27 results on '"O D S Demangeon"'
Search Results
2. A hot mini-Neptune in the radius valley orbiting solar analogue HD 110113
- Author
-
H P Osborn, D J Armstrong, V Adibekyan, K A Collins, E Delgado-Mena, S B Howell, C Hellier, G W King, J Lillo-Box, L D Nielsen, J F Otegi, N C Santos, C Ziegler, D R Anderson, C Briceño, C Burke, D Bayliss, D Barrado, E M Bryant, D J A Brown, S C C Barros, F Bouchy, D A Caldwell, D M Conti, R F Díaz, D Dragomir, M Deleuil, O D S Demangeon, C Dorn, T Daylan, P Figueira, R Helled, S Hoyer, J M Jenkins, E L N Jensen, D W Latham, N Law, D R Louie, A W Mann, A Osborn, D L Pollacco, D R Rodriguez, B V Rackham, G Ricker, N J Scott, S G Sousa, S Seager, K G Stassun, J C Smith, P Strøm, S Udry, J Villaseñor, R Vanderspek, R West, P J Wheatley, and J N Winn
- Published
- 2021
- Full Text
- View/download PDF
3. Mass determinations of the three mini-Neptunes transiting TOI-125
- Author
-
L D Nielsen, D Gandolfi, D J Armstrong, J S Jenkins, M Fridlund, N C Santos, F Dai, V Adibekyan, R Luque, J H Steffen, M Esposito, F Meru, S Sabotta, E Bolmont, D Kossakowski, J F Otegi, F Murgas, M Stalport, F Rodler, M R Díaz, N T Kurtovic, G Ricker, R Vanderspek, D W Latham, S Seager, J N Winn, J M Jenkins, R Allart, J M. Almenara, D Barrado, S C C Barros, D Bayliss, Z M Berdiñas, I Boisse, F Bouchy, P Boyd, D J A Brown, E M Bryant, C Burke, W D Cochran, B F Cooke, O D S Demangeon, R F Díaz, J Dittman, C Dorn, X Dumusque, R A García, L González-Cuesta, S Grziwa, I Georgieva, N Guerrero, A P Hatzes, R Helled, C E Henze, S Hojjatpanah, J Korth, K W F Lam, J Lillo-Box, T A Lopez, J Livingston, S Mathur, O Mousis, N Narita, H P Osborn, E Palle, P A Peña Rojas, C M Persson, S N Quinn, H Rauer, S Redfield, A Santerne, L A dos Santos, J V Seidel, S G Sousa, E B Ting, M Turbet, S Udry, A Vanderburg, V Van Eylen, J I Vines, P J Wheatley, and P A Wilson
- Published
- 2020
- Full Text
- View/download PDF
4. Mass Determinations of the Three Mini-Neptunes Transiting TOI-125
- Author
-
L D Nielsen, D. Gandolfi, D J Armstrong, James Jenkins, M Fridlund, N C Santos, F Dai, V Adibekyan, R Luque, J H Steffen, M Esposito, F Meru, S Sabotta, E Bolmont, D Kossakowski, J F Otegi, F Murgas, M Stalport, F Rodler, M R Díaz, N T Kurtovic, G Ricker, R Vanderspek, D W Latham, S Seager, J N Winn, J M Jenkins, R Allart, J M. Almenara, D Barrado, S C C Barros, D Bayliss, Z M Berdiñas, I Boisse, F Bouchy, P Boyd, D J A Brown, E M Bryant, C Burke, W D Cochran, B F Cooke, O D S Demangeon, R F Díaz, J Dittman, C Dorn, X Dumusque, R A García, L González-Cuesta, S Grziwa, I Georgieva, N Guerrero, A P Hatzes, R Helled, C E Henze, S Hojjatpanah, J Korth, K W F Lam, J Lillo-Box, T A Lopez, J Livingston, S Mathur, O Mousis, N Narita, H P Osborn, E Palle, P A Peña Rojas, C M Persson, S N Quinn, H Rauer, S Redfield, A Santerne, L A dos Santos, J V Seidel, S G Sousa, E B Ting, M Turbet, S Udry, A Vanderburg, V Van Eylen, J I Vines, P J Wheatley, and P A Wilson
- Subjects
Astrophysics - Abstract
The Transiting Exoplanet Survey Satellite, TESS, is currently carrying out an all-sky search for small planets transiting bright stars. In the first year of the TESS survey, a steady progress was made in achieving the mission’s primary science goal of establishing bulk densities for 50 planets smaller than Neptune. During that year, the TESS’s observations were focused on the southern ecliptic hemisphere, resulting in the discovery of three mini-Neptunes orbiting the star TOI-125, a V = 11.0 K0 dwarf. We present intensive HARPS radial velocity observations, yielding precise mass measurements for TOI-125b, TOI-125c, and TOI-125d. TOI-125b has an orbital period of 4.65 d, a radius of 2.726 ± 0.075 R(E), a mass of 9.50 ± 0.88 M(E), and is near the 2:1 mean motion resonance with TOI-125c at 9.15 d. TOI-125c has a similar radius of 2.759 ± 0.10 R(E) and a mass of 6.63 ± 0.99 M(E), being the puffiest of the three planets. TOI-125d has an orbital period of 19.98 d and a radius of 2.93 ± 0.17 R(E) and mass 13.6 ± 1.2 M(E). For TOI-125b and d, we find unusual high eccentricities of 0.19 ± 0.04 and 0.17(sup +0.08, sub −0.06), respectively. Our analysis also provides upper mass limits for the two low-SNR planet candidates in the system; for TOI-125.04 (R(P) = 1.36 R(E), P = 0.53 d), we find a 2σ upper mass limit of 1.6 M(E), whereas TOI-125.05 (R(P) = 4.2(sup +2.4, sub −1.4 R(E), P = 13.28 d) is unlikely a viable planet candidate with an upper mass limit of 2.7 M(E). We discuss the internal structure of the three confirmed planets, as well as dynamical stability and system architecture for this intriguing exoplanet system.
