87 results on '"O. Yefanov"'
Search Results
2. 1 kHz fixed-target serial crystallography using a multilayer monochromator and an integrating pixel detector
- Author
-
A. Tolstikova, M. Levantino, O. Yefanov, V. Hennicke, P. Fischer, J. Meyer, A. Mozzanica, S. Redford, E. Crosas, N. L. Opara, M. Barthelmess, J. Lieske, D. Oberthuer, E. Wator, I. Mohacsi, M. Wulff, B. Schmitt, H. N. Chapman, and A. Meents
- Subjects
serial crystallography ,synchrotron radiation ,pink beams ,protein crystallography ,protein structure ,structure determination ,Crystallography ,QD901-999 - Abstract
Reliable sample delivery and efficient use of limited beam time have remained bottlenecks for serial crystallography (SX). Using a high-intensity polychromatic X-ray beam in combination with a newly developed charge-integrating JUNGFRAU detector, we have applied the method of fixed-target SX to collect data at a rate of 1 kHz at a synchrotron-radiation facility. According to our data analysis for the given experimental conditions, only about 3 000 diffraction patterns are required for a high-quality diffraction dataset. With indexing rates of up to 25%, recording of such a dataset takes less than 30 s.
- Published
- 2019
- Full Text
- View/download PDF
3. Electronic damage in S atoms in a native protein crystal induced by an intense X-ray free-electron laser pulse
- Author
-
L. Galli, S.-K. Son, M. Klinge, S. Bajt, A. Barty, R. Bean, C. Betzel, K. R. Beyerlein, C. Caleman, R. B. Doak, M. Duszenko, H. Fleckenstein, C. Gati, B. Hunt, R. A. Kirian, M. Liang, M. H. Nanao, K. Nass, D. Oberthür, L. Redecke, R. Shoeman, F. Stellato, C. H. Yoon, T. A. White, O. Yefanov, J. Spence, and H. N. Chapman
- Subjects
Crystallography ,QD901-999 - Abstract
Current hard X-ray free-electron laser (XFEL) sources can deliver doses to biological macromolecules well exceeding 1 GGy, in timescales of a few tens of femtoseconds. During the pulse, photoionization can reach the point of saturation in which certain atomic species in the sample lose most of their electrons. This electronic radiation damage causes the atomic scattering factors to change, affecting, in particular, the heavy atoms, due to their higher photoabsorption cross sections. Here, it is shown that experimental serial femtosecond crystallography data collected with an extremely bright XFEL source exhibit a reduction of the effective scattering power of the sulfur atoms in a native protein. Quantitative methods are developed to retrieve information on the effective ionization of the damaged atomic species from experimental data, and the implications of utilizing new phasing methods which can take advantage of this localized radiation damage are discussed.
- Published
- 2015
- Full Text
- View/download PDF
4. Simple convergent-nozzle aerosol injector for single-particle diffractive imaging with X-ray free-electron lasers
- Author
-
R. A. Kirian, S. Awel, N. Eckerskorn, H. Fleckenstein, M. Wiedorn, L. Adriano, S. Bajt, M. Barthelmess, R. Bean, K. R. Beyerlein, L. M. G. Chavas, M. Domaracky, M. Heymann, D. A. Horke, J. Knoska, M. Metz, A. Morgan, D. Oberthuer, N. Roth, T. Sato, P. L. Xavier, O. Yefanov, A. V. Rode, J. Küpper, and H. N. Chapman
- Subjects
Crystallography ,QD901-999 - Abstract
A major challenge in high-resolution x-ray free-electron laser-based coherent diffractive imaging is the development of aerosol injectors that can efficiently deliver particles to the peak intensity of the focused X-ray beam. Here, we consider the use of a simple convergent-orifice nozzle for producing tightly focused beams of particles. Through optical imaging we show that 0.5 μm particles can be focused to a full-width at half maximum diameter of 4.2 μm, and we demonstrate the use of such a nozzle for injecting viruses into a micro-focused soft-X-ray FEL beam.
- Published
- 2015
- Full Text
- View/download PDF
5. A new type of structural defects in CdZnSe/ZnSe heterostructures.
- Author
-
L. V. Borkovska, N. O. Korsunska, Vasyl Kladko, Mykola Slobodyan, O. Yefanov, Ye. F. Venger, T. Kryshtab, Yu. G. Sadofyev, and I. Kazakov
- Published
- 2008
- Full Text
- View/download PDF
6. CFEL TapeDrive 2.0: a conveyor belt-based sample-delivery system for multi-dimensional serial crystallography
- Author
-
A. Henkel, J. Maracke, A. Munke, M. Galchenkova, A. Rahmani Mashhour, P. Reinke, M. Domaracky, H. Fleckenstein, J. Hakanpää, J. Meyer, A. Tolstikova, J. Carnis, P. Middendorf, L. Gelisio, O. Yefanov, H.N. Chapman, and D. Oberthür
- Subjects
Inorganic Chemistry ,Structural Biology ,General Materials Science ,Physical and Theoretical Chemistry ,Condensed Matter Physics ,Biochemistry - Published
- 2022
- Full Text
- View/download PDF
7. Data reduction in protein crystallography
- Author
-
M. Galchenkova, A. Tolstikova, O. Yefanov, and H. Chapman
- Subjects
Inorganic Chemistry ,Structural Biology ,General Materials Science ,Physical and Theoretical Chemistry ,Condensed Matter Physics ,Biochemistry - Published
- 2022
- Full Text
- View/download PDF
8. XVis: an educational open-source program for demonstration of reciprocal-space construction and diffraction principles
- Author
-
Mykola Slobodyan, V. P. Kladko, Yulia Polischuk, and O. Yefanov
- Subjects
Diffraction ,Reciprocal lattice ,Crystallography ,Open source ,Reflection (mathematics) ,Transmission (telecommunications) ,Computer science ,Computer graphics (images) ,ddc:540 ,Information representation ,Real structure ,General Biochemistry, Genetics and Molecular Biology ,Connection (mathematics) - Abstract
The programXVisis designed for interactive demonstration of different diffraction issues, such as reciprocal-space construction, connection between real and reciprocal spaceviadiffraction phenomena, different methods of reciprocal-space scanning, accessible reciprocal-space regions for coplanar and noncoplanar diffraction for both transmission and reflection geometries,N-beam diffraction phenomena, reciprocal space for two-layered systems and experimental examples. All demonstrations are calculated using real structure parameters. For better information representation, the program displays most demonstrations in real and reciprocal space simultaneously. The program is open source and can be downloaded from http://x-ray.net.ua/xvis.html.
- Published
- 2008
- Full Text
- View/download PDF
9. Investigation of defect structure of InGaNAsSb/GaAs quantum wells
- Author
-
M. Slobodyan, O. Yefanov, Yong-Hang Zhang, Shane Johnson, V.I. Kushnirenko, Tetyana Kryshtab, Ye. Venger, L. V. Borkovska, Yu. G. Sadofyev, V. P. Kladko, and Nadiia Korsunska
- Subjects
Diffraction ,Materials science ,Photoluminescence ,Condensed matter physics ,Oscillation ,Surface stress ,Bioengineering ,Substrate (electronics) ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,Symmetry (physics) ,Biomaterials ,Condensed Matter::Materials Science ,Mechanics of Materials ,Elastic modulus ,Quantum well - Abstract
The results of the photoluminescence (PL) and the high-resolution X-ray diffraction (HRXRD) investigations of point and extended defects in strained InGaAs(N)Sb/GaAs quantum well (QW) structures grown at 478–505 °C are presented. HRXRD studies prove a good quality of heterointerfaces in all samples that is attributed to Sb-surfactant effect. The PL investigations show that the increase of the growth temperature of N-containing QWs leads to the increase of potential fluctuations in QW due to the increase of composition disorder. In the PL spectra an intense band caused by excitonic transitions related with N-related clusters in GaAs barriers is found. HRXRD mapping in symmetrical 004 reflections reveals the oscillation of interference picture in [110] direction around the normal to (100) surface known as a “wiggle”. The mapping indicates the formation of elastically coupled domains which are elongated in [¯110] direction and are supposed to be cased by lateral composition modulations in the QW. It is proposed that a “wiggle” explained by the change of slopes of crystallographic planes with the depth is the result of competition of two factors — a symmetry of the surface stress tensor and a symmetry of bulk elastic moduli of a substrate material.
- Published
- 2007
- Full Text
- View/download PDF
10. Effect of growth temperature on the luminescent and structural properties of InGaAsSbN/GaAs quantum wells for 1.3 μm telecom application
- Author
-
L. V. Borkovska, Shane Johnson, V. P. Kladko, N. Korsunska, Yong-Hang Zhang, O. Gudymenko, Yu. G. Sadofyev, O. Yefanov, and Tetyana Kryshtab
- Subjects
Diffraction ,Photoluminescence ,Condensed matter physics ,business.industry ,Chemistry ,Alloy ,Metals and Alloys ,chemistry.chemical_element ,Surfaces and Interfaces ,engineering.material ,Decomposition ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Antimony ,Materials Chemistry ,engineering ,Optoelectronics ,business ,Luminescence ,Intensity (heat transfer) ,Quantum well - Abstract
Variations of the characteristics of Sb-surfactant assisted grown InGaAsN/GaAs single quantum wells (QWs) in dependence on QW growth temperature ( T GR = 442–505 °C) are investigated by the photoluminescence (PL) and high-resolution X-ray diffraction (HRXRD) methods. The QWs grown at ∼480 °C demonstrated optimal PL characteristics, namely the highest PL intensity and small potential fluctuations. A good quality of heterointerfaces is proved by HRXRD. These structures emit at ∼1.29 μm at 300 K and are promising for application in long wavelength opto-electronic devices. The good structural properties of these QWs are assigned to Sb surfactant effect that allows shifting of the T GR to higher temperatures without significant alloy decomposition. The increase of T GR in its turn results in the decrease of the density of nonradiative defects that are the specific feature of low temperature growth.
