15 results on '"Oliver J. Harper"'
Search Results
2. Corrigés des exercices de Mécanique Quantique tome 1
- Author
-
Guillaume Merle, Philippe Ribière, Oliver J. Harper
- Published
- 2023
3. Solution Manual to Accompany Volume I of Quantum Mechanics by Cohen-Tannoudji, Diu and Laloë
- Author
-
Guillaume Merle, Oliver J. Harper, Philippe Ribiere
- Published
- 2023
4. Pulsed-ramped-field-ionization zero-kinetic-energy photoelectron spectroscopy: a methodological advance
- Author
-
Bérenger Gans, Séverine Boyé-Péronne, Ning L. Chen, Oliver J. Harper, Institut des Sciences Moléculaires d'Orsay (ISMO), and Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS]Physics [physics] ,Materials science ,010304 chemical physics ,General Physics and Astronomy ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Kinetic energy ,01 natural sciences ,Spectral line ,Ionizing radiation ,Autoionization ,X-ray photoelectron spectroscopy ,Field desorption ,0103 physical sciences ,Physical and Theoretical Chemistry ,Spectral resolution ,Atomic physics ,0210 nano-technology ,Energy (signal processing) - Abstract
International audience; A new experimental method has been developed to record photoelectron spectra based on the well-established pulsed-field-ionization zero-kinetic-energy photoelectron spectroscopy technique and inspired by the data treatment employed in slow photoelectron spectroscopy. This method has been successfully applied to two well-known systems: the X+2Pg,1/2(v+=0) X1S+g (v=0)and the X+1S+(v+=2) X2P1/2(v=0)ionizing transitions of CO2 and NO, respectively. The first results highlight several advantages of our technique such as an improved signal-to-noise ratio without degrading the spectral resolution and a direct field-free energy determination. The data obtained for NO indicate that this method might be useful for studying field-induced autoionization processes.
- Published
- 2021
5. Photoionization Cross Section of the NH
- Author
-
Oliver J, Harper, Bérenger, Gans, Jean-Christophe, Loison, Gustavo A, Garcia, Helgi R, Hrodmarsson, and Séverine, Boyé-Péronne
- Abstract
The NH
- Published
- 2021
6. Corrigés des exercices de Mécanique Quantique tome 2
- Author
-
Guillaume Merle, Oliver J. Harper, Guillaume Merle, and Oliver J. Harper
- Abstract
La mécanique quantique, avec ses principes contre-intuitifs et ses différences radicales par rapport à la mécanique classique ou à l'électrodynamique, est à la fois l'une des composantes les plus importantes d'une éducation en physique moderne et l'une des plus ardues. Elle requiert à la fois des bases théoriques et des techniques mathématiques dont la maîtrise nécessite beaucoup de temps et d'efforts.Les étudiants suivant des cours de mécanique quantique s'entraînent généralement en traitant des exercices de difficulté croissante, tels que ceux présents dans les deux premiers tomes de l'ouvrage fondamental Mécanique quantique écrit par Cohen-Tannoudji, Diu et Laloë.Ce recueil de corrigés, relatif au tome II, fournit les corrigés détaillés tant attendus de l'intégralité des 47 exercices de ce tome. Son format accessible fournit des explications explicites étape par étape, tout en mettant l'accent aussi bien sur la théorie physique que sur les mathématiques formelles, pour garantir que les étudiants saisissent bien tous les concepts pertinents. Il guide également le lecteur pour appliquer les méthodes des corrigés à des exercices comparables en mécanique quantique.Ce recueil de corrigés est incontournable pour les étudiants en physique, chimie ou science des matériaux désireux de maîtriser ces exercices ardus, ainsi que pour les enseignants à la recherche de méthodes pédagogiques sur le sujet.