- Published
- 2020
- Full Text
- View/download PDF
5. The EBLM project – IX. Five fully convective M-dwarfs, precisely measured with CHEOPS and TESS light curves
- Author
-
D Sebastian, M I Swayne, P F L Maxted, A H M J Triaud, S G Sousa, G Olofsson, M Beck, N Billot, S Hoyer, S Gill, N Heidari, D V Martin, C M Persson, M R Standing, Y Alibert, R Alonso, G Anglada, J Asquier, T Bárczy, D Barrado, S C C Barros, M P Battley, W Baumjohann, T Beck, W Benz, M Bergomi, I Boisse, X Bonfils, A Brandeker, C Broeg, J Cabrera, S Charnoz, A Collier Cameron, Sz Csizmadia, M B Davies, M Deleuil, L Delrez, O D S Demangeon, B-O Demory, G Dransfield, D Ehrenreich, A Erikson, A Fortier, L Fossati, M Fridlund, D Gandolfi, M Gillon, M Güdel, J Hasiba, G Hébrard, K Heng, K G Isaak, L L Kiss, E Kopp, V Kunovac, J Laskar, A Lecavelier des Etangs, M Lendl, C Lovis, D Magrin, J McCormac, N J Miller, V Nascimbeni, R Ottensamer, I Pagano, E Pallé, F A Pepe, G Peter, G Piotto, D Pollacco, D Queloz, R Ragazzoni, N Rando, H Rauer, I Ribas, S Lalitha, A Santerne, N C Santos, G Scandariato, D Ségransan, A E Simon, A M S Smith, M Steller, Gy M Szabó, N Thomas, S Udry, V Van Grootel, N A Walton, Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Institut de Physique du Globe de Paris (IPGP (UMR_7154)), Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Science & Technology Facilities Council, University of St Andrews. School of Physics and Astronomy, and University of St Andrews. St Andrews Centre for Exoplanet Science
- Subjects
stars fundamental parameters ,530 Physics ,FOS: Physical sciences ,techniques spectroscopic ,610 Medicine & health ,000 Computer science, knowledge & systems ,fundamental parameters [Stars] ,spectroscopic [Techniques] ,techniques: photometric ,low-mass [Stars] ,stars: low-mass ,QB460 ,QB Astronomy ,binaries eclipsing ,Solar and Stellar Astrophysics (astro-ph.SR) ,QB600 ,QC ,QB ,Earth and Planetary Astrophysics (astro-ph.EP) ,MCC ,stars low-mass ,520 Astronomy ,eclipsing [Binaries] ,photometric [Techniques] ,binaries: eclipsing ,Astronomy and Astrophysics ,3rd-DAS ,620 Engineering ,techniques photometric ,QC Physics ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,570 Life sciences ,biology ,stars: fundamental parameters ,techniques: spectroscopic ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Eclipsing binaries are important benchmark objects to test and calibrate stellar structure and evolution models. This is especially true for binaries with a fully convective M-dwarf component for which direct measurements of these stars' masses and radii are difficult using other techniques. Within the potential of M-dwarfs to be exoplanet host stars, the accuracy of theoretical predictions of their radius and effective temperature as a function of their mass is an active topic of discussion. Not only the parameters of transiting exoplanets but also the success of future atmospheric characterisation rely on accurate theoretical predictions. We present the analysis of five eclipsing binaries with low-mass stellar companions out of a sub-sample of 23, for which we obtained ultra high-precision light curves using the CHEOPS satellite. The observation of their primary and secondary eclipses are combined with spectroscopic measurements to precisely model the primary parameters and derive the M-dwarfs mass, radius, surface gravity, and effective temperature estimates using the PYCHEOPS data analysis software. Combining these results to the same set of parameters derived from TESS light curves, we find very good agreement (better than 1\% for radius and better than 0.2% for surface gravity). We also analyse the importance of precise orbits from radial velocity measurements and find them to be crucial to derive M-dwarf radii in a regime below 5% accuracy. These results add five valuable data points to the mass-radius diagram of fully-convective M-dwarfs., 19 pages, 12 figures, accepted for publication in MNRAS
- Published
- 2022
6. The KOBE experiment: K-dwarfs Orbited By habitable Exoplanets. Project goals, target selection and stellar characterization
- Author
-
J. Lillo-Box, N. C. Santos, A. Santerne, A. M. Silva, D. Barrado, J. Faria, A. Castro-González, O. Balsalobre-Ruza, M. Morales-Calderón, A. Saavedra, E. Marfil, S. G. Sousa, V. Adibekyan, A. Berihuete, S. C. C. Barros, E. Delgado-Mena, N. Huélamo, M. Deleuil, O. D. S. Demangeon, P. Figueira, S. Grouffal, J. Aceituno, M. Azzaro, G. Bergond, A. Fernández-Martín, D. Galadí, E. Gallego, A. Gardini, S. Góngora, A. Guijarro, I. Hermelo, P. Martín, P. Mínguez, L. M. Montoya, S. Pedraz, J. I. Vico Linares, Laboratoire d'Astrophysique de Marseille (LAM), and Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,planets and satellites: detection ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,Astrophysics - Solar and Stellar Astrophysics ,[SDU]Sciences of the Universe [physics] ,Space and Planetary Science ,stars: late-type ,techniques: radial velocities ,FOS: Physical sciences ,Astronomy and Astrophysics ,planets and satellites: fundamental parameters ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics - Earth and Planetary Astrophysics - Abstract
The detection of habitable worlds is one of humanity's greatest endeavors. So far, astrobiological studies show that one of the most critical components for life development is liquid water. Its chemical properties and its capacity to dissolve and hence transport other substances makes this constituent a key piece in the development of life. As a consequence, looking for life as we know it is directly related to the search for liquid water. For a remote detection of life in distant planetary systems, this means looking for planets in the so-called habitable zone. In this sense, K-dwarf stars are the perfect hosts. Contrary to G-dwarfs, the habitable zone is closer, thus making planet detection easier using transit or radial velocity techniques. Contrary to M-dwarfs, the stellar activity is much smaller, hence having a smaller impact in both the detectability and in the true habitability of the planet. Also, K-dwarfs are the quietest in terms of oscillations, and granulation noise. Despite this, there is a dearth of planets in the habitable zone of K-dwarfs due to a lack of observing programs devoted to this parameter space. In response to a call for Legacy Programs of the Calar Alto observatory, we have started the first dedicated and systematic search for habitable planets around K-dwarfs, the K-dwarfs Orbited By habitable Exoplanets (KOBE). This survey is monitoring the radial velocity of 50 carefully pre-selected K-dwarfs with the CARMENES instrument along 5 semesters with an average of 90 data points per target. Based on planet occurrence rates convolved with our detectability limits, we expect to find $1.68\pm 0.25$ planets per star in the KOBE sample and in half of the sample we expect to find one of those planets within the habitable zone. In this paper, we describe the project motivation, goals and target selection and preliminary stellar characterization., Accepted for publication in A&A. 12 pages, 9 figures, 1 table. Language corrected
- Published
- 2022
7. Optical and near-infrared stellar activity characterization of the early M dwarf Gl 205 with SOPHIE and SPIRou
- Author
-
P. Cortés-Zuleta, I. Boisse, B. Klein, E. Martioli, P. I. Cristofari, A. Antoniadis-Karnavas, J.-F. Donati, X. Delfosse, C. Cadieux, N. Heidari, É. Artigau, S. Bellotti, X. Bonfils, A. Carmona, N. J. Cook, R. F. Díaz, R. Doyon, P. Fouqué, C. Moutou, P. Petit, T. Vandal, L. Acuña, L. Arnold, N. Astudillo-Defru, V. Bourrier, F. Bouchy, R. Cloutier, S. Dalal, M. Deleuil, O. D. S. Demangeon, X. Dumusque, T. Forveille, J. Gomes da Silva, N. Hara, G. Hébrard, S. Hoyer, G. Hussain, F. Kiefer, J. Morin, A. Santerne, N. C. Santos, D. Segransan, M. Stalport, and S. Udry
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,FOS: Physical sciences ,Astronomy and Astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics - Earth and Planetary Astrophysics - Abstract