- Published
- 2006
- Full Text
- View/download PDF
11. Fields of deformation anisotropy exploration in multilayered (In,Ga)As/GaAs structures by high-resolution X-ray scattering
- Author
-
Gregory J. Salamo, O. Yefanov, Yu. I. Mazur, Zh. M. Wang, V. V. Strelchuk, O. Gudymenko, and V. P. Kladko
- Subjects
Diffraction ,Condensed matter physics ,Scattering ,Chemistry ,Superlattice ,X-ray ,Heterojunction ,Surfaces and Interfaces ,Condensed Matter Physics ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Azimuth ,Condensed Matter::Materials Science ,Lattice (order) ,Materials Chemistry ,Electrical and Electronic Engineering ,Anisotropy - Abstract
The results of investigation of In 0.3 Ga 0.7 As/GaAs superlattice by high-resolution X-ray scattering are presented. The influence of lattice distortion on diffraction curves (DC) were analyzed with dynamical diffraction theory. It allowed to explain azimuth dependence of experimental diffraction curves. Anisotropic changes in the shape of InGaAs lattice unit cell were shown and measured. The influence of smooth borders between hetero-layers were analyzed. Comparative analysis of different gradient functions on the hetero-border influence on diffraction curves was done. Parameters of heterojunction in investigated samples were determined with the help of DC modelling.
- Published
- 2006
- Full Text
- View/download PDF
12. Convergent-beam attosecond x-ray crystallography.
- Author
-
Chapman HN, Li C, Bajt S, Butola M, Dresselhaus JL, Egorov D, Fleckenstein H, Ivanov N, Kiene A, Klopprogge B, Kremling V, Middendorf P, Oberthuer D, Prasciolu M, Scheer TES, Sprenger J, Wong JC, Yefanov O, Zakharova M, and Zhang W
- Abstract
Sub-ångström spatial resolution of electron density coupled with sub-femtosecond to few-femtosecond temporal resolution is required to directly observe the dynamics of the electronic structure of a molecule after photoinitiation or some other ultrafast perturbation, such as by soft X-rays. Meeting this challenge, pushing the field of quantum crystallography to attosecond timescales, would bring insights into how the electronic and nuclear degrees of freedom couple, enable the study of quantum coherences involved in molecular dynamics, and ultimately enable these dynamics to be controlled. Here, we propose to reach this realm by employing convergent-beam x-ray crystallography with high-power attosecond pulses from a hard-x-ray free-electron laser. We show that with dispersive optics, such as multilayer Laue lenses of high numerical aperture, it becomes possible to encode time into the resulting diffraction pattern with deep sub-femtosecond precision. Each snapshot diffraction pattern consists of Bragg streaks that can be mapped back to arrival times and positions of X-rays on the face of a crystal. This can span tens of femtoseconds and can be finely sampled as we demonstrate experimentally. The approach brings several other advantages, such as an increase in the number of observable reflections in a snapshot diffraction pattern, all fully integrated, to improve the speed and accuracy of serial crystallography-especially for crystals of small molecules., Competing Interests: The authors have no conflicts to disclose., (© 2025 Author(s).)
- Published
- 2025
- Full Text
- View/download PDF
13. Fast and efficient hard X-ray projection imaging below 10 nm resolution.
- Author
-
Zhang W, Dresselhaus JL, Fleckenstein H, Prasciolu M, Zakharova M, Ivanov N, Li C, Yefanov O, Li T, Egorov D, De Gennaro Aquino I, Middendorf P, Hagemann J, Shi S, Bajt S, and Chapman HN
- Abstract
High-resolution X-ray imaging of noncrystalline objects is often achieved through the approach of scanning coherent diffractive imaging known as ptychography. The imaging resolution is usually limited by the scattering properties of the sample, where weak diffraction signals at the highest scattering angles compete with parasitic scattering. Here, we demonstrate that X-ray multilayer Laue lenses with a high numerical aperture (NA) can be used to create a strong reference beam that holographically boosts weak scattering from the sample over a large range of scattering angles, enabling high-resolution imaging that is tolerant of such background. An imaging resolution of sub-10 nm was achieved at a photon energy of 17.4 keV with lenses of 0.014 NA from a Siemens star test object and a sample of hierarchical nanoporous gold, recording projection holograms at an effective magnification of more than 30,000 directly on a pixel-array detector. A numerical study compared this approach to low-NA far-field ptychography, indicating significant advantages for using high-NA lenses in the presence of background noise. This imaging modality is particularly fast and efficient at recording high-resolution transmission phase-contrast images over large fields of view in a facile manner.
- Published
- 2024
- Full Text
- View/download PDF
14. Time-resolved crystallography of boric acid binding to the active site serine of the β-lactamase CTX-M-14 and subsequent 1,2-diol esterification.
- Author
-
Prester A, Perbandt M, Galchenkova M, Oberthuer D, Werner N, Henkel A, Maracke J, Yefanov O, Hakanpää J, Pompidor G, Meyer J, Chapman H, Aepfelbacher M, Hinrichs W, Rohde H, and Betzel C
- Abstract
The emergence and spread of antibiotic resistance represent a growing threat to public health. Of particular concern is the appearance of β-lactamases, which are capable to hydrolyze and inactivate the most important class of antibiotics, the β-lactams. Effective β-lactamase inhibitors and mechanistic insights into their action are central in overcoming this type of resistance, and in this context boronate-based β-lactamase inhibitors were just recently approved to treat multidrug-resistant bacteria. Using boric acid as a simplified inhibitor model, time-resolved serial crystallography was employed to obtain mechanistic insights into binding to the active site serine of β-lactamase CTX-M-14, identifying a reaction time frame of 80-100 ms. In a next step, the subsequent 1,2-diol boric ester formation with glycerol in the active site was monitored proceeding in a time frame of 100-150 ms. Furthermore, the displacement of the crucial anion in the active site of the β-lactamase was verified as an essential part of the binding mechanism of substrates and inhibitors. In total, 22 datasets of β-lactamase intermediate complexes with high spatial resolution of 1.40-2.04 Å and high temporal resolution range of 50-10,000 ms were obtained, allowing a detailed analysis of the studied processes. Mechanistic details captured here contribute to the understanding of molecular processes and their time frames in enzymatic reactions. Moreover, we could demonstrate that time-resolved crystallography can serve as an additional tool for identifying and investigating enzymatic reactions., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
15. X-ray focusing below 3 nm with aberration-corrected multilayer Laue lenses.
- Author
-
Dresselhaus JL, Zakharova M, Ivanov N, Fleckenstein H, Prasciolu M, Yefanov O, Li C, Zhang W, Middendorf P, Egorov D, De Gennaro Aquino I, Chapman HN, and Bajt S
- Abstract
Multilayer Laue lenses are volume diffractive optical elements for hard X-rays with the potential to focus beams to sizes as small as 1 nm. This ability is limited by the precision of the manufacturing process, whereby systematic errors that arise during fabrication contribute to wavefront aberrations even after calibration of the deposition process based on wavefront metrology. Such aberrations can be compensated by using a phase plate. However, current high numerical aperture lenses for nanometer resolution exhibit errors that exceed those that can be corrected by a single phase plate. To address this, we accumulate a large wavefront correction by propagation through a linear array of 3D-printed phase correcting elements. With such a compound refractive corrector, we report on a point spread function with a full-width at half maximum area of 2.9 × 2.8 nm
2 at a photon energy of 17.5 keV.- Published
- 2024
- Full Text
- View/download PDF
16. Data reduction in protein serial crystallography.
- Author
-
Galchenkova M, Tolstikova A, Klopprogge B, Sprenger J, Oberthuer D, Brehm W, White TA, Barty A, Chapman HN, and Yefanov O
- Subjects
- Crystallography, Tomography, X-Ray Computed, Algorithms, Data Compression methods
- Abstract
Serial crystallography (SX) has become an established technique for protein structure determination, especially when dealing with small or radiation-sensitive crystals and investigating fast or irreversible protein dynamics. The advent of newly developed multi-megapixel X-ray area detectors, capable of capturing over 1000 images per second, has brought about substantial benefits. However, this advancement also entails a notable increase in the volume of collected data. Today, up to 2 PB of data per experiment could be easily obtained under efficient operating conditions. The combined costs associated with storing data from multiple experiments provide a compelling incentive to develop strategies that effectively reduce the amount of data stored on disk while maintaining the quality of scientific outcomes. Lossless data-compression methods are designed to preserve the information content of the data but often struggle to achieve a high compression ratio when applied to experimental data that contain noise. Conversely, lossy compression methods offer the potential to greatly reduce the data volume. Nonetheless, it is vital to thoroughly assess the impact of data quality and scientific outcomes when employing lossy compression, as it inherently involves discarding information. The evaluation of lossy compression effects on data requires proper data quality metrics. In our research, we assess various approaches for both lossless and lossy compression techniques applied to SX data, and equally importantly, we describe metrics suitable for evaluating SX data quality., (open access.)
- Published
- 2024
- Full Text
- View/download PDF
17. Structure of the Lysinibacillus sphaericus Tpp49Aa1 pesticidal protein elucidated from natural crystals using MHz-SFX.