- Published
- 2024
7. Photoionization Cross Section of the NH_2 Free Radical in the 11.1–15.7 eV Energy Range
- Author
-
Gustavo García, Séverine Boyé-Péronne, Jean-Christophe Loison, Helgi Rafn Hrodmarsson, Oliver J. Harper, Bérenger Gans, Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Moléculaires (ISM), Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), and Centre National de la Recherche Scientifique (CNRS)
- Subjects
Range (particle radiation) ,Work (thermodynamics) ,010304 chemical physics ,Spectrometer ,Amino radical ,Photoionization ,010402 general chemistry ,01 natural sciences ,7. Clean energy ,Synchrotron ,0104 chemical sciences ,law.invention ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Cross section (physics) ,chemistry.chemical_compound ,chemistry ,law ,0103 physical sciences ,Physical and Theoretical Chemistry ,Atomic physics ,Excitation - Abstract
International audience; The NH 2 radical is a key component in many astrophysical environments, both in its neutral and cationic forms, being involved in the formation of complex N-bearing species. To gain insight into the photochemical processes into which it operates and to model accurately the ensuing chemical networks, the knowledge of its photoionization efficiency is required, but no quantitative determination has been carried out so far. Combining a flow-tube H-abstraction radical source, a double imaging photoelectronphotoion spectrometer and a vacuum-ultraviolet synchrotron excitation, the absolute photoionization cross section of the amino radical has been measured in the present 1 work for the first time at two photon energies: σ NH 2 ion (12.7 eV) = 7.8 ± 2.2 Mb and σ NH 2 ion (13.2 eV) = 7.8 ± 2.0 Mb. These values have been employed to scale the total ion yield previously recorded by Gibson et al. (JCP, 83, pp 4319-4328 (1985)). The resulting cross section curve spanning the 11.1-15.7 eV energy range will help in refining the current astrophysical models.
- Published
- 2021
8. VUV photoionization of the CH 2 NC radical: adiabatic ionization energy and cationic vibrational mode wavenumber determinations
- Author
-
Oliver J. Harper, Sebastian Hartweg, Séverine Boyé-Péronne, Gustavo A. Garcia, Jean-Claude Guillemin, Bérenger Gans, Jean-Christophe Loison, Université de Bordeaux, ISM, UMR CNRS 5255, Talence, 33405, France, Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), European Synchrotron Radiation Facility (ESRF), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Chimiques de Rennes (ISCR), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), This work was performed on the DESIRS beamline under proposal number 20181133. We acknowledge SOLEIL for provisionof synchrotron radiation facilities and the DESIRS beamline staff for their assistance. This work received financial support fromthe French Agence Nationale de la Recherche (ANR) under grant ANR-12-BS08-0020-02 (project SYNCHROKIN). This work wassupported by the Programme National Physique et Chimie du Milieu Interstellaire (PCMI) of CNRS/INSU with INC/INP co-fundedby CEA and CNES. J.-C.G. thanks the CNES for a grant., ANR-12-BS08-0020,SynchroKin,Mise en place d'une technique expérimentale pour la mesure de données cinétiques et mécanistiques utilisant la radiation synchrotron SOLEIL(2012), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,General Physics and Astronomy ,02 engineering and technology ,Photoionization ,Electron ,021001 nanoscience & nanotechnology ,01 natural sciences ,7. Clean energy ,Spectral line ,Ion ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Ab initio quantum chemistry methods ,Molecular vibration ,0103 physical sciences ,Physics::Atomic and Molecular Clusters ,Physical and Theoretical Chemistry ,Atomic physics ,Ionization energy ,Physics::Chemical Physics ,0210 nano-technology ,010303 astronomy & astrophysics ,Excitation ,ComputingMilieux_MISCELLANEOUS - Abstract
The photoelectron spectroscopy of CH2NC (isocyanomethyl) radical species is investigated for the first time between 9.3 and 11.2 eV in the vicinity of the first photoionizing transition X+1A1 ← X 2B1. The experiment combines a microwave discharge flow-tube reactor to produce the radicals through the CH3NC + F → CH2NC + HF reaction, a VUV synchrotron radiation excitation, and a double imaging electron/ion coincidence spectrometer which allows the recording of mass-selected threshold photoelectron spectra. Assignment of the observed vibrational structure of the CH2NC+ cation is guided by ab initio calculations and Franck-Condon simulations. From the experimental spectrum, the first adiabatic ionization energy of the CH2NC radical is measured as 9.439(6) eV. Fundamental wavenumbers are determined for several vibrational modes of the cation [small nu, Greek, tilde]1+(CH2 symmetric stretch) = 2999(80) cm-1, [small nu, Greek, tilde]2+(NC stretch) = 1925(40) cm-1, [small nu, Greek, tilde]4+(H2C-N stretch) = 1193(40) cm-1, [small nu, Greek, tilde]6+(CNC out-of-plane bend) = 237(50) cm-1, and [small nu, Greek, tilde]8+(CH2 rock) = 1185(60) cm-1.
