1. Targeting integrins in drug-resistant acute myeloid leukaemia.
- Author
-
Ogana HA, Hurwitz S, Wei N, Lee E, Morris K, Parikh K, and Kim YM
- Subjects
- Humans, Bone Marrow metabolism, Hematopoietic Stem Cells, Cell Adhesion Molecules metabolism, Tumor Microenvironment, Integrins metabolism, Leukemia, Myeloid, Acute drug therapy, Leukemia, Myeloid, Acute metabolism
- Abstract
Acute myeloid leukaemia (AML) continues to have a poor prognosis, warranting new therapeutic strategies. The bone marrow (BM) microenvironment consists of niches that interact with not only normal haematopoietic stem cells (HSC) but also leukaemia cells like AML. There are many adhesion molecules in the BM microenvironment; therein, integrins have been of central interest. AML cells express integrins that bind to ligands in the microenvironment, enabling adhesion of leukaemia cells in the microenvironment, thereby initiating intracellular signalling pathways that are associated with cell migration, cell proliferation, survival, and drug resistance that has been described to mediate cell adhesion-mediated drug resistance (CAM-DR). Identifying and targeting integrins in AML to interrupt interactions with the microenvironment have been pursued as a strategy to overcome CAM-DR. Here, we focus on the BM microenvironment and review the role of integrins in CAM-DR of AML and discuss integrin-targeting strategies. LINKED ARTICLES: This article is part of a themed issue on Cancer Microenvironment and Pharmacological Interventions. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.2/issuetoc., (© 2023 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.)
- Published
- 2024
- Full Text
- View/download PDF