- Author
-
Williamson LJ, Galchenkova M, Best HL, Bean RJ, Munke A, Awel S, Pena G, Knoska J, Schubert R, Dörner K, Park HW, Bideshi DK, Henkel A, Kremling V, Klopprogge B, Lloyd-Evans E, Young MT, Valerio J, Kloos M, Sikorski M, Mills G, Bielecki J, Kirkwood H, Kim C, de Wijn R, Lorenzen K, Xavier PL, Rahmani Mashhour A, Gelisio L, Yefanov O, Mancuso AP, Federici BA, Chapman HN, Crickmore N, Rizkallah PJ, Berry C, and Oberthür D
- Subjects
- Animals, Mosquito Control, Larva metabolism, Pesticides, Bacillus, Bacillaceae chemistry, Bacillaceae metabolism, Culex
- Abstract
The Lysinibacillus sphaericus proteins Tpp49Aa1 and Cry48Aa1 can together act as a toxin toward the mosquito Culex quinquefasciatus and have potential use in biocontrol. Given that proteins with sequence homology to the individual proteins can have activity alone against other insect species, the structure of Tpp49Aa1 was solved in order to understand this protein more fully and inform the design of improved biopesticides. Tpp49Aa1 is naturally expressed as a crystalline inclusion within the host bacterium, and MHz serial femtosecond crystallography using the novel nanofocus option at an X-ray free electron laser allowed rapid and high-quality data collection to determine the structure of Tpp49Aa1 at 1.62 Å resolution. This revealed the packing of Tpp49Aa1 within these natural nanocrystals as a homodimer with a large intermolecular interface. Complementary experiments conducted at varied pH also enabled investigation of the early structural events leading up to the dissolution of natural Tpp49Aa1 crystals-a crucial step in its mechanism of action. To better understand the cooperation between the two proteins, assays were performed on a range of different mosquito cell lines using both individual proteins and mixtures of the two. Finally, bioassays demonstrated Tpp49Aa1/Cry48Aa1 susceptibility of Anopheles stephensi , Aedes albopictus, and Culex tarsalis larvae-substantially increasing the potential use of this binary toxin in mosquito control., Competing Interests: Competing interests statement:The authors declare no competing interest.
- Published
- 2023
- Full Text
- View/download PDF
18. Heterogeneity in M. tuberculosis β-lactamase inhibition by Sulbactam.
- Author
-
Malla TN, Zielinski K, Aldama L, Bajt S, Feliz D, Hayes B, Hunter M, Kupitz C, Lisova S, Knoska J, Martin-Garcia JM, Mariani V, Pandey S, Poudyal I, Sierra RG, Tolstikova A, Yefanov O, Yoon CH, Ourmazd A, Fromme P, Schwander P, Barty A, Chapman HN, Stojkovic EA, Batyuk A, Boutet S, Phillips GN Jr, Pollack L, and Schmidt M
- Subjects
- Humans, Ligands, Sulbactam pharmacology, beta-Lactamases, Mycobacterium tuberculosis, Tuberculosis
- Abstract
For decades, researchers have elucidated essential enzymatic functions on the atomic length scale by tracing atomic positions in real-time. Our work builds on possibilities unleashed by mix-and-inject serial crystallography (MISC) at X-ray free electron laser facilities. In this approach, enzymatic reactions are triggered by mixing substrate or ligand solutions with enzyme microcrystals. Here, we report in atomic detail (between 2.2 and 2.7 Å resolution) by room-temperature, time-resolved crystallography with millisecond time-resolution (with timepoints between 3 ms and 700 ms) how the Mycobacterium tuberculosis enzyme BlaC is inhibited by sulbactam (SUB). Our results reveal ligand binding heterogeneity, ligand gating, cooperativity, induced fit, and conformational selection all from the same set of MISC data, detailing how SUB approaches the catalytic clefts and binds to the enzyme noncovalently before reacting to a trans-enamine. This was made possible in part by the application of singular value decomposition to the MISC data using a program that remains functional even if unit cell parameters change up to 3 Å during the reaction., (© 2023. Springer Nature Limited.)
- Published
- 2023
- Full Text
- View/download PDF
19. Dose-efficient scanning Compton X-ray microscopy.
- Author
-
Li T, Dresselhaus JL, Ivanov N, Prasciolu M, Fleckenstein H, Yefanov O, Zhang W, Pennicard D, Dippel AC, Gutowski O, Villanueva-Perez P, Chapman HN, and Bajt S
- Abstract
The highest resolution of images of soft matter and biological materials is ultimately limited by modification of the structure, induced by the necessarily high energy of short-wavelength radiation. Imaging the inelastically scattered X-rays at a photon energy of 60 keV (0.02 nm wavelength) offers greater signal per energy transferred to the sample than coherent-scattering techniques such as phase-contrast microscopy and projection holography. We present images of dried, unstained, and unfixed biological objects obtained by scanning Compton X-ray microscopy, at a resolution of about 70 nm. This microscope was realised using novel wedged multilayer Laue lenses that were fabricated to sub-ångström precision, a new wavefront measurement scheme for hard X rays, and efficient pixel-array detectors. The doses required to form these images were as little as 0.02% of the tolerable dose and 0.05% of that needed for phase-contrast imaging at similar resolution using 17 keV photon energy. The images obtained provide a quantitative map of the projected mass density in the sample, as confirmed by imaging a silicon wedge. Based on these results, we find that it should be possible to obtain radiation damage-free images of biological samples at a resolution below 10 nm., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
20. JINXED: just in time crystallization for easy structure determination of biological macromolecules.
- Author
-
Henkel A, Galchenkova M, Maracke J, Yefanov O, Klopprogge B, Hakanpää J, Mesters JR, Chapman HN, and Oberthuer D
- Subjects
- Crystallography, X-Ray, Ligands, Crystallization methods, Solvents, Proteins
- Abstract
Macromolecular crystallography is a well established method in the field of structural biology and has led to the majority of known protein structures to date. After focusing on static structures, the method is now under development towards the investigation of protein dynamics through time-resolved methods. These experiments often require multiple handling steps of the sensitive protein crystals, e.g. for ligand-soaking and cryo-protection. These handling steps can cause significant crystal damage, and hence reduce data quality. Furthermore, in time-resolved experiments based on serial crystallography, which use micrometre-sized crystals for short diffusion times of ligands, certain crystal morphologies with small solvent channels can prevent sufficient ligand diffusion. Described here is a method that combines protein crystallization and data collection in a novel one-step process. Corresponding experiments were successfully performed as a proof-of-principle using hen egg-white lysozyme and crystallization times of only a few seconds. This method, called JINXED (Just IN time Crystallization for Easy structure Determination), promises high-quality data due to the avoidance of crystal handling and has the potential to enable time-resolved experiments with crystals containing small solvent channels by adding potential ligands to the crystallization buffer, simulating traditional co-crystallization approaches., (open access.)
- Published
- 2023
- Full Text
- View/download PDF
21. Imaging via Correlation of X-Ray Fluorescence Photons.
- Author
-
Trost F, Ayyer K, Prasciolu M, Fleckenstein H, Barthelmess M, Yefanov O, Dresselhaus JL, Li C, Bajt S, Carnis J, Wollweber T, Mall A, Shen Z, Zhuang Y, Richter S, Karl S, Cardoch S, Patra KK, Möller J, Zozulya A, Shayduk R, Lu W, Brauße F, Friedrich B, Boesenberg U, Petrov I, Tomin S, Guetg M, Madsen A, Timneanu N, Caleman C, Röhlsberger R, von Zanthier J, and Chapman HN
- Abstract
We demonstrate that x-ray fluorescence emission, which cannot maintain a stationary interference pattern, can be used to obtain images of structures by recording photon-photon correlations in the manner of the stellar intensity interferometry of Hanbury Brown and Twiss. This is achieved utilizing femtosecond-duration pulses of a hard x-ray free-electron laser to generate the emission in exposures comparable to the coherence time of the fluorescence. Iterative phasing of the photon correlation map generated a model-free real-space image of the structure of the emitters. Since fluorescence can dominate coherent scattering, this may enable imaging uncrystallised macromolecules.
- Published
- 2023
- Full Text
- View/download PDF
22. Heterogeneity in the M. tuberculosis β-Lactamase Inhibition by Sulbactam.
- Author
-
Schmidt M, Malla TN, Zielinski K, Aldama L, Bajt S, Feliz D, Hayes B, Hunter M, Kupitz C, Lisova S, Knoska J, Martin-Garcia J, Mariani V, Pandey S, Poudyal I, Sierra R, Tolstikova A, Yefanov O, Yoon CH, Ourmazd A, Fromme P, Schwander P, Barty A, Chapman H, Stojković E, Batyuk A, Boutet S, Phillips G Jr, and Pollack L
- Abstract
For decades, researchers have been determined to elucidate essential enzymatic functions on the atomic lengths scale by tracing atomic positions in real time. Our work builds on new possibilities unleashed by mix-and-inject serial crystallography (MISC)
1-5 at X-ray free electron laser facilities. In this approach, enzymatic reactions are triggered by mixing substrate or ligand solutions with enzyme microcrystals6 . Here, we report in atomic detail and with millisecond time-resolution how the Mycobacterium tuberculosis enzyme BlaC is inhibited by sulbactam (SUB). Our results reveal ligand binding heterogeneity, ligand gating7-9 , cooperativity, induced fit10,11 and conformational selection11-13 all from the same set of MISC data, detailing how SUB approaches the catalytic clefts and binds to the enzyme non-covalently before reacting to a trans- enamine. This was made possible in part by the application of the singular value decomposition14 to the MISC data using a newly developed program that remains functional even if unit cell parameters change during the reaction.- Published
- 2023
- Full Text
- View/download PDF
23. Speckle contrast of interfering fluorescence X-rays.
- Author
-
Trost F, Ayyer K, Oberthuer D, Yefanov O, Bajt S, Caleman C, Weimer A, Feld A, Weller H, Boutet S, Koglin J, Timneanu N, von Zanthier J, Röhlsberger R, and Chapman HN
- Abstract
With the development of X-ray free-electron lasers (XFELs), producing pulses of femtosecond durations comparable with the coherence times of X-ray fluorescence, it has become possible to observe intensity-intensity correlations due to the interference of emission from independent atoms. This has been used to compare durations of X-ray pulses and to measure the size of a focusedX-ray beam, for example. Here it is shown that it is also possible to observe the interference of fluorescence photons through the measurement of the speckle contrast of angle-resolved fluorescence patterns. Speckle contrast is often used as a measure of the degree of coherence of the incident beam or the fluctuations of the illuminated sample as determined from X-ray diffraction patterns formed by elastic scattering, rather than from fluorescence patterns as addressed here. Commonly used approaches to estimate speckle contrast were found to suffer when applied to XFEL-generated fluorescence patterns due to low photon counts and a significant variation of the excitation pulse energy from shot to shot. A new method to reliably estimate speckle contrast under such conditions, using a weighting scheme, is introduced. The method is demonstrated by comparing the speckle contrast of fluorescence observed with pulses of 3 fs to 15 fs duration., (open access.)