- Published
- 2020
9. VUV photoionization of the CH
- Author
-
Bérenger, Gans, Sebastian, Hartweg, Gustavo A, Garcia, Séverine, Boyé-Péronne, Oliver J, Harper, Jean-Claude, Guillemin, and Jean-Christophe, Loison
- Abstract
The photoelectron spectroscopy of CH
- Published
- 2020
10. To see C
- Author
-
Oliver J, Harper, Séverine, Boyé-Péronne, Gustavo A, Garcia, Helgi R, Hrodmarsson, Jean-Christophe, Loison, and Bérenger, Gans
- Abstract
The C
- Published
- 2020
11. To see C 2 : Single-photon ionization of the dicarbon molecule
- Author
-
Bérenger Gans, Séverine Boyé-Péronne, Oliver J. Harper, Helgi Rafn Hrodmarsson, Gustavo A. Garcia, Jean-Christophe Loison, Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Moléculaires (ISM), Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Photophysique Moléculaire (PPM), and Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)
- Subjects
Physics ,[PHYS]Physics [physics] ,010304 chemical physics ,General Physics and Astronomy ,Electron ,010402 general chemistry ,7. Clean energy ,01 natural sciences ,0104 chemical sciences ,Ion ,13. Climate action ,Atomic electron transition ,Ab initio quantum chemistry methods ,Ionization ,0103 physical sciences ,[CHIM]Chemical Sciences ,Singlet state ,Physical and Theoretical Chemistry ,Ionization energy ,Atomic physics ,Ground state ,ComputingMilieux_MISCELLANEOUS - Abstract
The C2 carbon cluster is found in a large variety of environments including flames, electric discharges, and astrophysical media. Due to spin-selection rules, assessing a complete overview of the dense vibronic landscape of the C2+ cation starting from the ground electronic state X Σg+1 of the neutral is not possible, especially since the C2+ ground state is of X+ Σg−4 symmetry. In this work, a flow-tube reactor source is employed to generate the neutral C2 in a mixture of both the lowest singlet X Σg+1 and triplet a 3Πu electronic states. We have investigated the vibronic transitions in the vicinity of the first adiabatic ionization potential via one-photon ionization with vacuum ultraviolet synchrotron radiation coupled with electron/ion double imaging techniques. Using ab initio calculations and Franck-Condon simulations, three electronic transitions are identified and their adiabatic ionization energy is determined Ei(a+ 2Πu←X 1Σg+)=12.440(10) eV, Ei(X+ 4Σg−←a 3Πu)=11.795(10) eV, and Ei(a+2Πu ← a3Πu) = 12.361(10) eV. From the three origin bands, the following energy differences are extracted: ΔE(a − X) = 0.079(10) eV and ΔE(a+ − X+) = 0.567(10) eV. The adiabatic ionization potential corresponding to the forbidden one-photon transition X+ ← X is derived and amounts to 11.873(10) eV, in very good agreement with the most recent measurement by Krechkivska et al. [J. Chem. Phys. 144, 144305 (2016)]. The enthalpy of formation of the doublet ground state C2+ cation in the gas phase is determined at 0 K, ΔfH0(0K)(C2+(Πu2))=2019.9(10) kJ mol−1. In addition, we report the first experimental ion yield of C2 for which only a simple estimate was used up to now in the photochemistry models of astrophysical media due to the lack of experimental data.
