Clément Nizak, Bruno Goud, Franck Perez, Jacques Camonis, Arnaud Echard, Ole Vielemeyer, Jean-Christophe Rain, Ana Joaquina Jimenez, Centre de recherche, Institut Curie [Paris], Compartimentation et dynamique cellulaires (CDC), Centre National de la Recherche Scientifique (CNRS)-Institut Curie [Paris]-Université Pierre et Marie Curie - Paris 6 (UPMC), Division of Infectious Diseases & HIV Medicine, Division of Infectious Diseases &HIV Medicine-Drexel University School of Medicine, Laboratoire de Spectrométrie Physique (LSP), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Trafic membranaire et Division cellulaire - Membrane Traffic and Cell Division, Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS), Unité de génétique et biologie des cancers (U830), Institut Curie [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Descartes - Paris 5 (UPD5), Hybrigenics [Paris], Hybrigenics, The project was supported by the French Agence Nationale de la Recherche ('ANR') BiotecS-ANR-09-BIOT-005 (FP and JCR). The work was also supported by the ANR program Blanc, ANR-06-BLANC-0107 (BG and FP), by the Human Science Frontier Organization (FP), by the Curie Institute, Paris, France, and by the Centre National de la Recherche Scientifique (CNRS) of France. The full-length giantin expression plasmid (pSG5-GCP364) was received as a kind gift from Yoshio Misumi (Fukuoka, Japan)., BMC, Ed., Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut Curie [Paris]-Centre National de la Recherche Scientifique (CNRS), Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), Université Paris Descartes - Paris 5 (UPD5)-Institut Curie [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM), INSTITUT CURIE, Compartimentation et dynamique cellulaires ( CDC ), Centre National de la Recherche Scientifique ( CNRS ) -INSTITUT CURIE-Université Pierre et Marie Curie - Paris 6 ( UPMC ), Laboratoire de Spectrométrie Physique ( LSP ), Université Joseph Fourier - Grenoble 1 ( UJF ) -Centre National de la Recherche Scientifique ( CNRS ), Trafic membranaire et Division cellulaire, Institut Pasteur [Paris]-Centre National de la Recherche Scientifique ( CNRS ), Unité de génétique et biologie des cancers ( U830 ), and Université Paris Descartes - Paris 5 ( UPD5 ) -Institut Curie-Institut National de la Santé et de la Recherche Médicale ( INSERM )
Background Due to their unique ability to bind their targets with high fidelity, antibodies are used widely not only in biomedical research, but also in many clinical applications. Recombinant antibodies, including single chain variable fragments (scFv), are gaining momentum because they allow powerful in vitro selection and manipulation without loss of function. Regardless of the ultimate application or type of antibody used, precise understanding of the interaction between the antibody's binding site and its specific target epitope(s) is of great importance. However, such data is frequently difficult to obtain. Results We describe an approach that allows detailed characterization of a given antibody's target(s) using the yeast two-hybrid system. Several recombinant scFv were used as bait and screened against highly complex cDNA libraries. Systematic sequencing of all retained clones and statistical analysis allowed efficient ranking of the prey fragments. Multiple alignment of the obtained cDNA fragments provided a selected interacting domain (SID), efficiently narrowing the epitope-containing region. Interactions between antibodies and their respective targets were characterized for several scFv. For AA2 and ROF7, two conformation-specific sensors that exclusively bind the activated forms of the small GTPases Rab6 and Rab1 respectively, only fragments expressing the entire target protein's core region were retained. This strongly suggested interaction with a non-linear epitope. For two other scFv, TA10 and SF9, which recognize the large proteins giantin and non-muscle myosin IIA, respectively, precise antibody-binding regions within the target were defined. Finally, for some antibodies, secondary targets within and across species could be revealed. Conclusions Our method, utilizing the yeast two-hybrid technology and scFv as bait, is a simple yet powerful approach for the detailed characterization of antibody targets. It allows precise domain mapping for linear epitopes, confirmation of non-linear epitopes for conformational sensors, and detection of secondary binding partners. This approach may thus prove to be an elegant and rapid method for the target characterization of newly obtained scFv antibodies. It may be considered prior to any research application and particularly before any use of such recombinant antibodies in clinical medicine.