- Published
- 2023
- Full Text
- View/download PDF
24. Automatic bad-pixel mask maker for X-ray pixel detectors with application to serial crystallography.
- Author
-
Sadri A, Hadian-Jazi M, Yefanov O, Galchenkova M, Kirkwood H, Mills G, Sikorski M, Letrun R, de Wijn R, Vakili M, Oberthuer D, Komadina D, Brehm W, Mancuso AP, Carnis J, Gelisio L, and Chapman HN
- Abstract
X-ray crystallography has witnessed a massive development over the past decade, driven by large increases in the intensity and brightness of X-ray sources and enabled by employing high-frame-rate X-ray detectors. The analysis of large data sets is done via automatic algorithms that are vulnerable to imperfections in the detector and noise inherent with the detection process. By improving the model of the behaviour of the detector, data can be analysed more reliably and data storage costs can be significantly reduced. One major requirement is a software mask that identifies defective pixels in diffraction frames. This paper introduces a methodology and program based upon concepts of machine learning, called robust mask maker (RMM), for the generation of bad-pixel masks for large-area X-ray pixel detectors based on modern robust statistics. It is proposed to discriminate normally behaving pixels from abnormal pixels by analysing routine measurements made with and without X-ray illumination. Analysis software typically uses a Bragg peak finder to detect Bragg peaks and an indexing method to detect crystal lattices among those peaks. Without proper masking of the bad pixels, peak finding methods often confuse the abnormal values of bad pixels in a pattern with true Bragg peaks and flag such patterns as useful regardless, leading to storage of enormous uninformative data sets. Also, it is computationally very expensive for indexing methods to search for crystal lattices among false peaks and the solution may be biased. This paper shows how RMM vastly improves peak finders and prevents them from labelling bad pixels as Bragg peaks, by demonstrating its effectiveness on several serial crystallography data sets., (© Alireza Sadri et al. 2022.)
- Published
- 2022
- Full Text
- View/download PDF
25. Rapid and efficient room-temperature serial synchrotron crystallography using the CFEL TapeDrive.
- Author
-
Zielinski KA, Prester A, Andaleeb H, Bui S, Yefanov O, Catapano L, Henkel A, Wiedorn MO, Lorbeer O, Crosas E, Meyer J, Mariani V, Domaracky M, White TA, Fleckenstein H, Sarrou I, Werner N, Betzel C, Rohde H, Aepfelbacher M, Chapman HN, Perbandt M, Steiner RA, and Oberthuer D
- Abstract
Serial crystallography at conventional synchrotron light sources (SSX) offers the possibility to routinely collect data at room temperature using micrometre-sized crystals of biological macromolecules. However, SSX data collection is not yet as routine and currently takes significantly longer than the standard rotation series cryo-crystallography. Thus, its use for high-throughput approaches, such as fragment-based drug screening, where the possibility to measure at physio-logical temperatures would be a great benefit, is impaired. On the way to high-throughput SSX using a conveyor belt based sample delivery system - the CFEL TapeDrive - with three different proteins of biological relevance ( Klebsiella pneumoniae CTX-M-14 β-lactamase, Nectria haematococca xylanase GH11 and Aspergillus flavus urate oxidase), it is shown here that complete datasets can be collected in less than a minute and only minimal amounts of sample are required., (© Kara A Zielinski et al. 2022.)
- Published
- 2022
- Full Text
- View/download PDF
26. Megahertz pulse trains enable multi-hit serial femtosecond crystallography experiments at X-ray free electron lasers.
- Author
-
Holmes S, Kirkwood HJ, Bean R, Giewekemeyer K, Martin AV, Hadian-Jazi M, Wiedorn MO, Oberthür D, Marman H, Adriano L, Al-Qudami N, Bajt S, Barák I, Bari S, Bielecki J, Brockhauser S, Coleman MA, Cruz-Mazo F, Danilevski C, Dörner K, Gañán-Calvo AM, Graceffa R, Fanghor H, Heymann M, Frank M, Kaukher A, Kim Y, Kobe B, Knoška J, Laurus T, Letrun R, Maia L, Messerschmidt M, Metz M, Michelat T, Mills G, Molodtsov S, Monteiro DCF, Morgan AJ, Münnich A, Peña Murillo GE, Previtali G, Round A, Sato T, Schubert R, Schulz J, Shelby M, Seuring C, Sellberg JA, Sikorski M, Silenzi A, Stern S, Sztuk-Dambietz J, Szuba J, Trebbin M, Vagovic P, Ve T, Weinhausen B, Wrona K, Xavier PL, Xu C, Yefanov O, Nugent KA, Chapman HN, Mancuso AP, Barty A, Abbey B, and Darmanin C
- Subjects
- Crystallography, X-Ray, Radiography, X-Rays, Electrons, Lasers
- Abstract
The European X-ray Free Electron Laser (XFEL) and Linac Coherent Light Source (LCLS) II are extremely intense sources of X-rays capable of generating Serial Femtosecond Crystallography (SFX) data at megahertz (MHz) repetition rates. Previous work has shown that it is possible to use consecutive X-ray pulses to collect diffraction patterns from individual crystals. Here, we exploit the MHz pulse structure of the European XFEL to obtain two complete datasets from the same lysozyme crystal, first hit and the second hit, before it exits the beam. The two datasets, separated by <1 µs, yield up to 2.1 Å resolution structures. Comparisons between the two structures reveal no indications of radiation damage or significant changes within the active site, consistent with the calculated dose estimates. This demonstrates MHz SFX can be used as a tool for tracking sub-microsecond structural changes in individual single crystals, a technique we refer to as multi-hit SFX., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
27. Antiviral activity of natural phenolic compounds in complex at an allosteric site of SARS-CoV-2 papain-like protease.
- Author
-
Srinivasan V, Brognaro H, Prabhu PR, de Souza EE, Günther S, Reinke PYA, Lane TJ, Ginn H, Han H, Ewert W, Sprenger J, Koua FHM, Falke S, Werner N, Andaleeb H, Ullah N, Franca BA, Wang M, Barra ALC, Perbandt M, Schwinzer M, Schmidt C, Brings L, Lorenzen K, Schubert R, Machado RRG, Candido ED, Oliveira DBL, Durigon EL, Niebling S, Garcia AS, Yefanov O, Lieske J, Gelisio L, Domaracky M, Middendorf P, Groessler M, Trost F, Galchenkova M, Mashhour AR, Saouane S, Hakanpää J, Wolf M, Alai MG, Turk D, Pearson AR, Chapman HN, Hinrichs W, Wrenger C, Meents A, and Betzel C
- Subjects
- Allosteric Site, Coronavirus Papain-Like Proteases, Humans, Papain metabolism, Peptide Hydrolases metabolism, SARS-CoV-2, Antiviral Agents pharmacology, COVID-19 Drug Treatment
- Abstract
SARS-CoV-2 papain-like protease (PLpro) covers multiple functions. Beside the cysteine-protease activity, facilitating cleavage of the viral polypeptide chain, PLpro has the additional and vital function of removing ubiquitin and ISG15 (Interferon-stimulated gene 15) from host-cell proteins to support coronaviruses in evading the host's innate immune responses. We identified three phenolic compounds bound to PLpro, preventing essential molecular interactions to ISG15 by screening a natural compound library. The compounds identified by X-ray screening and complexed to PLpro demonstrate clear inhibition of PLpro in a deISGylation activity assay. Two compounds exhibit distinct antiviral activity in Vero cell line assays and one inhibited a cytopathic effect in non-cytotoxic concentration ranges. In the context of increasing PLpro mutations in the evolving new variants of SARS-CoV-2, the natural compounds we identified may also reinstate the antiviral immune response processes of the host that are down-regulated in COVID-19 infections., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
28. Robust ptychographic X-ray speckle tracking with multilayer Laue lenses.
- Author
-
Ivanov N, Lukas Dresselhaus J, Carnis J, Domaracky M, Fleckenstein H, Li C, Li T, Prasciolu M, Yefanov O, Zhang W, Bajt S, and Chapman HN
- Abstract
In recent years, X-ray speckle tracking techniques have emerged as viable tools for wavefront metrology and sample imaging applications, and have been actively developed for use at synchrotron light sources. Speckle techniques can recover an image free of aberrations and can be used to measure wavefronts with a high angular sensitivity. Since they are compatible with low-coherence sources they can be also used with laboratory X-ray sources. A new implementation of the ptychographic X-ray speckle tracking method, suitable for the metrology of highly divergent wavefields, such as those created by multilayer Laue lenses, is presented here. This new program incorporates machine learning techniques such as Huber and non-parametric regression and enables robust and quick wavefield measurements and data evaluation even for low brilliance X-ray beams, and the imaging of low-contrast samples. To realize this, a software suite was written in Python 3, with a C back-end capable of concurrent calculations for high performance. It is accessible as a Python module and is available as source code under Version 3 or later of the GNU General Public License.