- Published
- 2020
12. Quasi-symmetry effects in the threshold photoelectron spectrum of methyl isocyanate
- Author
-
Gustavo García, Laurent H. Coudert, Oliver J. Harper, Stéphane Douin, Jean-Christophe Loison, Bérenger Gans, Jean-Claude Guillemin, Séverine Boyé-Péronne, Coudert, Laurent, Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Moléculaires (ISM), Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1 (UB)-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Chimiques de Rennes (ISCR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences de l'Univers, Centre National de la Recherche Scientifique, Centre National d’Etudes Spatiales, Institut de Physique du CNRS, Institut de Chimie du CNRS, Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), and ANR-17-CE30-0031,PRIMA,Processus de Relaxation Induits dans les Milieux Astrophysiques par photoexcitation VUV(2017)
- Subjects
[PHYS]Physics [physics] ,Materials science ,010304 chemical physics ,Photoemission spectroscopy ,General Physics and Astronomy ,Synchrotron radiation ,010402 general chemistry ,01 natural sciences ,7. Clean energy ,0104 chemical sciences ,[PHYS] Physics [physics] ,chemistry.chemical_compound ,Amplitude ,chemistry ,Ab initio quantum chemistry methods ,Molecular vibration ,0103 physical sciences ,Molecule ,Physical and Theoretical Chemistry ,Ionization energy ,Atomic physics ,Methyl group - Abstract
International audience; The vacuum-ultraviolet threshold photoelectron spectrum of methyl isocyanate CH3NCO has been recorded from 10.4 eV to 12 eV using synchrotron radiation and a coincidence technique allowing for a mass-discrimination of the photoelectron signal. A significant improvement is achieved over previous investigations as this experimental setup leads to a much more resolved spectrum. Ten sharp peaks and a broad feature spanning 1.2 eV were recorded. This spectrum consists of X̃+ 2A″←X̃ 1A' and Ã+ 2A'←X̃ 1A' ionizing transitions. For the former, the adiabatic ionization energy was determined experimentally to be 10.596(6) eV; for the latter, its value was estimated to be 10.759(50) eV. Seven sharp peaks could be assigned to vibrational modes of the cation X̃+ 2A″ and neutral X̃ 1A' ground electronic states involving only the NCO group atoms. Theoretical modeling of the threshold photoelectron spectrum has proven difficult as methyl isocyanate is a non-rigid molecule displaying large amplitude internal rotation of the methyl group and ∠CNC bending mode, leading to the quasi-symmetry. With the help of ab initio calculations, a theoretical model in which these two large amplitude motions are included in addition to the five small amplitude vibrational modes involving NCO group atoms is proposed. Comparison with the experimental spectrum shows that the broad feature and the strongest peak line positions are well accounted for; their intensities are also fairly well reproduced after adjusting a few parameters.
- Published
- 2020
13. LARGE AMPLITUDE MOTION EFFECTS IN THE TPES SPECTRUM OF METHYL ISOCYANATE
- Author
-
J. C. Guillemin, S. Boyé-Péronne, Bérenger Gans, Gustavo García, L. H. Coudert, Oliver J. Harper, and Jean-Christophe Loison
- Subjects
chemistry.chemical_compound ,Materials science ,Amplitude ,chemistry ,Spectrum (functional analysis) ,Motion (geometry) ,Methyl isocyanate ,Molecular physics - Published
- 2019
14. Quantifying the photoionization cross section of the hydroxyl radical
- Author
-
Oliver J. Harper, Helgi Rafn Hrodmarsson, Séverine Boyé-Péronne, Jean-Christophe Loison, N. de Oliveira, Bérenger Gans, M. Hassenfratz, Gustavo A. Garcia, Stephen T. Pratt, Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA (UMR_8112)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Moléculaires (ISM), Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Centre National de la Recherche Scientifique (CNRS), Conception, synthèse et vectorisation de biomolécules. (CSVB), Institut Curie-Centre National de la Recherche Scientifique (CNRS)-Université Paris Descartes - Paris 5 (UPD5), Chemical Sciences and Engineering Division [Argonne], Argonne National Laboratory [Lemont] (ANL), Laboratoire de Photophysique Moléculaire (PPM), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Moléculaires d'Orsay (ISMO), Sorbonne Université (SU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and Université Paris Descartes - Paris 5 (UPD5)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Curie [Paris]
- Subjects
