1. Innovative Acoustic-Hydraulic Method for High-Performance Fine Liquid Atomization
- Author
-
Olga Kudryashova, Andrey Shalunov, Dmitry Genne, Roman Dorovskikh, and Sergey Titov
- Subjects
liquid atomization ,ultrasound ,acoustic-hydraulic nozzle ,droplet dispersion ,cavitation ,critical mode ,Technology ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Biology (General) ,QH301-705.5 ,Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Spray technology is widely used in various industries, including medicine, food production, mechanical engineering, and nanopowder manufacturing. Achieving high dispersion and a narrow particle size distribution is crucial for many applications. Ultrasonic spraying is commonly used to achieve this. On the other hand, hydraulic nozzles provide high atomization performance. Combining these two technologies promises to offer significant benefits, but the complex processes that occur simultaneously in such a device require careful study. This work proposes a fundamental design for an acoustic-hydraulic nozzle and investigates the physical processes when a liquid is sprayed using this nozzle, both theoretically and experimentally. The study identifies the critical modes of spraying and confirms that the simultaneous use of ultrasound and hydraulic pressure can produce a fine spray (droplet size less than 50 μm vs. 150–500 μm for hydrodynamic spray) with high productivity (5–10 mL/s vs. 0.5 mL/min for ultrasonic spray). This approach has significant potential for modern industries and technologies.
- Published
- 2023
- Full Text
- View/download PDF