- Published
- 2022
- Full Text
- View/download PDF
29. Using diffraction losses of X-rays in a single crystal for determination of its lattice parameters as well as for monochromator calibration.
- Author
-
Klimova N, Snigireva I, Snigirev A, and Yefanov O
- Abstract
A way has been developed to measure the unit-cell parameters of a single crystal just from an energy scan with X-rays, even when the exact energy of the X-rays is not well defined due to an error in the pitch angle of the monochromator. The precision of this measurement reaches da/a ∼ 1 × 10
-5 . The method is based on the analysis of diffraction losses of the beam, transmitted through a single crystal (the so-called `glitch effect'). This method can be easily applied to any transmissive X-ray optical element made of single crystals (for example, X-ray lenses). The only requirements are the possibility to change the energy of the generated X-ray beam and some intensity monitor to measure the transmitted intensity. The method is agnostic to the error in the monochromator tuning and it can even be used for determination of the absolute pitch (or 2θ) angle of the monochromator. Applying the same method to a crystal with well known lattice parameters allows determination of the exact cell parameters of the monochromator at any energy., (open access.)- Published
- 2022
- Full Text
- View/download PDF
30. Unsupervised learning approaches to characterizing heterogeneous samples using X-ray single-particle imaging.
- Author
-
Zhuang Y, Awel S, Barty A, Bean R, Bielecki J, Bergemann M, Daurer BJ, Ekeberg T, Estillore AD, Fangohr H, Giewekemeyer K, Hunter MS, Karnevskiy M, Kirian RA, Kirkwood H, Kim Y, Koliyadu J, Lange H, Letrun R, Lübke J, Mall A, Michelat T, Morgan AJ, Roth N, Samanta AK, Sato T, Shen Z, Sikorski M, Schulz F, Spence JCH, Vagovic P, Wollweber T, Worbs L, Xavier PL, Yefanov O, Maia FRNC, Horke DA, Küpper J, Loh ND, Mancuso AP, Chapman HN, and Ayyer K
- Abstract
One of the outstanding analytical problems in X-ray single-particle imaging (SPI) is the classification of structural heterogeneity, which is especially difficult given the low signal-to-noise ratios of individual patterns and the fact that even identical objects can yield patterns that vary greatly when orientation is taken into consideration. Proposed here are two methods which explicitly account for this orientation-induced variation and can robustly determine the structural landscape of a sample ensemble. The first, termed common-line principal component analysis (PCA), provides a rough classification which is essentially parameter free and can be run automatically on any SPI dataset. The second method, utilizing variation auto-encoders (VAEs), can generate 3D structures of the objects at any point in the structural landscape. Both these methods are implemented in combination with the noise-tolerant expand-maximize-compress ( EMC ) algorithm and its utility is demonstrated by applying it to an experimental dataset from gold nanoparticles with only a few thousand photons per pattern. Both discrete structural classes and continuous deformations are recovered. These developments diverge from previous approaches of extracting reproducible subsets of patterns from a dataset and open up the possibility of moving beyond the study of homogeneous sample sets to addressing open questions on topics such as nanocrystal growth and dynamics, as well as phase transitions which have not been externally triggered., (© Yulong Zhuang et al. 2022.)
- Published
- 2022
- Full Text
- View/download PDF
31. Pink-beam serial femtosecond crystallography for accurate structure-factor determination at an X-ray free-electron laser.
- Author
-
Nass K, Bacellar C, Cirelli C, Dworkowski F, Gevorkov Y, James D, Johnson PJM, Kekilli D, Knopp G, Martiel I, Ozerov D, Tolstikova A, Vera L, Weinert T, Yefanov O, Standfuss J, Reiche S, and Milne CJ
- Abstract
Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) enables essentially radiation-damage-free macromolecular structure determination using microcrystals that are too small for synchrotron studies. However, SFX experiments often require large amounts of sample in order to collect highly redundant data where some of the many stochastic errors can be averaged out to determine accurate structure-factor amplitudes. In this work, the capability of the Swiss X-ray free-electron laser (SwissFEL) was used to generate large-bandwidth X-ray pulses [Δλ/λ = 2.2% full width at half-maximum (FWHM)], which were applied in SFX with the aim of improving the partiality of Bragg spots and thus decreasing sample consumption while maintaining the data quality. Sensitive data-quality indicators such as anomalous signal from native thaumatin micro-crystals and de novo phasing results were used to quantify the benefits of using pink X-ray pulses to obtain accurate structure-factor amplitudes. Compared with data measured using the same setup but using X-ray pulses with typical quasi-monochromatic XFEL bandwidth (Δλ/λ = 0.17% FWHM), up to fourfold reduction in the number of indexed diffraction patterns required to obtain similar data quality was achieved. This novel approach, pink-beam SFX, facilitates the yet underutilized de novo structure determination of challenging proteins at XFELs, thereby opening the door to more scientific breakthroughs., (© Karol Nass et al. 2021.)
- Published
- 2021
- Full Text
- View/download PDF
32. Data reduction for serial crystallography using a robust peak finder.
- Author
-
Hadian-Jazi M, Sadri A, Barty A, Yefanov O, Galchenkova M, Oberthuer D, Komadina D, Brehm W, Kirkwood H, Mills G, de Wijn R, Letrun R, Kloos M, Vakili M, Gelisio L, Darmanin C, Mancuso AP, Chapman HN, and Abbey B
- Abstract
A peak-finding algorithm for serial crystallography (SX) data analysis based on the principle of 'robust statistics' has been developed. Methods which are statistically robust are generally more insensitive to any departures from model assumptions and are particularly effective when analysing mixtures of probability distributions. For example, these methods enable the discretization of data into a group comprising inliers ( i.e. the background noise) and another group comprising outliers ( i.e. Bragg peaks). Our robust statistics algorithm has two key advantages, which are demonstrated through testing using multiple SX data sets. First, it is relatively insensitive to the exact value of the input parameters and hence requires minimal optimization. This is critical for the algorithm to be able to run unsupervised, allowing for automated selection or 'vetoing' of SX diffraction data. Secondly, the processing of individual diffraction patterns can be easily parallelized. This means that it can analyse data from multiple detector modules simultaneously, making it ideally suited to real-time data processing. These characteristics mean that the robust peak finder (RPF) algorithm will be particularly beneficial for the new class of MHz X-ray free-electron laser sources, which generate large amounts of data in a short period of time., (© Marjan Hadian-Jazi et al. 2021.)
- Published
- 2021
- Full Text
- View/download PDF
33. Observation of substrate diffusion and ligand binding in enzyme crystals using high-repetition-rate mix-and-inject serial crystallography.
- Author
-
Pandey S, Calvey G, Katz AM, Malla TN, Koua FHM, Martin-Garcia JM, Poudyal I, Yang JH, Vakili M, Yefanov O, Zielinski KA, Bajt S, Awel S, Doerner K, Frank M, Gelisio L, Jernigan R, Kirkwood H, Kloos M, Koliyadu J, Mariani V, Miller MD, Mills G, Nelson G, Olmos JL Jr, Sadri A, Sato T, Tolstikova A, Xu W, Ourmazd A, Spence JCH, Schwander P, Barty A, Chapman HN, Fromme P, Mancuso AP, Phillips GN Jr, Bean R, Pollack L, and Schmidt M
- Abstract
Here, we illustrate what happens inside the catalytic cleft of an enzyme when substrate or ligand binds on single-millisecond timescales. The initial phase of the enzymatic cycle is observed with near-atomic resolution using the most advanced X-ray source currently available: the European XFEL (EuXFEL). The high repetition rate of the EuXFEL combined with our mix-and-inject technology enables the initial phase of ceftriaxone binding to the Mycobacterium tuberculosis β-lactamase to be followed using time-resolved crystallography in real time. It is shown how a diffusion coefficient in enzyme crystals can be derived directly from the X-ray data, enabling the determination of ligand and enzyme-ligand concentrations at any position in the crystal volume as a function of time. In addition, the structure of the irreversible inhibitor sulbactam bound to the enzyme at a 66 ms time delay after mixing is described. This demonstrates that the EuXFEL can be used as an important tool for biomedically relevant research., (© Suraj Pandey et al. 2021.)
- Published
- 2021
- Full Text
- View/download PDF
34. X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease.
- Author
-
Günther S, Reinke PYA, Fernández-García Y, Lieske J, Lane TJ, Ginn HM, Koua FHM, Ehrt C, Ewert W, Oberthuer D, Yefanov O, Meier S, Lorenzen K, Krichel B, Kopicki JD, Gelisio L, Brehm W, Dunkel I, Seychell B, Gieseler H, Norton-Baker B, Escudero-Pérez B, Domaracky M, Saouane S, Tolstikova A, White TA, Hänle A, Groessler M, Fleckenstein H, Trost F, Galchenkova M, Gevorkov Y, Li C, Awel S, Peck A, Barthelmess M, Schlünzen F, Lourdu Xavier P, Werner N, Andaleeb H, Ullah N, Falke S, Srinivasan V, França BA, Schwinzer M, Brognaro H, Rogers C, Melo D, Zaitseva-Kinneberg JI, Knoska J, Peña-Murillo GE, Mashhour AR, Hennicke V, Fischer P, Hakanpää J, Meyer J, Gribbon P, Ellinger B, Kuzikov M, Wolf M, Beccari AR, Bourenkov G, von Stetten D, Pompidor G, Bento I, Panneerselvam S, Karpics I, Schneider TR, Garcia-Alai MM, Niebling S, Günther C, Schmidt C, Schubert R, Han H, Boger J, Monteiro DCF, Zhang L, Sun X, Pletzer-Zelgert J, Wollenhaupt J, Feiler CG, Weiss MS, Schulz EC, Mehrabi P, Karničar K, Usenik A, Loboda J, Tidow H, Chari A, Hilgenfeld R, Uetrecht C, Cox R, Zaliani A, Beck T, Rarey M, Günther S, Turk D, Hinrichs W, Chapman HN, Pearson AR, Betzel C, and Meents A
- Subjects
- Animals, Antiviral Agents pharmacology, Chlorocebus aethiops, Crystallography, X-Ray, Drug Evaluation, Preclinical, Protease Inhibitors pharmacology, SARS-CoV-2 drug effects, Vero Cells, Virus Replication drug effects, Allosteric Site, Antiviral Agents chemistry, Catalytic Domain, Coronavirus 3C Proteases antagonists & inhibitors, Coronavirus 3C Proteases chemistry, Drug Development, Protease Inhibitors chemistry, SARS-CoV-2 enzymology
- Abstract
The coronavirus disease (COVID-19) caused by SARS-CoV-2 is creating tremendous human suffering. To date, no effective drug is available to directly treat the disease. In a search for a drug against COVID-19, we have performed a high-throughput x-ray crystallographic screen of two repurposing drug libraries against the SARS-CoV-2 main protease (M
pro ), which is essential for viral replication. In contrast to commonly applied x-ray fragment screening experiments with molecules of low complexity, our screen tested already-approved drugs and drugs in clinical trials. From the three-dimensional protein structures, we identified 37 compounds that bind to Mpro In subsequent cell-based viral reduction assays, one peptidomimetic and six nonpeptidic compounds showed antiviral activity at nontoxic concentrations. We identified two allosteric binding sites representing attractive targets for drug development against SARS-CoV-2., (Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)- Published