The stellar activity of M dwarfs is the main limitation for discovering and characterizing exoplanets orbiting them since it induces quasi-periodic RV variations. We aim to characterize the magnetic field and stellar activity of the early, moderately active, M dwarf Gl205 in the optical and nIR domains. We obtained high-precision quasi-simultaneous spectra in the optical and nIR with the SOPHIE spectrograph and SPIRou spectropolarimeter between 2019 and 2022. We computed the RVs from both instruments and the SPIRou Stokes V profiles. We used ZDI to map the large-scale magnetic field over the time span of the observations. We studied the temporal behavior of optical and nIR RVs and activity indicators with the Lomb-Scargle periodogram and a quasi-periodic GP regression. In the nIR, we studied the equivalent width of Al I, Ti I, K I, Fe I, and He I. We modeled the activity-induced RV jitter using a multi-dimensional GP regression with activity indicators as ancillary time series. The optical and nIR RVs have similar scatter but nIR shows a more complex temporal evolution. We observe an evolution of the magnetic field topology from a poloidal dipolar field in 2019 to a dominantly toroidal field in 2022. We measured a stellar rotation period of Prot=34.4$\pm$0.5 d in the longitudinal magnetic field. Using ZDI we measure the amount of latitudinal differential rotation (DR) shearing the stellar surface yielding rotation periods of Peq=32.0$\pm$1.8 d at the stellar equator and Ppol=45.5$\pm$0.3 d at the poles. We observed inconsistencies in the activity indicators' periodicities that could be explained by these DR values. The multi-dimensional GP modeling yields an RMS of the RV residuals down to the noise level of 3 m/s for both instruments, using as ancillary time series H$\alpha$ and the BIS in the optical, and the FWHM in the nIR., Comment: 41 pages, 24 figures. Accepted for publication in A&A. Improved quality of figures and reduced size of Appendix
- Published
- 2023
8. A warm super-Neptune around the G-dwarf star TOI-1710 revealed with TESS, SOPHIE and HARPS-N
- Author
-
P.-C. König, M. Damasso, G. Hébrard, L. Naponiello, P. Cortés-Zuleta, K. Biazzo, N. C. Santos, A. S. Bonomo, A. Lecavelier des Étangs, L. Zeng, S. Hoyer, A. Sozzetti, L. Affer, J. M. Almenara, S. Benatti, A. Bieryla, I. Boisse, X. Bonfils, W. Boschin, A. Carmona, R. Claudi, K. A. Collins, S. Dalal, M. Deleuil, X. Delfosse, O. D. S. Demangeon, S. Desidera, R. F. Díaz, T. Forveille, N. Heidari, G. A. J. Hussain, J. Jenkins, F. Kiefer, G. Lacedelli, D. W. Latham, L. Malavolta, L. Mancini, E. Martioli, G. Micela, P. A. Miles-Páez, C. Moutou, D. Nardiello, V. Nascimbeni, M. Pinamonti, G. Piotto, G. Ricker, R. P. Schwarz, S. Seager, R. G. Stognone, P. A. Strøm, R. Vanderspek, J. Winn, J. Wittrock, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Observatoire de Haute-Provence (OHP), Institut Pythéas (OSU PYTHEAS), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,Settore FIS/05 ,activity ,star: activity ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,spectroscopic ,photometric ,planetary systems ,techniques: photometric ,techniques: spectroscopic ,techniques: radial velocities ,star ,[SDU]Sciences of the Universe [physics] ,Space and Planetary Science ,techniques ,radial velocities ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Galaxy Astrophysics ,Astrophysics - Earth and Planetary Astrophysics - Abstract
We report the discovery and characterization of the transiting extrasolar planet TOI-1710$\:$b. It was first identified as a promising candidate by the Transiting Exoplanet Survey Satellite (TESS). Its planetary nature was then established with SOPHIE and HARPS-N spectroscopic observations via the radial-velocity method. The stellar parameters for the host star are derived from the spectra and a joint Markov chain Monte-Carlo (MCMC) adjustment of the spectral energy distribution and evolutionary tracks of TOI-1710. A joint MCMC analysis of the TESS light curve and the radial-velocity evolution allows us to determine the planetary system properties. From our analysis, TOI-1710$\:$b is found to be a massive warm super-Neptune ($M_{\rm p}=28.3\:\pm\:4.7\:{\rm M}_{\rm Earth}$ and $R_{\rm p}=5.34\:\pm\:0.11\:{\rm R}_{\rm Earth}$) orbiting a G5V dwarf star ($T_{\rm eff}=5665\pm~55\mathrm{K}$) on a nearly circular 24.3-day orbit ($e=0.16\:\pm\:0.08$). The orbital period of this planet is close to the estimated rotation period of its host star $P_{\rm rot}=22.5\pm2.0~\mathrm{days}$ and it has a low Keplerian semi-amplitude $K=6.4\pm1.0~\mathrm{m\:s^{-1}}$; we thus performed additional analyses to show the robustness of the retrieved planetary parameters. With a low bulk density of $1.03\pm0.23~\mathrm{g\:cm^{-3}}$ and orbiting a bright host star ($J=8.3$, $V=9.6$), TOI-1710$\:$b is one of the best targets in this mass-radius range (near the Neptunian desert) for atmospheric characterization via transmission spectroscopy, a key measurement in constraining planet formation and evolutionary models of sub-Jovian planets., 18 pages, 16 figures, 5 tables, A&A in press
- Published
- 2022
9. Characterization of the HD 108236 system with CHEOPS and TESS Confirmation of a fifth transiting planet
- Author
-
S. Hoyer, A. Bonfanti, A. Leleu, L. Acuña, L. M. Serrano, M. Deleuil, A. Bekkelien, C. Broeg, H.-G. Florén, D. Queloz, T. G. Wilson, S. G. Sousa, M. J. Hooton, V. Adibekyan, Y. Alibert, R. Alonso, G. Anglada, J. Asquier, T. Bárczy, D. Barrado, S. C. C. Barros, W. Baumjohann, M. Beck, T. Beck, W. Benz, N. Billot, F. Biondi, X. Bonfils, A. Brandeker, J. Cabrera, S. Charnoz, A. Collier Cameron, Sz. Csizmadia, M. B. Davies, L. Delrez, O. D. S. Demangeon, B.-O. Demory, D. Ehrenreich, A. Erikson, A. Fortier, L. Fossati, M. Fridlund, D. Gandolfi, M. Gillon, M. Güdel, N. Hara, K. Heng, K. G. Isaak, J. M. Jenkins, L. L. Kiss, J. Laskar, D. W. Latham, A. Lecavelier des Etangs, M. Lendl, C. Lovis, A. Luntzer, D. Magrin, P. F. L. Maxted, V. Nascimbeni, G. Olofsson, R. Ottensamer, I. Pagano, E. Pallé, C. M. Persson, G. Peter, D. Piazza, G. Piotto, D. Pollacco, R. Ragazzoni, N. Rando, H. Rauer, I. Ribas, G. R. Ricker, S. Salmon, N. C. Santos, G. Scandariato, S. Seager, D. Ségransan, A. E. Simon, A. M. S. Smith, M. Steller, Gy. M. Szabó, N. Thomas, J. D. Twicken, S. Udry, V. Van Grootel, R. K. Vanderspek, N. A. Walton, K. Westerdorff, J. N. Winn, Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Institut de Physique du Globe de Paris (IPGP (UMR_7154)), Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Science & Technology Facilities Council, University of St Andrews. School of Physics and Astronomy, University of St Andrews. St Andrews Centre for Exoplanet Science, National Science Foundation (US), National Aeronautics and Space Administration (US), Science and Technology Facilities Council (UK), Swiss National Science Foundation, Fundação para a Ciência e a Tecnologia (Portugal), Agencia Estatal de Investigación (España), Ministerio de Ciencia, Innovación y Universidades (España), European Commission, European Research Council, and Generalitat de Catalunya
- Subjects
EXOPLANET ,Planets and satellites - individual - TOI 1233 ,planets and satellites: detection ,530 Physics ,detection [planets and satellites] ,Planets and satellites - fundamental parameters ,FOS: Physical sciences ,SUPER-EARTH ,Astronomy & Astrophysics ,Planets and satellites - individual - HD 108236 ,fundamental parameters [planets and satellites] ,MAGMA OCEAN PLANETS ,SEARCH ,QB Astronomy ,PHOTOMETRY ,planets and satellites: fundamental parameters ,planetary systems ,QB ,individual: HD 108236 [planets and satellites] ,MISSION ,MCC ,Earth and Planetary Astrophysics (astro-ph.EP) ,planets and satellites: individual: HD 108236 ,Science & Technology ,ERROR-CORRECTION ,STAR ,Astrophysics - earth and planetary astrophysics ,520 Astronomy ,planets and satellites: individual: TOI 1233 ,500 Naturwissenschaften und Mathematik::520 Astronomie::520 Astronomie und zugeordnete Wissenschaften ,CONSTRAINTS ,Astronomy and Astrophysics ,3rd-DAS ,620 Engineering ,MODEL ,[SDU]Sciences of the Universe [physics] ,Space and Planetary Science ,Physical Sciences ,570 Life sciences ,biology ,Planets and satellites - detection ,individual: TOI 1233 [planets and satellites] - Abstract
