photometric and astrometric accuracies can be straightforwardly assessed. A fast approximate version of the method is also described that can be used to process large amounts of data from exoplanets search surveys.
- Published
- 2018
- Full Text
- View/download PDF
24. RECONSTRUCTION SUPER-RESOLUE D'HOLOGRAMMES RGB
- Author
-
Frédéric Jolivet, Corinne Fournier, Loic Denis, Olivier Flasseur, Fabien Momey, Thierry Fournel, Nicolas Verrier, Laboratoire Hubert Curien [Saint Etienne] (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Hubert Curien / Eris, Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Modélisation, Intelligence, Processus et Système (MIPS), and Ecole Nationale Supérieure d'Ingénieur Sud Alsace-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-IUT de Colmar-IUT de Mulhouse
- Subjects
[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing - Abstract
International audience; Holographie numérique en ligne, Problème Inverse, Super-résolution numérique, Reconstruction Couleur, Filtre de Bayer. RESUME Ces dernières années le secteur des capteurs « bas coût » profite d'un marché de plus en plus dynamique (notamment avec l'avènement du smartphone, de l'appareil photo numérique…). Ainsi des capteurs couleur peu onéreux, et ayant des tailles de pixels de l'ordre du micromètre permettent de repousser les performances de l'holographie numérique en ligne. De plus l'utilisation d'approches problèmes inverses a permis de lever certaines limites des méthodes de reconstruction holographique habituellement utilisées : présence d'images jumelles, artefacts dûs à la troncature (effet de bord…). Elles permettent également une amélioration de la précision de reconstruction [1,2,3]. Ces approches se basent sur un modèle de formation d'image linéaire, approximation satisfaisante dans le régime de la diffraction de Fresnel pour les milieux dilués. Afin d'améliorer la résolution des reconstructions holographiques, des travaux ont montré l'intérêt d'utiliser une pile d'hologrammes d'un objet translaté transversalement [3,4]. De leur côté les travaux [5,6,7] ont montré tout l'intérêt d'utiliser un montage opérant à plusieurs longueurs d'onde (sources Rouge, Vert, Bleu) avec un capteur couleur (suppression des aberrations chromatiques…). Nous proposons ici une méthode de reconstruction holographique RGB Super-Résolue basée sur une approche inverse non-paramétrique. Pour cela nous proposons de résoudre le problème sous contrainte de positivité. La méthode proposée alterne des étapes de reconstructions régularisées et d'estimation des translations entre hologrammes et la reconstruction courante. En termes de résultat, l'approche inverse super-résolue couleur proposée permet d'améliorer la résolution spatiale et le rapport signal à bruit des hologrammes reconstruits.
25. AN UNSUPERVISED PATCH-BASED APPROACH FOR EXOPLANET DETECTION BY DIRECT IMAGING
- Author
-
Maud Langlois, Loïc Denis, Olivier Flasseur, Éric Thiébaut, Laboratoire Hubert Curien [Saint Etienne] (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Laboratoire Hubert Curien (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Very Large Telescope ,estimation ,Computer science ,business.industry ,Astrophysics::Instrumentation and Methods for Astrophysics ,020206 networking & telecommunications ,Image processing ,Pattern recognition ,02 engineering and technology ,01 natural sciences ,Exoplanet ,Index Terms— Detection ,covariance ,0103 physical sciences ,0202 electrical engineering, electronic engineering, information engineering ,patch ,Astrophysics::Earth and Planetary Astrophysics ,Artificial intelligence ,Shrinkage estimator ,business ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,010303 astronomy & astrophysics - Abstract
International audience; The search for exoplanet is a very active topic in astronomy. Exoplanet detection by direct imaging requires both dedicated instruments to mask out the host star and careful image processing methods. Data processing is challenging because the exoplanet signal is very faint and hidden in a much stronger non-stationary background displaying strong spatial correlations. In contrast to previous detection methods, we explicitly model the spatial correlations of the background and design a completely unsupervised method that accounts for the background non-stationarity. From a time series of observations , we learn a local model of the distribution of background patches. Significant sources are then detected with a generalized likelihood ratio test. The sub-pixel location and flux of each detected exoplanet are estimated jointly to a refining of the background model. Each detected source is removed from the data, following an orthogonal matching pursuit strategy. The stopping criterion is based on a control of false alarms. We compare the proposed algorithm to three state-of-the-art exoplanet detection methods on datasets obtained with SPHERE instrument operating at the Very Large Telescope (VLT) in Chile. We show a drastic improvement of the sensibility and much fewer false detections.
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.