- 2021
- Full Text
- View/download PDF
35. Scanning Compton X-ray microscopy.
- Author
-
Villanueva-Perez P, Fleckenstein H, Prasciolu M, Murray KT, Domaracký M, Gregorič K, Mariani V, Gelisio L, Kuhn M, Hannappel J, Yefanov O, Ivanov N, Sarrou I, Pennicard D, Becker J, von Zimmermann M, Gutowski O, Dippel AC, Chapman HN, and Bajt S
- Abstract
X-ray microscopy offers the opportunity to image biological and radiosensitive materials without special sample preparations, bridging optical and electron microscopy capabilities. However, the performance of such microscopes, when imaging radiosensitive samples, is not limited by their intrinsic resolution, but by the radiation damage induced on such samples. Here, we demonstrate a novel, to the best of our knowledge, radio-efficient microscope, scanning Compton X-ray microscopy (SCXM), which uses coherently and incoherently (Compton) scattered photons to minimize the deposited energy per unit of mass for a given imaging signal. We implemented SCXM, using lenses capable of efficiently focusing 60 keV X-ray photons into the sub-micrometer scale, and probe its radio-efficient capabilities. SCXM, when implemented in high-energy diffraction-limited storage rings, e.g., European Synchrotron Radiation Facility Extremely Brilliant Source and PETRA IV, will open the opportunity to explore the nanoscale of unstained, unsectioned, and undamaged radiosensitive materials.
- Published
- 2021
- Full Text
- View/download PDF
36. Synchronous RNA conformational changes trigger ordered phase transitions in crystals.
- Author
-
Ramakrishnan S, Stagno JR, Conrad CE, Ding J, Yu P, Bhandari YR, Lee YT, Pauly G, Yefanov O, Wiedorn MO, Knoska J, Oberthür D, White TA, Barty A, Mariani V, Li C, Brehm W, Heinz WF, Magidson V, Lockett S, Hunter MS, Boutet S, Zatsepin NA, Zuo X, Grant TD, Pandey S, Schmidt M, Spence JCH, Chapman HN, and Wang YX
- Subjects
- Adenine chemistry, Aptamers, Nucleotide chemistry, Crystallography, X-Ray, Microscopy, Atomic Force methods, Microscopy, Polarization methods, Models, Molecular, Time-Lapse Imaging methods, Nucleic Acid Conformation, Phase Transition, RNA chemistry, Riboswitch
- Abstract
Time-resolved studies of biomacromolecular crystals have been limited to systems involving only minute conformational changes within the same lattice. Ligand-induced changes greater than several angstroms, however, are likely to result in solid-solid phase transitions, which require a detailed understanding of the mechanistic interplay between conformational and lattice transitions. Here we report the synchronous behavior of the adenine riboswitch aptamer RNA in crystal during ligand-triggered isothermal phase transitions. Direct visualization using polarized video microscopy and atomic force microscopy shows that the RNA molecules undergo cooperative rearrangements that maintain lattice order, whose cell parameters change distinctly as a function of time. The bulk lattice order throughout the transition is further supported by time-resolved diffraction data from crystals using an X-ray free electron laser. The synchronous molecular rearrangements in crystal provide the physical basis for studying large conformational changes using time-resolved crystallography and micro/nanocrystals.
- Published
- 2021
- Full Text
- View/download PDF
37. C-phycocyanin as a highly attractive model system in protein crystallography: unique crystallization properties and packing-diversity screening.
- Author
-
Sarrou I, Feiler CG, Falke S, Peard N, Yefanov O, and Chapman H
- Subjects
- Crystallography, X-Ray, Models, Molecular, Protein Conformation, Thermosynechococcus chemistry, Bacterial Proteins chemistry, Phycocyanin chemistry
- Abstract
The unique crystallization properties of the antenna protein C-phycocyanin (C-PC) from the thermophilic cyanobacterium Thermosynechococcus elongatus are reported and discussed. C-PC crystallizes in hundreds of significantly different conditions within a broad pH range and in the presence of a wide variety of precipitants and additives. Remarkably, the crystal dimensions vary from a few micrometres, as used in serial crystallography, to several hundred micrometres, with a very diverse crystal morphology. More than 100 unique single-crystal X-ray diffraction data sets were collected from randomly selected crystals and analysed. The addition of small-molecule additives revealed three new crystal packings of C-PC, which are discussed in detail. The high propensity of this protein to crystallize, combined with its natural blue colour and its fluorescence characteristics, make it an excellent candidate as a superior and highly adaptable model system in crystallography. C-PC can be used in technical and methods development approaches for X-ray and neutron diffraction techniques, and as a system for comprehending the fundamental principles of protein crystallography., (open access.)
- Published
- 2021
- Full Text
- View/download PDF
38. Ultrafast structural changes within a photosynthetic reaction centre.
- Author
-
Dods R, Båth P, Morozov D, Gagnér VA, Arnlund D, Luk HL, Kübel J, Maj M, Vallejos A, Wickstrand C, Bosman R, Beyerlein KR, Nelson G, Liang M, Milathianaki D, Robinson J, Harimoorthy R, Berntsen P, Malmerberg E, Johansson L, Andersson R, Carbajo S, Claesson E, Conrad CE, Dahl P, Hammarin G, Hunter MS, Li C, Lisova S, Royant A, Safari C, Sharma A, Williams GJ, Yefanov O, Westenhoff S, Davidsson J, DePonte DP, Boutet S, Barty A, Katona G, Groenhof G, Brändén G, and Neutze R
- Subjects
- Bacteriochlorophylls metabolism, Binding Sites drug effects, Chlorophyll metabolism, Chlorophyll radiation effects, Crystallography, Cytoplasm metabolism, Electron Transport drug effects, Electrons, Hyphomicrobiaceae enzymology, Hyphomicrobiaceae metabolism, Lasers, Models, Molecular, Oxidation-Reduction radiation effects, Pheophytins metabolism, Photosynthetic Reaction Center Complex Proteins radiation effects, Protons, Ubiquinone analogs & derivatives, Ubiquinone metabolism, Vitamin K 2 metabolism, Photosynthetic Reaction Center Complex Proteins chemistry, Photosynthetic Reaction Center Complex Proteins metabolism
- Abstract
Photosynthetic reaction centres harvest the energy content of sunlight by transporting electrons across an energy-transducing biological membrane. Here we use time-resolved serial femtosecond crystallography
1 using an X-ray free-electron laser2 to observe light-induced structural changes in the photosynthetic reaction centre of Blastochloris viridis on a timescale of picoseconds. Structural perturbations first occur at the special pair of chlorophyll molecules of the photosynthetic reaction centre that are photo-oxidized by light. Electron transfer to the menaquinone acceptor on the opposite side of the membrane induces a movement of this cofactor together with lower amplitude protein rearrangements. These observations reveal how proteins use conformational dynamics to stabilize the charge-separation steps of electron-transfer reactions.- Published
- 2021
- Full Text
- View/download PDF
39. Ptychographic X-ray speckle tracking with multi-layer Laue lens systems.
- Author
-
Morgan AJ, Murray KT, Prasciolu M, Fleckenstein H, Yefanov O, Villanueva-Perez P, Mariani V, Domaracky M, Kuhn M, Aplin S, Mohacsi I, Messerschmidt M, Stachnik K, Du Y, Burkhart A, Meents A, Nazaretski E, Yan H, Huang X, Chu YS, Chapman HN, and Bajt S
- Abstract
The ever-increasing brightness of synchrotron radiation sources demands improved X-ray optics to utilize their capability for imaging and probing biological cells, nano-devices and functional matter on the nanometre scale with chemical sensitivity. Hard X-rays are ideal for high-resolution imaging and spectroscopic applications owing to their short wavelength, high penetrating power and chemical sensitivity. The penetrating power that makes X-rays useful for imaging also makes focusing them technologically challenging. Recent developments in layer deposition techniques have enabled the fabrication of a series of highly focusing X-ray lenses, known as wedged multi-layer Laue lenses. Improvements to the lens design and fabrication technique demand an accurate, robust, in situ and at-wavelength characterization method. To this end, a modified form of the speckle tracking wavefront metrology method has been developed. The ptychographic X-ray speckle tracking method is capable of operating with highly divergent wavefields. A useful by-product of this method is that it also provides high-resolution and aberration-free projection images of extended specimens. Three separate experiments using this method are reported, where the ray path angles have been resolved to within 4 nrad with an imaging resolution of 45 nm (full period). This method does not require a high degree of coherence, making it suitable for laboratory-based X-ray sources. Likewise, it is robust to errors in the registered sample positions, making it suitable for X-ray free-electron laser facilities, where beam-pointing fluctuations can be problematic for wavefront metrology., (© Andrew J. Morgan et al. 2020.)