S. Hoyer et al., [Context] The HD 108236 system was first announced with the detection of four small planets based on TESS data. Shortly after, the transit of an additional planet with a period of 29.54 d was serendipitously detected by CHEOPS. In this way, HD 108236 (V = 9.2) became one of the brightest stars known to host five small transiting planets (Rp < 3 R⊕)., [Aims] We characterize the planetary system by using all the data available from CHEOPS and TESS space missions. We use the flexible pointing capabilities of CHEOPS to follow up the transits of all the planets in the system, including the fifth transiting body., [Methods] After updating the host star parameters by using the results from Gaia eDR3, we analyzed 16 and 43 transits observed by CHEOPS and TESS, respectively, to derive the planets’ physical and orbital parameters. We carried out a timing analysis of the transits of each of the planets of HD 108236 to search for the presence of transit timing variations., [Results] We derived improved values for the radius and mass of the host star (R★ = 0.876 ± 0.007 R0 and M★ = 0.867-0.046+0.047M⊙). We confirm the presence of the fifth transiting planet f in a 29.54 d orbit. Thus, the HD 108236 system consists of five planets of Rb = 1.587±0.028, Rc = 2.122±0.025, Rd = 2.629 ± 0.031, Re = 3.008 ± 0.032, and Rf = 1.89 ± 0.04 [R⊕]. We refine the transit ephemeris for each planet and find no significant transit timing variations for planets c, d, and e. For planets b and f, instead, we measure significant deviations on their transit times (up to 22 and 28 min, respectively) with a non-negligible dispersion of 9.6 and 12.6 min in their time residuals., [Conclusions] We confirm the presence of planet f and find no significant evidence for a potential transiting planet in a 10.9 d orbital period, as previously suggested. Further monitoring of the transits, particularly for planets b and f, would confirm the presence of the observed transit time variations. HD 108236 thus becomes a key multi-planetary system for the study of formation and evolution processes. The reported precise results on the planetary radii – together with a profuse RV monitoring – will allow for an accurate characterization of the internal structure of these planets., Funding for the TESS mission is provided by NASA’s Science Mission Directorate. We acknowledge the use of public TESS data from pipelines at the TESS Science Office and at the TESS Science Processing Operations Center. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center for the production of the SPOC data products. This paper includes data collected by the TESS mission that are publicly available from the Mikulski Archive for Space Telescopes (MAST). SH gratefully acknowledges CNES funding through the grant 837319. The authors acknowledge support from the Swiss NCCR PlanetS and the Swiss National Science Foundation. LMS gratefully acknowledges financial support from the CRT foundation under Grant No. 2018.2323 ‘Gaseous or rocky? Unveiling the nature of small worlds’. This project was supported by the CNES. This work was also partially supported by a grant from the Simons Foundation (PI Queloz, grant number 327127). ACC and TW acknowledge support from STFC consolidated grant numbers ST/R000824/1 and ST/V000861/1, and UKSA grant number ST/R003203/1. S.G.S. acknowledges support from FCT through FCT contract nr. CEECIND/00826/2018 and POPH/FSE (EC). YA and MJH acknowledge the support of the Swiss National Fund under grant 200020_172746. We acknowledge support from the Spanish Ministry of Science and Innovation and the European Regional Development Fund through grants ESP2016-80435-C2-1-R, ESP2016-80435-C2-2-R, PGC2018-098153-B-C33, PGC2018-098153-B-C31, ESP2017-87676-C5-1-R, MDM-2017-0737 Unidad de Excelencia Maria de Maeztu-Centro de Astrobiología (INTA-CSIC), as well as the support of the Generalitat de Catalunya/CERCA programme. The MOC activities have been supported by the ESA contract No. 4000124370. S.C.C.B. acknowledges support from FCT through FCT contracts nr. IF/01312/2014/CP1215/CT0004. XB, SC, DG, MF and JL acknowledge their role as ESA-appointed CHEOPS science team members. ABr was supported by the SNSA. ACC acknowledges support from STFC consolidated grant numbers ST/R000824/1 and ST/V000861/1, and UKSA grant number ST/R003203/1. The Belgian participation to CHEOPS has been supported by the Belgian Federal Science Policy Office (BELSPO) in the framework of the PRODEX Program, and by the University of Liège through an ARC grant for Concerted Research Actions financed by the Wallonia-Brussels Federation. L.D. is an F.R.S.-FNRS Postdoctoral Researcher. This work was supported by FCT – Fundação para a Ciência e a Tecnologia through national funds and by FEDER through COMPETE2020 – Programa Operacional Competitividade e Internacionalizacão by these grants: UID/FIS/04434/2019, UIDB/04434/2020, UIDP/04434/2020, PTDC/FIS-AST/32113/2017 & POCI-01-0145-FEDER-032113, PTDC/FIS-AST/28953/2017 & POCI-01-0145-FEDER-028953, PTDC/FIS-AST/28987/2017 & POCI-01-0145-FEDER-028987, O.D.S.D. is supported in the form of work contract (DL 57/2016/CP1364/CT0004) funded by national funds through FCT. B.-O.D. acknowledges support from the Swiss National Science Foundation (PP00P2-190080). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (project FOUR ACES. grant agreement No 724427). It has also been carried out in the frame of the National Centre for Competence in Research PlanetS supported by the Swiss National Science Foundation (SNSF). D.E. acknowledges financial support from the Swiss National Science Foundation for project 200021_200726. M.F. and C.M.P. gratefully acknowledge the support of the Swedish National Space Agency (DNR 65/19, 174/18). D.G. gratefully acknowledges financial support from the CRT foundation under Grant No. 2018.2323 “Gaseousor rocky? Unveiling the nature of small worlds”. M.G. is an F.R.S.-FNRS Senior Research Associate. KGI is the ESA CHEOPS Project Scientist and is responsible for the ESA CHEOPS Guest Observers Programme. She does not participate in, or contribute to, the definition of the Guaranteed Time Programme of the CHEOPS mission through which observations described in this paper have been taken, nor to any aspect of target selection for the programme. This work was granted access to the HPC resources of MesoPSL financed by the Rgion Île-de-France and the project Equip@Meso (reference ANR-10-EQPX-29-01) of the programme Investissements d’Avenir supervised by the Agence Nationale pour la Recherche. M.L. acknowledges support of the Swiss National Science Foundation under grant number PCEFP2_194576. P.M. acknowledges support from STFC research grant number ST/M001040/1. G.Sc., G.Pi., I.Pa., L.Bo., V.Na. and R.Ra. acknowledge the funding support from Italian Space Agency (ASI) regulated by “Accordo ASI-INAF n. 2013-016-R.0 del 9 luglio 2013 e integrazione del 9 luglio 2015 CHEOPS Fasi A/B/C”. I.R.I. acknowledges support from the Spanish Ministry of Science and Innovation and the European Regional Development Fund through grant PGC2018-098153-B-C33, as well as the support of the Generalitat de Catalunya/CERCA programme. S.S. has received funding from the EuropeanResearch Council (ERC) under the European Union’s Horizon 2020 researchand innovation program (grant agreement No 833925, project STAREX). Gy.M.Sz. acknowledges the support of the Hungarian National Research, Development and Innovation Office (NKFIH) grant K-125015, a PRODEX Institute Agreement between the ELTE Eötvös Loránd University and the European Space Agency (ESA-D/SCI-LE-2021-0025), the Lendület LP2018-7/2021 grant of the Hungarian Academy of Science and the support of the city of Szombathely. V.V.G. is an F.R.S-FNRS Research Associate. N.A.W. acknowledges UKSA grant ST/R004838/1.