[PHYS]Physics [physics] ,Range (particle radiation) ,010304 chemical physics ,Spectrometer ,Radical ,General Physics and Astronomy ,Synchrotron radiation ,Photoionization ,010402 general chemistry ,7. Clean energy ,01 natural sciences ,0104 chemical sciences ,chemistry.chemical_compound ,Cross section (physics) ,chemistry ,13. Climate action ,Yield (chemistry) ,0103 physical sciences ,Hydroxyl radical ,Physics::Chemical Physics ,Physical and Theoretical Chemistry ,Atomic physics ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience; The hydroxyl free radical, OH, is one of the most important radicals in atmospheric and interstellar chemistry, and its cation plays a role in the reactions leading to H 2 O formation. Knowledge of the photoionization efficiency of the OH radical is crucial to properly model the water photochemical cycle of atmospheres and astrophysical objects. Using a gas-phase radical source based on a single H-abstraction reaction combined with a photoelectron/photoion imaging coincidence spectrometer coupled with synchrotron radiation, we recorded the OH + photoion yield over the 12.6-15 eV energy range, and we set it to an absolute cross section scale using an absolute point measurement performed at 13.8 eV: σ ion OH = 9.0 ± 2.7 Mb. The resulting cross section values differ by approximately a factor 2 from the recent measurement of Dodson et al. performed with a different radical source is somewhat greater than the combined uncertainties of the measurements. This finding underlines the need for further investigations of this cross section. The hydroxyl radical, OH, is one of the most important free radicals in atmospheric and astrophysical chemistry. It is involved in atmospheric cycles, e.g. as an oxidizing "detergent" on Earth, 1,2 but also in complex photophysical processes in a wide variety of astrophysi-cal media (planetary atmospheres, 3-5 comets, 6 interstel-lar clouds, 7,8 etc.). In these media, OH plays a key role in the water photochemical cycle. The OH + H 2 → H 2 O + H reaction is endothermic, 9 thus most of the reactions involving OH at low temperature occur with O, N, and C atoms and lead to O 2 , NO, and CO compounds rather than H 2 O. On the other hand, the cationic form OH + reacts fast with H 2 , 10 to produce H 2 O + which in turn reacts with H 2 to generate H 3 O +. H 2 O can then be formed through dissociative recombination of H 3 O +. 11 Several theoretical 12 and experimental 13-17 studies have been carried out on the lowest electronic states of neutral OH. However, absorption studies in the Vacuum UltraViolet (VUV) range (λ < 200 nm) are scarce and absolute measurements in this region are even more so. 18,19 For the ionization process, only three experimental works have reported the relative photoionization yield (or constant-ionic-state spectra) of the hydroxyl radical in the VUV range, to our knowledge. 20-23 Dehmer's work covered the photon energy range between 13.0 and 16.5 eV (≈ 95 − 75 nm), at a resolution of 1-3 meV (0.007 − 0.023 nm). 20 Autoionization features were observed in the ion yield and were assigned to a Rydberg series converging to the a + 1 ∆ state of the OH + ion (lo-cated 2.16 eV above the cationic ground state). Later, Cutler et al. carried on Dehmer's work and studied the photoionization of both OH and OD isotopologues between 13.1 and 18.2 eV (94.64-68.12 nm) at a resolution of 1 meV (0.007 nm). 21 They assigned two new Rydberg series converging to the OH + b + 1 Σ + and A + 3 Π ionic states. In 2018, Dodson et al. published the first experimental measurement of the absolute photoionization cross section for OH, where they deduced the cross section from the analysis of time-resolved radical-kinetics measurements of a multi-reaction network in which OH is produced in the reaction of O(1 D) with H 2 O. The absolute cross section of OH was determined relative to that of O(3 P). Their work was supported by new theoretical calculations of the OH cross section using equation-of-motion coupled-cluster Dyson orbitals and a Coulomb photoelectron wave function. 24 The absolute photoionization cross section of the OH radical is important for reliably describing the abundances of OH and OH + and their involvement in the photochemical networks of interstellar media. However, before the work of Dodson et al., modelers could only use the results from theoretical calculations, 12,25,26 or ignore the cross section completely. For instance, the photoion-ization of OH is not present in the Leiden Database 27 or the Meudon PDR code. 28 The new value is expected to find considerable applications in the modeling of atmospheric and interstellar chemistry. Given the importance of this cross section, a complementary experimental determination would also be valuable. We have recently determined the absolute photoion
- Published
- 2019
15. Erratum: 'Quantifying the photoionization cross section of the hydroxyl radical' [J. Chem. Phys. 150, 141103 (2019)]
- Author
-
Jean-Christophe Loison, Gustavo García, Stephen T. Pratt, N. de Oliveira, Séverine Boyé-Péronne, Helgi Rafn Hrodmarsson, M. Hassenfratz, Oliver J. Harper, and Bérenger Gans
- Subjects
chemistry.chemical_compound ,Cross section (physics) ,Materials science ,chemistry ,General Physics and Astronomy ,Hydroxyl radical ,Photoionization ,Physical and Theoretical Chemistry ,Molecular physics - Published
- 2020
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.