- Published
- 2020
- Full Text
- View/download PDF
40. pinkIndexer - a universal indexer for pink-beam X-ray and electron diffraction snapshots.
- Author
-
Gevorkov Y, Barty A, Brehm W, White TA, Tolstikova A, Wiedorn MO, Meents A, Grigat RR, Chapman HN, and Yefanov O
- Abstract
A crystallographic indexing algorithm, pinkIndexer, is presented for the analysis of snapshot diffraction patterns. It can be used in a variety of contexts including measurements made with a monochromatic radiation source, a polychromatic source or with radiation of very short wavelength. As such, the algorithm is particularly suited to automated data processing for two emerging measurement techniques for macromolecular structure determination: serial pink-beam X-ray crystallography and serial electron crystallography, which until now lacked reliable programs for analyzing many individual diffraction patterns from crystals of uncorrelated orientation. The algorithm requires approximate knowledge of the unit-cell parameters of the crystal, but not the wavelengths associated with each Bragg spot. The use of pinkIndexer is demonstrated by obtaining 1005 lattices from a published pink-beam serial crystallography data set that had previously yielded 140 indexed lattices. Additionally, in tests on experimental serial crystallography diffraction data recorded with quasi-monochromatic X-rays and with electrons the algorithm indexed more patterns than other programs tested., (open access.)
- Published
- 2020
- Full Text
- View/download PDF
41. Serial protein crystallography in an electron microscope.
- Author
-
Bücker R, Hogan-Lamarre P, Mehrabi P, Schulz EC, Bultema LA, Gevorkov Y, Brehm W, Yefanov O, Oberthür D, Kassier GH, and Dwayne Miller RJ
- Subjects
- Microscopy, Electron, Scanning Transmission, Models, Molecular, Muramidase chemistry, Muramidase ultrastructure, Nanoparticles chemistry, Nanoparticles ultrastructure, Occlusion Body Matrix Proteins chemistry, Occlusion Body Matrix Proteins ultrastructure, Particle Size, Protein Conformation, Proteins ultrastructure, Crystallography methods, Proteins chemistry
- Abstract
Serial X-ray crystallography at free-electron lasers allows to solve biomolecular structures from sub-micron-sized crystals. However, beam time at these facilities is scarce, and involved sample delivery techniques are required. On the other hand, rotation electron diffraction (MicroED) has shown great potential as an alternative means for protein nano-crystallography. Here, we present a method for serial electron diffraction of protein nanocrystals combining the benefits of both approaches. In a scanning transmission electron microscope, crystals randomly dispersed on a sample grid are automatically mapped, and a diffraction pattern at fixed orientation is recorded from each at a high acquisition rate. Dose fractionation ensures minimal radiation damage effects. We demonstrate the method by solving the structure of granulovirus occlusion bodies and lysozyme to resolutions of 1.55 Å and 1.80 Å, respectively. Our method promises to provide rapid structure determination for many classes of materials with minimal sample consumption, using readily available instrumentation.
- Published
- 2020
- Full Text
- View/download PDF
42. Ultracompact 3D microfluidics for time-resolved structural biology.
- Author
-
Knoška J, Adriano L, Awel S, Beyerlein KR, Yefanov O, Oberthuer D, Peña Murillo GE, Roth N, Sarrou I, Villanueva-Perez P, Wiedorn MO, Wilde F, Bajt S, Chapman HN, and Heymann M
- Subjects
- Heme chemistry, Hemoglobins chemistry, Humans, Lasers, Microfluidics methods, Synthetic Biology methods, X-Ray Microtomography, Microfluidics instrumentation, Printing, Three-Dimensional instrumentation, Synthetic Biology instrumentation
- Abstract
To advance microfluidic integration, we present the use of two-photon additive manufacturing to fold 2D channel layouts into compact free-form 3D fluidic circuits with nanometer precision. We demonstrate this technique by tailoring microfluidic nozzles and mixers for time-resolved structural biology at X-ray free-electron lasers (XFELs). We achieve submicron jets with speeds exceeding 160 m s
-1 , which allows for the use of megahertz XFEL repetition rates. By integrating an additional orifice, we implement a low consumption flow-focusing nozzle, which is validated by solving a hemoglobin structure. Also, aberration-free in operando X-ray microtomography is introduced to study efficient equivolumetric millisecond mixing in channels with 3D features integrated into the nozzle. Such devices can be printed in minutes by locally adjusting print resolution during fabrication. This technology has the potential to permit ultracompact devices and performance improvements through 3D flow optimization in all fields of microfluidic engineering.- Published
- 2020
- Full Text
- View/download PDF
43. Time-resolved serial femtosecond crystallography at the European XFEL.
- Author
-
Pandey S, Bean R, Sato T, Poudyal I, Bielecki J, Cruz Villarreal J, Yefanov O, Mariani V, White TA, Kupitz C, Hunter M, Abdellatif MH, Bajt S, Bondar V, Echelmeier A, Doppler D, Emons M, Frank M, Fromme R, Gevorkov Y, Giovanetti G, Jiang M, Kim D, Kim Y, Kirkwood H, Klimovskaia A, Knoska J, Koua FHM, Letrun R, Lisova S, Maia L, Mazalova V, Meza D, Michelat T, Ourmazd A, Palmer G, Ramilli M, Schubert R, Schwander P, Silenzi A, Sztuk-Dambietz J, Tolstikova A, Chapman HN, Ros A, Barty A, Fromme P, Mancuso AP, and Schmidt M
- Subjects
- Light, Models, Molecular, Time Factors, Bacterial Proteins chemistry, Crystallography, X-Ray instrumentation, Crystallography, X-Ray methods, Photoreceptors, Microbial chemistry, Protein Conformation
- Abstract
The European XFEL (EuXFEL) is a 3.4-km long X-ray source, which produces femtosecond, ultrabrilliant and spatially coherent X-ray pulses at megahertz (MHz) repetition rates. This X-ray source has been designed to enable the observation of ultrafast processes with near-atomic spatial resolution. Time-resolved crystallographic investigations on biological macromolecules belong to an important class of experiments that explore fundamental and functional structural displacements in these molecules. Due to the unusual MHz X-ray pulse structure at the EuXFEL, these experiments are challenging. Here, we demonstrate how a biological reaction can be followed on ultrafast timescales at the EuXFEL. We investigate the picosecond time range in the photocycle of photoactive yellow protein (PYP) with MHz X-ray pulse rates. We show that difference electron density maps of excellent quality can be obtained. The results connect the previously explored femtosecond PYP dynamics to timescales accessible at synchrotrons. This opens the door to a wide range of time-resolved studies at the EuXFEL.
- Published
- 2020
- Full Text
- View/download PDF
44. Evaluation of serial crystallographic structure determination within megahertz pulse trains.
- Author
-
Yefanov O, Oberthür D, Bean R, Wiedorn MO, Knoska J, Pena G, Awel S, Gumprecht L, Domaracky M, Sarrou I, Lourdu Xavier P, Metz M, Bajt S, Mariani V, Gevorkov Y, White TA, Tolstikova A, Villanueva-Perez P, Seuring C, Aplin S, Estillore AD, Küpper J, Klyuev A, Kuhn M, Laurus T, Graafsma H, Monteiro DCF, Trebbin M, Maia FRNC, Cruz-Mazo F, Gañán-Calvo AM, Heymann M, Darmanin C, Abbey B, Schmidt M, Fromme P, Giewekemeyer K, Sikorski M, Graceffa R, Vagovic P, Kluyver T, Bergemann M, Fangohr H, Sztuk-Dambietz J, Hauf S, Raab N, Bondar V, Mancuso AP, Chapman H, and Barty A
- Abstract
The new European X-ray Free-Electron Laser (European XFEL) is the first X-ray free-electron laser capable of delivering intense X-ray pulses with a megahertz interpulse spacing in a wavelength range suitable for atomic resolution structure determination. An outstanding but crucial question is whether the use of a pulse repetition rate nearly four orders of magnitude higher than previously possible results in unwanted structural changes due to either radiation damage or systematic effects on data quality. Here, separate structures from the first and subsequent pulses in the European XFEL pulse train were determined, showing that there is essentially no difference between structures determined from different pulses under currently available operating conditions at the European XFEL., (© 2019 Author(s).)
- Published
- 2019
- Full Text
- View/download PDF
45. XGANDALF - extended gradient descent algorithm for lattice finding.
- Author
-
Gevorkov Y, Yefanov O, Barty A, White TA, Mariani V, Brehm W, Tolstikova A, Grigat RR, and Chapman HN
- Abstract
Serial crystallography records still diffraction patterns from single, randomly oriented crystals, then merges data from hundreds or thousands of them to form a complete data set. To process the data, the diffraction patterns must first be indexed, equivalent to determining the orientation of each crystal. A novel automatic indexing algorithm is presented, which in tests usually gives significantly higher indexing rates than alternative programs currently available for this task. The algorithm does not require prior knowledge of the lattice parameters but can make use of that information if provided, and also allows indexing of diffraction patterns generated by several crystals in the beam. Cases with a small number of Bragg spots per pattern appear to particularly benefit from the new approach. The algorithm has been implemented and optimized for fast execution, making it suitable for real-time feedback during serial crystallography experiments. It is implemented in an open-source C++ library and distributed under the LGPLv3 licence. An interface to it has been added to the CrystFEL software suite., (open access.)