- Published
- 2022
10. Rossiter-McLaughlin detection of the 9-month period transiting exoplanet HIP41378 d
- Author
-
S. Grouffal, A. Santerne, V. Bourrier, X. Dumusque, A. H. M. J. Triaud, L. Malavolta, V. Kunovac, D. J. Armstrong, O. Attia, S. C. C. Barros, I. Boisse, M. Deleuil, O. D. S. Demangeon, C. D. Dressing, P. Figueira, J. Lillo-Box, A. Mortier, D. Nardiello, N. C. Santos, S. G. Sousa, Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Observatoire Astronomique de l'Université de Genève (ObsGE), Université de Genève = University of Geneva (UNIGE), INAF - Osservatorio Astronomico di Padova (OAPD), Istituto Nazionale di Astrofisica (INAF), Instituto de Astrofísica e Ciências do Espaço (IASTRO), European Southern Observatory (ESO), Departement Physik [ETH Zürich] (D-PHYS), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Cavendish Laboratory, University of Cambridge [UK] (CAM), Faculdade de Ciências [Lisboa], and Universidade de Lisboa = University of Lisbon (ULISBOA)
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,stars: individual: HIP41378 ,Space and Planetary Science ,[PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,techniques: radial velocities ,stars: activity ,FOS: Physical sciences ,Astronomy and Astrophysics ,planetary systems ,techniques: spectroscopic ,Astrophysics - Earth and Planetary Astrophysics - Abstract
The Rossiter-McLaughlin (RM) effect is a method that allows us to measure the orbital obliquity of planets, which is an important constraint that has been used to understand the formation and migration mechanisms of planets, especially for hot Jupiters. In this paper, we present the RM observation of the Neptune-sized long-period transiting planet HIP41378 d. Those observations were obtained using the HARPS-N/TNG and ESPRESSO/ESO-VLT spectrographs over two transit events in 2019 and 2022. The analysis of the data with both the classical RM and the RM Revolutions methods allows us to confirm that the orbital period of this planet is 278 days and that the planet is on a prograde orbit with an obliquity of $\lambda$ = 57.1+26.4-17.9 degrees, a value which is consistent between both methods. HIP41378 d is the longest period planet for which the obliquity was measured so far. We do not detect transit timing variations with a precision of 30 and 100 minutes for the 2019 and 2022 transits, respectively. This result also illustrates that the RM effect provides a solution to follow-up from the ground the transit of small and long-period planets such as those that will be detected by the forthcoming ESA's PLATO mission., Comment: Accepted for publication in A&A
- Published
- 2022
- Full Text
- View/download PDF
11. $\tt{KOBEsim}$: a Bayesian observing strategy algorithm for planet detection in radial velocity blind-search surveys
- Author
-
O. Balsalobre-Ruza, J. Lillo-Box, A. Berihuete, A. M. Silva, N. C. Santos, A. Castro-González, J. P. Faria, N. Huélamo, D. Barrado, O. D. S. Demangeon, E. Marfil, J. Aceituno, V. Adibekyan, M. Azzaro, S. C. C. Barros, G. Bergond, D. Galadí-Enríquez, S. Pedraz, A. Santerne, Ministerio de Ciencia e Innovación (España), European Commission, Fundación 'la Caixa', Laboratoire d'Astrophysique de Marseille (LAM), and Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,[SDU]Sciences of the Universe [physics] ,Space and Planetary Science ,Techniques: radial velocities ,Stars: solar-type ,FOS: Physical sciences ,Astronomy and Astrophysics ,Planets and satellites: detection ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Methods: statistical ,Astrophysics - Earth and Planetary Astrophysics - Abstract
This is an Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited., Context. Ground-based observing time is precious in the era of exoplanet follow-up and characterization, especially in high-precision radial velocity instruments. Blind-search radial velocity surveys thus require a dedicated observational strategy in order to optimize the observing time, which is particularly crucial for the detection of small rocky worlds at large orbital periods. Aims. We developed an algorithm with the purpose of improving the efficiency of radial velocity observations in the context of exoplanet searches, and we applied it to the K-dwarfs Orbited By habitable Exoplanets experiment. Our aim is to accelerate exoplanet confirmations or, alternatively, reject false signals as early as possible in order to save telescope time and increase the efficiency of both blind-search surveys and follow-up of transiting candidates. Methods. Once a minimum initial number of radial velocity datapoints is reached in such a way that a periodicity starts to emerge according to generalized Lomb-Scargle periodograms, that period is targeted with the proposed algorithm, named KOBEsim. The algorithm selects the next observing date that maximizes the Bayesian evidence for this periodicity in comparison with a model with no Keplerian orbits. Results. By means of simulated data, we proved that the algorithm accelerates the exoplanet detection, needing 29-33% fewer observations and a 41–47% smaller time span of the full dataset for low-mass planets (mp < 10 M⊕) in comparison with a conventional monotonic cadence strategy. For 20 M⊕ planets we found a 16% enhancement in the number of datapoints. We also tested KOBEsim with real data for a particular KOBE target and for the confirmed planet HD 102365 b. These two tests demonstrate that the strategy is capable of speeding up the detection by up to a factor of 2 (i.e., reducing both the time span and number of observations by half). © The Authors 2022., O.B.-R., J.L.-B. and A.C.-G. acknowledge financial support received from “la Caixa” Foundation (ID 110000434) and from the European Unions Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 847648, with fellowship code LCF/BQ/PI20/11760023. This research has also been partly funded by the Spanish State Research Agency (AEI) Projects No.PID2019-107061GB-C61 and No. MDM-2017-0737 Unidad de Excelencia “María de Maeztu”- Centro de Astrobiología (INTA-CSIC). This work was supported by Fundação para a Ciência e a Tecnologia (FCT) and Fundo Europeu de Desenvolvimento Regional (FEDER) via COMPETE2020 – Programa Operacional Competitividade e Inter-nacionalização by these grants: UIDB/04434/2020; UIDP/04434/2020; PTDC/FIS-AST/32113/2017 & POCI-01-0145-FEDER-032113; PTDC/FIS-AST/28953/2017 & POCI-01-0145-FEDER-028953. A.M.S. acknowledges support from FCT through the Fellowship 2020.05387.BD. and POCH/FSE (EC). O.D.S.D. is supported in the form of work contract (DL 57/2016/CP1364/CT0004) funded by FCT. J.P.F. is supported in the form of a work contract funded by national funds through FCT with reference DL 57/2016/CP1364/CT0005. A.M.S. acknowledges financial support from the French Programme National de Planétologie (PNP, INSU)., With funding from the Spanish government through the "Severo Ochoa Centre of Excellence" accreditation (CEX2021-001131-S).
- Published
- 2022
- Full Text
- View/download PDF
12. The stable climate of KELT-9b
- Author
-
K. Jones, B. M. Morris, B.-O. Demory, K. Heng, M. J. Hooton, N. Billot, D. Ehrenreich, S. Hoyer, A. E. Simon, M. Lendl, O. D. S. Demangeon, S. G. Sousa, A. Bonfanti, T. G. Wilson, S. Salmon, Sz. Csizmadia, H. Parviainen, G. Bruno, Y. Alibert, R. Alonso, G. Anglada, T. Bárczy, D. Barrado, S. C. C. Barros, W. Baumjohann, M. Beck, T. Beck, W. Benz, X. Bonfils, A. Brandeker, C. Broeg, J. Cabrera, S. Charnoz, A. Collier Cameron, M. B. Davies, M. Deleuil, A. Deline, L. Delrez, A. Erikson, A. Fortier, L. Fossati, M. Fridlund, D. Gandolfi, M. Gillon, M. Güdel, K. G. Isaak, L. L. Kiss, J. Laskar, A. Lecavelier des Etangs, C. Lovis, D. Magrin, P. F. L. Maxted, V. Nascimbeni, G. Olofsson, R. Ottensamer, I. Pagano, E. Pallé, G. Peter, G. Piotto, D. Pollacco, D. Queloz, R. Ragazzoni, N. Rando, F. Ratti, H. Rauer, C. Reimers, I. Ribas, N. C. Santos, G. Scandariato, D. Ségransan, A. M. S. Smith, M. Steller, Gy. M. Szabó, N. Thomas, S. Udry, V. Van Grootel, I. Walter, N. A. Walton, W. Wang Jungo, Science & Technology Facilities Council, University of St Andrews. School of Physics and Astronomy, University of St Andrews. St Andrews Centre for Exoplanet Science, Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Institut de Physique du Globe de Paris (IPGP (UMR_7154)), Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), and Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Instrumentation - photometers ,530 Physics ,Eclipses ,FOS: Physical sciences ,610 Medicine & health ,Planets and satellites - gaseous planets ,techniques: photometric ,QB Astronomy ,QC ,QB ,MCC ,planets and satellites: atmospheres ,Earth and Planetary Astrophysics (astro-ph.EP) ,Astrophysics - earth and planetary astrophysics ,520 Astronomy ,photometric [Techniques] ,500 Naturwissenschaften und Mathematik::520 Astronomie::520 Astronomie und zugeordnete Wissenschaften ,Astronomy and Astrophysics ,3rd-DAS ,620 Engineering ,Planets and satellites - atmospheres ,planets and satellites: gaseous planets ,gaseous planets [Planets and satellites] ,instrumentation: photometers ,photometers [Instrumentation] ,QC Physics ,[SDU]Sciences of the Universe [physics] ,Space and Planetary Science ,Techniques - photometric ,atmospheres [Planets and satellites] ,570 Life sciences ,biology ,Occultations - Abstract
Even among the most irradiated gas giants, so-called ultra-hot Jupiters, KELT-9b stands out as the hottest planet thus far discovered with a dayside temperature of over 4500K. At these extreme irradiation levels, we expect an increase in heat redistribution efficiency and a low Bond albedo owed to an extended atmosphere with molecular hydrogen dissociation occurring on the planetary dayside. We present new photometric observations of the KELT-9 system throughout 4 full orbits and 9 separate occultations obtained by the 30cm space telescope CHEOPS. The CHEOPS bandpass, located at optical wavelengths, captures the peak of the thermal emission spectrum of KELT-9b. In this work we simultaneously analyse CHEOPS phase curves along with public phase curves from TESS and Spitzer to infer joint constraints on the phase curve variation, gravity-darkened transits, and occultation depth in three bandpasses, as well as derive 2D temperature maps of the atmosphere at three different depths. We find a day-night heat redistribution efficiency of $\sim$0.3 which confirms expectations of enhanced energy transfer to the planetary nightside due to dissociation and recombination of molecular hydrogen. We also calculate a Bond albedo consistent with zero. We find no evidence of variability of the brightness temperature of the planet, excluding variability greater than 1% (1$\sigma$)., Comment: 21 pages, 9 figures, accepted for publication in A&A
- Published
- 2022
- Full Text
- View/download PDF
13. The young HD 73583 (TOI-560) planetary system: Two 10-M⊕ mini-Neptunes transiting a 500-Myr-old, bright, and active K dwarf
- Author
-
O Barragán, D J Armstrong, D Gandolfi, I Carleo, A A Vidotto, C Villarreal D’Angelo, A Oklopčić, H Isaacson, D Oddo, K Collins, M Fridlund, S G Sousa, C M Persson, C Hellier, S Howell, A Howard, S Redfield, N Eisner, I Y Georgieva, D Dragomir, D Bayliss, L D Nielsen, B Klein, S Aigrain, M Zhang, J Teske, J D Twicken, J Jenkins, M Esposito, V Van Eylen, F Rodler, V Adibekyan, J Alarcon, D R Anderson, J M Akana Murphy, D Barrado, S C C Barros, B Benneke, F Bouchy, E M Bryant, R P Butler, J Burt, J Cabrera, S Casewell, P Chaturvedi, R Cloutier, W D Cochran, J Crane, I Crossfield, N Crouzet, K I Collins, F Dai, H J Deeg, A Deline, O D S Demangeon, X Dumusque, P Figueira, E Furlan, C Gnilka, M R Goad, E Goffo, F Gutiérrez-Canales, A Hadjigeorghiou, Z Hartman, A P Hatzes, M Harris, B Henderson, T Hirano, S Hojjatpanah, S Hoyer, P Kabáth, J Korth, J Lillo-Box, R Luque, M Marmier, T Močnik, A Muresan, F Murgas, E Nagel, H L M Osborne, A Osborn, H P Osborn, E Palle, M Raimbault, G R Ricker, R A Rubenzahl, C Stockdale, N C Santos, N Scott, R P Schwarz, S Shectman, S Seager, D Ségransan, L M Serrano, M Skarka, A M S Smith, J Šubjak, T G Tan, S Udry, C Watson, P J Wheatley, R West, J N Winn, S X Wang, A Wolfgang, C Ziegler, Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Ministerio de Ciencia e Innovación (España), European Commission, European Research Council, Swiss National Science Foundation, Fondazione Cassa di Risparmio di Torino, Centre National D'Etudes Spatiales (France), and Low Energy Astrophysics (API, FNWI)
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,Stars: activity ,Planets and satellites: individual: HD 73583 (TOI-560) ,radial velocities [Techniques] ,photometric [Techniques] ,FOS: Physical sciences ,Astronomy and Astrophysics ,Q1 ,individual: HD 73583 (TOI-560) [Planets and satellites] ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,Techniques: radial velocities ,activity [Stars] ,Solar and Stellar Astrophysics (astro-ph.SR) ,Techniques: photometric ,QB ,Astrophysics - Earth and Planetary Astrophysics - Abstract
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.--Full list of authors: Barragan, O.; Armstrong, D. J.; Gandolfi, D.; Carleo, I; Vidotto, A. A.; D'Angelo, C. Villarreal; Oklopcic, A.; Isaacson, H.; Oddo, D.; Collins, K.; Fridlund, M.; Sousa, S. G.; Persson, C. M.; Hellier, C.; Howell, S.; Howard, A.; Redfield, S.; Eisner, N.; Georgieva, I. Y.; Dragomir, D.; Bayliss, D.; Nielsen, L. D.; Klein, B.; Aigrain, S.; Zhang, M.; Teske, J.; Twicken, J. D.; Jenkins, J.; Esposito, M.; Van Eylen, V.; Rodler, F.; Adibekyan, V; Alarcon, J.; Anderson, D. R.; Murphy, J. M. Akana; Barrado, D.; Barros, S. C. C.; Benneke, B.; Bouchy, F.; Bryant, E. M.; Butler, R. P.; Burt, J.; Cabrera, J.; Casewell, S.; Chaturvedi, P.; Cloutier, R.; Cochran, W. D.; Crane, J.; Crossfield, I; Crouzet, N.; Collins, K., I; Dai, F.; Deeg, H. J.; Deline, A.; Demangeon, O. D. S.; Dumusque, X.; Figueira, P.; Furlan, E.; Gnilka, C.; Goad, M. R.; Goffo, E.; Gutierrez-Canales, F.; Hadjigeorghiou, A.; Hartman, Z.; Hatzes, A. P.; Harris, M.; Henderson, B.; Hirano, T.; Hojjatpanah, S.; Hoyer, S.; Kabath, P.; Korth, J.; Lillo-Box, J.; Luque, R.; Marmier, M.; Mocnik, T.; Muresan, A.; Murgas, F.; Nagel, E.; Osborne, H. L. M.; Osborn, A.; Osborn, H. P.; Palle, E.; Raimbault, M.; Ricker, G. R.; Rubenzahl, R. A.; Stockdale, C.; Santos, N. C.; Scott, N.; Schwarz, R. P.; Shectman, S.; Seager, S.; Segransan, D.; Serrano, L. M.; Skarka, M.; Smith, A. M. S.; Subjak, J.; Tan, T. G.; Udry, S.; Watson, C.; Wheatley, P. J.; West, R.; Winn, J. N.; Wang, S. X.; Wolfgang, A.; Ziegler, C.; KESPRINT Team., We present the discovery and characterization of two transiting planets observed by TESS in the light curves of the young and bright (V = 9.67) star HD73583 (TOI-560). We perform an intensive spectroscopic and photometric space- and ground-based follow-up in order to confirm and characterize the system. We found that HD73583 is a young (∼500 Myr) active star with a rotational period of 12.08 ± 0.11 d, and a mass and radius of 0.73 ± 0.02 M⊙ and 0.65 ± 0.02 R⊙, respectively. HD 73583 b (Pb = 6.3980420+0.0000067−0.0000062 d) has a mass and radius of 10.2+3.4−3.1 M⊕ and 2.79 ± 0.10 R⊕, respectively, which gives a density of 2.58+0.95−0.81 gcm−3. HD 73583 c (Pc = 18.87974+0.00086−0.00074 d) has a mass and radius of 9.7+1.8−1.7 M⊕ and 2.39+0.10−0.09 R⊕, respectively, which translates to a density of 3.88+0.91−0.80 gcm−3. Both planets are consistent with worlds made of a solid core surrounded by a volatile envelope. Because of their youth and host star brightness, they both are excellent candidates to perform transmission spectroscopy studies. We expect ongoing atmospheric mass-loss for both planets caused by stellar irradiation. We estimate that the detection of evaporating signatures on H and He would be challenging, but doable with present and future instruments. © The Author(s) 2022. Published by Oxford University Press on behalf of Royal Astronomical Society., This work was supported by the KESPRINT collaboration, an international consortium devoted to the characterization and research of exoplanets discovered with space-based missions (http://www.kesprint.science). We thank the referee for their helpful comments and suggestions that improved the quality of this manuscript. We acknowledge the use of public TESS data from pipelines at the TESS Science Office and at the TESS Science Processing Operations Center. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center for the production of the SPOC data products. This work uses observations from the LCOGT network. Part of the LCOGT telescope time was granted by NOIRLab through the Mid-Scale Innovations Program (MSIP). MSIP is funded by NSF. This paper is in part based on data collected under the NGTS project at the ESO La Silla Paranal Observatory. The NGTS facility is operated by the consortium institutes with support from the UK Science and Technology Facilities Council (STFC) projects ST/M001962/1 and ST/S002642/1. This research has used the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. Some of the observations in the paper used the High-Resolution Imaging instrument Zorro obtained under Gemini LLP Proposal Number: GN/S-2021A-LP-105. Zorro was funded by the NASA Exoplanet Exploration Program and built at the NASA Ames Research Center by Steve B. Howell, Nic Scott, Elliott P. Horch, and Emmett Quigley. Zorro was mounted on the Gemini North (and/or South) telescope of the international Gemini Observatory, a program of NSF’s OIR Lab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation on behalf of the Gemini partnership: the National Science Foundation (United States), National Research Council (Canada), Agencia Nacional de Investigación y Desarrollo (Chile), Ministerio de Ciencia, Tecnología e Innovación (Argentina), Ministério da Ciência, Tecnologia, Inovações e Comunicações (Brazil), and Korea Astronomy and Space Science Institute (Republic of Korea). OB, BK, and SA acknowledge that this publication is part of a project that has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement No. 865624). DG and LMS gratefully acknowledge financial support from the Cassa di Risparmio di Torino foundation under Grant No. 2018.2323 ‘Gaseous or rocky? Unveiling the nature of small worlds’. DJA acknowledges support from the STFC via an Ernest Rutherford Fellowship (ST/R00384X/1). APH and ME acknowledges grant HA 3279/12-1 within the DFG Schwerpunkt SPP 1992, ‘Exploring the Diversity of Extrasolar Planets’. JS and PK would like to acknowledge support from MSMT grant LTT-20015. We acknowledges the support by FCT – Fundação para a Ciência e a Tecnologia through national funds and by FEDER through COMPETE2020 – Programa Operacional Competitividade e Internacionalização by these grants: UID/FIS/04434/2019; UIDB/04434/2020; UIDP/04434/2020; PTDC/FIS-AST/32113/2017 & POCI-01-0145-FEDER-032113; PTDC/FISAST /28953/2017 & POCI-01-0145-FEDER-028953. AD acknowledges the financial support of the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (project FOUR ACES; grant agreement No 724427). AD also acknowledges financial support of the the Swiss National Science Foundation (SNSF) through the National Centre for Competence in Research ‘PlanetS’. MF, IYG, JK, and CMP gratefully acknowledge the support of the Swedish National Space Agency (DNR 177/19, 174/18, 2020-00104, 65/19). FGC thanks the Mexican national council for science and technology (CONACYT, CVU-1005374). MS acknowledge financial support of the Inter-transfer grant no LTT-20015. JL-B acknowledges financial support received from ‘la Caixa’ Foundation (ID 100010434) and from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 847648, with fellowship code LCF/BQ/PI20/11760023. AAV acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 817540, ASTROFLOW). JMAM is supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1842400. JMAM acknowledges the LSSTC Data Science Fellowship Program, which is funded by LSSTC, NSF Cybertraining Grant No. 1829740, the Brinson Foundation, and the Moore Foundation; his participation in the program has benefited this work. RAR is supported by the NSF Graduate Research Fellowship, grant No. DGE 1745301. RL acknowledges financial support from the Spanish Ministerio de Ciencia e Innovación, through project PID2019-109522GB-C52, and the Centre of Excellence ‘Severo Ochoa’ award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709). PC acknowledges the generous support from Deutsche Forschungsgemeinschaft (DFG) of the grant CH 2636/1-1. SH acknowledges CNES funding through the grant 837319. VA acknowledges the support from Fundação para a Ciência e Tecnologia (FCT) through Investigador FCT contract nr. IF/00650/2015/CP1273/CT0001. ODSD is supported in the form of work contract (DL 57/2016/CP1364/CT0004) funded by national funds through Fundação para a Ciência e Tecnologia (FCT). AO is supported by an STFC studentship. XD would like to acknowledge the funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement SCORE No 851555). HJD acknowledges support from the Spanish Research Agency of the Ministry of Science and Innovation (AEI-MICINN) under the grant ‘Contribution of the IAC to the PLATO Space Mission’ with reference PID2019-107061GB-C66, DOI: 10.13039/501100011033. DD acknowledges support from the TESS Guest Investigator Program grant 80NSSC19K1727 and NASA Exoplanet Research Program grant 18-2XRP18_2-0136. AO gratefully acknowledges support from the Dutch Research Council NWO Veni grant.
- Published
- 2022
14. TOI-969: a late-K dwarf with a hot mini-Neptune in the desert and an eccentric cold Jupiter
- Author
-
J. Lillo-Box, D. Gandolfi, D. J. Armstrong, K. A. Collins, L. D. Nielsen, R. Luque, J. Korth, S. G. Sousa, S. N. Quinn, L. Acuña, S. B. Howell, G. Morello, C. Hellier, S. Giacalone, S. Hoyer, K. Stassun, E. Palle, A. Aguichine, O. Mousis, V. Adibekyan, T. Azevedo Silva, D. Barrado, M. Deleuil, J. D. Eastman, A. Fukui, F. Hawthorn, J. M. Irwin, J. M. Jenkins, D. W. Latham, A. Muresan, N. Narita, C. M. Persson, A. Santerne, N. C. Santos, A. B. Savel, H. P. Osborn, J. Teske, P. J. Wheatley, J. N. Winn, S. C. C. Barros, R. P. Butler, D. A. Caldwell, D. Charbonneau, R. Cloutier, J. D. Crane, O. D. S. Demangeon, R. F. Díaz, X. Dumusque, M. Esposito, B. Falk, H. Gill, S. Hojjatpanah, L. Kreidberg, I. Mireles, A. Osborn, G. R. Ricker, J. E. Rodriguez, R. P. Schwarz, S. Seager, J. Serrano Bell, S. A. Shectman, A. Shporer, M. Vezie, S. X. Wang, G. Zhou, Ministerio de Ciencia e Innovación (España), Fundación 'la Caixa', European Commission, and European Research Council
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,Space and Planetary Science ,Techniques: radial velocities ,Stars: individual: TOI-969 ,FOS: Physical sciences ,Astronomy and Astrophysics ,Planets and satellites: detection ,Planets and satellites: fundamental parameters ,Techniques: photometric ,Planets and satellites: composition ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Full list of authors: Lillo-Box, J.; Gandolfi, D.; Armstrong, D. J.; Collins, K. A.; Nielsen, L. D.; Luque, R.; Korth, J.; Sousa, S. G.; Quinn, S. N.; Acuña, L.; Howell, S. B.; Morello, G.; Hellier, C.; Giacalone, S.; Hoyer, S.; Stassun, K.; Palle, E.; Aguichine, A.; Mousis, O.; Adibekyan, V.; Azevedo Silva, T.; Barrado, D.; Deleuil, M.; Eastman, J. D.; Fukui, A.; Hawthorn, F.; Irwin, J. M.; Jenkins, J. M.; Latham, D. W.; Muresan, A.; Narita, N.; Persson, C. M.; Santerne, A.; Santos, N. C.; Savel, A. B.; Osborn, H. P.; Teske, J.; Wheatley, P. J.; Winn, J. N.; Barros, S. C. C.; Butler, R. P.; Caldwell, D. A.; Charbonneau, D.; Cloutier, R.; Crane, J. D.; Demangeon, O. D. S.; Díaz, R. F.; Dumusque, X.; Esposito, M.; Falk, B.; Gill, H.; Hojjatpanah, S.; Kreidberg, L.; Mireles, I.; Osborn, A.; Ricker, G. R.; Rodriguez, J. E.; Schwarz, R. P.; Seager, S.; Serrano Bell, J.; Shectman, S. A.; Shporer, A.; Vezie, M.; Wang, S. X.; Zhou, G.