- Published
- 2019
- Full Text
- View/download PDF
46. On-chip crystallization for serial crystallography experiments and on-chip ligand-binding studies.
- Author
-
Lieske J, Cerv M, Kreida S, Komadina D, Fischer J, Barthelmess M, Fischer P, Pakendorf T, Yefanov O, Mariani V, Seine T, Ross BH, Crosas E, Lorbeer O, Burkhardt A, Lane TJ, Guenther S, Bergtholdt J, Schoen S, Törnroth-Horsefield S, Chapman HN, and Meents A
- Abstract
Efficient and reliable sample delivery has remained one of the bottlenecks for serial crystallography experiments. Compared with other methods, fixed-target sample delivery offers the advantage of significantly reduced sample consumption and shorter data collection times owing to higher hit rates. Here, a new method of on-chip crystallization is reported which allows the efficient and reproducible growth of large numbers of protein crystals directly on micro-patterned silicon chips for in-situ serial crystallography experiments. Crystals are grown by sitting-drop vapor diffusion and previously established crystallization conditions can be directly applied. By reducing the number of crystal-handling steps, the method is particularly well suited for sensitive crystal systems. Excessive mother liquor can be efficiently removed from the crystals by blotting, and no sealing of the fixed-target sample holders is required to prevent the crystals from dehydrating. As a consequence, 'naked' crystals are obtained on the chip, resulting in very low background scattering levels and making the crystals highly accessible for external manipulation such as the application of ligand solutions. Serial diffraction experiments carried out at cryogenic temperatures at a synchrotron and at room temperature at an X-ray free-electron laser yielded high-quality X-ray structures of the human membrane protein aquaporin 2 and two new ligand-bound structures of thermolysin and the human kinase DRAK2. The results highlight the applicability of the method for future high-throughput on-chip screening of pharmaceutical compounds.
- Published
- 2019
- Full Text
- View/download PDF
47. X-ray Emission Spectroscopy at X-ray Free Electron Lasers: Limits to Observation of the Classical Spectroscopic Response for Electronic Structure Analysis.
- Author
-
Jensen SC, Sullivan B, Hartzler DA, Aguilar JM, Awel S, Bajt S, Basu S, Bean R, Chapman HN, Conrad C, Frank M, Fromme R, Martin-Garcia JM, Grant TD, Heymann M, Hunter MS, Ketawala G, Kirian RA, Knoska J, Kupitz C, Li X, Liang M, Lisova S, Mariani V, Mazalova V, Messerschmidt M, Moran M, Nelson G, Oberthür D, Schaffer A, Sierra RG, Vaughn N, Weierstall U, Wiedorn MO, Xavier PL, Yang JH, Yefanov O, Zatsepin NA, Aquila A, Fromme P, Boutet S, Seidler GT, and Pushkar Y
- Abstract
X-ray free electron lasers (XFELs) provide ultrashort intense X-ray pulses suitable to probe electron dynamics but can also induce a multitude of nonlinear excitation processes. These affect spectroscopic measurements and interpretation, particularly for upcoming brighter XFELs. Here we identify and discuss the limits to observing classical spectroscopy, where only one photon is absorbed per atom for a Mn
2+ in a light element (O, C, H) environment. X-ray emission spectroscopy (XES) with different incident photon energies, pulse intensities, and pulse durations is presented. A rate equation model based on sequential ionization and relaxation events is used to calculate populations of multiply ionized states during a single pulse and to explain the observed X-ray induced spectral lines shifts. This model provides easy estimation of spectral shifts, which is essential for experimental designs at XFELs and illustrates that shorter X-ray pulses will not overcome sequential ionization but can reduce electron cascade effects.- Published
- 2019
- Full Text
- View/download PDF
48. Ab initio phasing of the diffraction of crystals with translational disorder.
- Author
-
Morgan AJ, Ayyer K, Barty A, Chen JPJ, Ekeberg T, Oberthuer D, White TA, Yefanov O, and Chapman HN
- Subjects
- Models, Chemical, Models, Molecular, Protein Conformation, Algorithms, Crystallography, X-Ray methods, Proteins chemistry
- Abstract
To date X-ray protein crystallography is the most successful technique available for the determination of high-resolution 3D structures of biological molecules and their complexes. In X-ray protein crystallography the structure of a protein is refined against the set of observed Bragg reflections from a protein crystal. The resolution of the refined protein structure is limited by the highest angle at which Bragg reflections can be observed. In addition, the Bragg reflections alone are typically insufficient (by a factor of two) to determine the structure ab initio, and so prior information is required. Crystals formed from an imperfect packing of the protein molecules may also exhibit continuous diffraction between and beyond these Bragg reflections. When this is due to random displacements of the molecules from each crystal lattice site, the continuous diffraction provides the necessary information to determine the protein structure without prior knowledge, to a resolution that is not limited by the angular extent of the observed Bragg reflections but instead by that of the diffraction as a whole. This article presents an iterative projection algorithm that simultaneously uses the continuous diffraction as well as the Bragg reflections for the determination of protein structures. The viability of this method is demonstrated on simulated crystal diffraction., (open access.)
- Published
- 2019
- Full Text
- View/download PDF
49. Megahertz serial crystallography.
- Author
-
Wiedorn MO, Oberthür D, Bean R, Schubert R, Werner N, Abbey B, Aepfelbacher M, Adriano L, Allahgholi A, Al-Qudami N, Andreasson J, Aplin S, Awel S, Ayyer K, Bajt S, Barák I, Bari S, Bielecki J, Botha S, Boukhelef D, Brehm W, Brockhauser S, Cheviakov I, Coleman MA, Cruz-Mazo F, Danilevski C, Darmanin C, Doak RB, Domaracky M, Dörner K, Du Y, Fangohr H, Fleckenstein H, Frank M, Fromme P, Gañán-Calvo AM, Gevorkov Y, Giewekemeyer K, Ginn HM, Graafsma H, Graceffa R, Greiffenberg D, Gumprecht L, Göttlicher P, Hajdu J, Hauf S, Heymann M, Holmes S, Horke DA, Hunter MS, Imlau S, Kaukher A, Kim Y, Klyuev A, Knoška J, Kobe B, Kuhn M, Kupitz C, Küpper J, Lahey-Rudolph JM, Laurus T, Le Cong K, Letrun R, Xavier PL, Maia L, Maia FRNC, Mariani V, Messerschmidt M, Metz M, Mezza D, Michelat T, Mills G, Monteiro DCF, Morgan A, Mühlig K, Munke A, Münnich A, Nette J, Nugent KA, Nuguid T, Orville AM, Pandey S, Pena G, Villanueva-Perez P, Poehlsen J, Previtali G, Redecke L, Riekehr WM, Rohde H, Round A, Safenreiter T, Sarrou I, Sato T, Schmidt M, Schmitt B, Schönherr R, Schulz J, Sellberg JA, Seibert MM, Seuring C, Shelby ML, Shoeman RL, Sikorski M, Silenzi A, Stan CA, Shi X, Stern S, Sztuk-Dambietz J, Szuba J, Tolstikova A, Trebbin M, Trunk U, Vagovic P, Ve T, Weinhausen B, White TA, Wrona K, Xu C, Yefanov O, Zatsepin N, Zhang J, Perbandt M, Mancuso AP, Betzel C, Chapman H, and Barty A
- Abstract
The new European X-ray Free-Electron Laser is the first X-ray free-electron laser capable of delivering X-ray pulses with a megahertz inter-pulse spacing, more than four orders of magnitude higher than previously possible. However, to date, it has been unclear whether it would indeed be possible to measure high-quality diffraction data at megahertz pulse repetition rates. Here, we show that high-quality structures can indeed be obtained using currently available operating conditions at the European XFEL. We present two complete data sets, one from the well-known model system lysozyme and the other from a so far unknown complex of a β-lactamase from K. pneumoniae involved in antibiotic resistance. This result opens up megahertz serial femtosecond crystallography (SFX) as a tool for reliable structure determination, substrate screening and the efficient measurement of the evolution and dynamics of molecular structures using megahertz repetition rate pulses available at this new class of X-ray laser source.
- Published
- 2018
- Full Text
- View/download PDF
50. Rapid sample delivery for megahertz serial crystallography at X-ray FELs.
- Author
-
Wiedorn MO, Awel S, Morgan AJ, Ayyer K, Gevorkov Y, Fleckenstein H, Roth N, Adriano L, Bean R, Beyerlein KR, Chen J, Coe J, Cruz-Mazo F, Ekeberg T, Graceffa R, Heymann M, Horke DA, Knoška J, Mariani V, Nazari R, Oberthür D, Samanta AK, Sierra RG, Stan CA, Yefanov O, Rompotis D, Correa J, Erk B, Treusch R, Schulz J, Hogue BG, Gañán-Calvo AM, Fromme P, Küpper J, Rode AV, Bajt S, Kirian RA, and Chapman HN
- Abstract
Liquid microjets are a common means of delivering protein crystals to the focus of X-ray free-electron lasers (FELs) for serial femtosecond crystallography measurements. The high X-ray intensity in the focus initiates an explosion of the microjet and sample. With the advent of X-ray FELs with megahertz rates, the typical velocities of these jets must be increased significantly in order to replenish the damaged material in time for the subsequent measurement with the next X-ray pulse. This work reports the results of a megahertz serial diffraction experiment at the FLASH FEL facility using 4.3 nm radiation. The operation of gas-dynamic nozzles that produce liquid microjets with velocities greater than 80 m s
-1 was demonstrated. Furthermore, this article provides optical images of X-ray-induced explosions together with Bragg diffraction from protein microcrystals exposed to trains of X-ray pulses repeating at rates of up to 4.5 MHz. The results indicate the feasibility for megahertz serial crystallography measurements with hard X-rays and give guidance for the design of such experiments.- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.