--This is an Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited., Context. The current architecture of a given multi-planetary system is a key fingerprint of its past formation and dynamical evolution history. Long-term follow-up observations are key to complete their picture. Aims. In this paper, we focus on the confirmation and characterization of the components of the TOI-969 planetary system, where TESS detected a Neptune-size planet candidate in a very close-in orbit around a late K-dwarf star. Methods. We use a set of precise radial velocity observations from HARPS, PFS, and CORALIE instruments covering more than two years in combination with the TESS photometric light curve and other ground-based follow-up observations to confirm and characterize the components of this planetary system. Results. We find that TOI-969 b is a transiting close-in (Pb ~ 1.82 days) mini-Neptune planet (mb = 9.1−1.0+1.1 M⊕, Rb = 2.765−0.097+0.088 R⊕), placing it on the lower boundary of the hot-Neptune desert (Teq,b = 941 ± 31 K). The analysis of its internal structure shows that TOI-969 b is a volatile-rich planet, suggesting it underwent an inward migration. The radial velocity model also favors the presence of a second massive body in the system, TOI-969 c, with a long period of Pc = 1700−280+290 days, a minimum mass of mc sin ic = 11.3−0.9+1.1 MJup, and a highly eccentric orbit of ec = 0.628−0.036+0.043. Conclusions. The TOI-969 planetary system is one of the few around K-dwarfs known to have this extended configuration going from a very close-in planet to a wide-separation gaseous giant. TOI-969 b has a transmission spectroscopy metric of 93 and orbits a moderately bright (G = 11.3 mag) star, making it an excellent target for atmospheric studies. The architecture of this planetary system can also provide valuable information about migration and formation of planetary systems. © The Authors 2023., J.L-B. acknowledges financial support received from “la Caixa” Foundation (ID 100010434) and from the European Unions Horizon 2020 research and innovation programme under the Marie Slodowska-Curie grant agreement No 847648, with fellowship code LCF/BQ/PI20/11760023. This research has also been partly funded by the Spanish State Research Agency (AEI) Projects No.PID2019-107061GB-C6l and No. MDM-2017-0737 Unidad de Excelencia “Maria de Maeztu” – Centro de Astrobiología (INTA-CSIC). R.L. acknowledges financial support from the Spanish Ministerio de Ciencia e Innovación, through project PID2019-109522GB-C52, and the Centre of Excellence “Severo Ochoa” award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709). DJ.A. acknowledges support from the STFC via an Ernest Rutherford Fellowship (ST/R00384X/1). S.G.S acknowledges the support from FCT through Estimulo FCT contract nr.CEECIND/00826/2018 and POPH/FSE (EC). G.M. has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 895525. S.H. acknowledges CNES funding through the grant 837319. The French group acknowledges financial support from the French Programme National de Planétologie (PNP, INSU). This work is partly financed by the Spanish Mnistry of Economics and Competitiveness through grants PGC2018-098153-B-C31. We acknowledge the support by FCT – Fundação para a Ciência e a Tecnologia through national funds and by FEDER through COMPETE2020 – Programa Operacional Competitividade e Internacionalização by these grants: UID/FIS/04434/2019; UIDB/04434/2020; UIDP/04434/2020; PTDC/FIS-AST/32113/2017 & POCI-01-0145-FEDER-032113; PTDC/FISAST/28953/2017 & POCI-01-0145-FEDER-028953. P.J.W is supported by an STFC consolidated grant (ST/T000406/1). F.H. is funded by an STFC studentship. T.A.S acknowledges support from the Fundação para a Ciência e a Tecnologia (FCT) through the Fellowship PD/BD/150416/2019 and POCH/FSE (EC). C.M.P. acknowledges support from the SNSA (dnr 65/19P). This work has been carried out within the framework of the National Centre of Competence in Research (NCCR) PlanetS supported by the Swiss National Science Foundation. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement SCORE No 851555). O.D.S.D. is supported in the form of work contract (DL 57/2016/CP1364/CT0004) funded by national funds through Fundação para a Ciência e a Tecnologia (FCT). M.E. acknowledges the support of the DFG priority programSPP 1992 “Exploring the Diversity of Extrasolar Planets” (HA 3279/12-1). A.O. is funded by an STFC studentship. J.K. gratefully acknowledge the support of the Swedish National Space Agency (SNSA; DNR 2020-00104). This work makes use of observations from the LCOGT network. This paper is based on observations made with the MuSCAT3 instrument, developed by the Astrobiology Center and under financial supports by ISPS KAKENHI (IP18H05439) and 1ST PRESTO (IPMIPR1775), at Faulkes Telescope North on Maui, HI, operated by the Las Cumbres Observatory. Some of the observations in the paper made use of the High-Resolution Imaging instrument Zorro obtained under Gemini LLP Proposal Number: GN/S-2021A-LP-105. Zorro was funded by the NASA Exoplanet Exploration Program and built at the NASA Ames Research Center by Steve B. Howell, Nie Scott, Elliott P. Horch, and Emmett Quigley. Zorro was mounted on the Gemini North (and/or South) telescope of the international Gemini Observatory, a program of NSF’s OIR Lab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. on behalf of the Gemini partnership: the National Science Foundation (United States), National Research Council (Canada), Agencia Nacional de Investigación y Desarrollo (Chile), Ministerio de Ciencia, Tecnología e Innovación (Argentina), Ministério da Ciência, Tecnologia, Inovações e Comunicações (Brazil), and Korea Astronomy and Space Science Institute (Republic of Korea). We acknowledge the use of public TESS data from pipelines at the TESS Science Office and at the TESS Science Processing Operations Center. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center for the production of the SPOC data products. The MEarth Team gratefully acknowledges funding from the David and Lucile Packard Fellowship for Science and Engineering (awarded to D.C.). This material is based upon work supported by the National Science Foundation under grants AST-0807690, AST-1109468, AST-1004488 (Alan T. Waterman Award), and AST-1616624, and upon work supported by the National Aeronautics and Space Administration under Grant No. 80NSSC18K0476 issued through the XRP Program. This work is made possible by a grant from the John Templeton Foundation. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation. This research made use of Astropy, (a community-developed core Python package for Astronomy, Astropy Collaboration 2013, 2018), SciPy (Virtanen et al. 2020), matplotlib (a Python library for publication quality graphics Hunter 2007), and numpy (Harris et al. 2020). This research has made use of NASA’s Astrophysics Data System Bibliographic Services. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France., With funding from the Spanish government through the "Severo Ochoa Centre of Excellence" accreditation (CEX2021-001131-S).
- Published
- 2022
- Full Text
- View/download PDF
15. Measuring the orbit shrinkage rate of hot Jupiters due to tides
- Author
-
N. M. Rosário, S. C. C. Barros, O. D. S. Demangeon, and N. C. Santos
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,Space and Planetary Science ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics - Earth and Planetary Astrophysics - Abstract
A tidal interaction between a star and a close-in exoplanet leads to shrinkage of the planetary orbit and eventual tidal disruption of the planet. Measuring the shrinkage of the orbits will allow for the tidal quality parameter of the star ($Q'_\star$) to be measured, which is an important parameter to obtain information about stellar interiors. We analyse data from TESS for two targets known to host close-in hot Jupiters, WASP-18 and WASP-19, to measure the current limits on orbital period variation and provide new constrains on $Q'_\star$. We modelled the transit shape using all the available TESS observations and fitted the individual transit times of each transit. We used previously published transit times together with our results to fit two models, a constant period model, and a quadratic orbital decay model, MCMC algorithms. We find period change rates of $(-0.11\pm0.21)\times10^{-10}$ for WASP-18b and $(-0.35\pm0.22)\times10^{-10}$ for WASP-19b and we do not find significant evidence of orbital decay in these targets. We obtain new lower limits for $Q'_\star$ of $(1.42\pm0.34)\times10^7$ in WASP-18 and $(1.26\pm0.10)\times10^6$ in WASP-19, corresponding to upper limits of the orbital decay rate of $-0.45\times10^{-10}$ and $-0.71\times10^{-10}$, respectively, with a 95% confidence level. We compare our results with other relevant targets for tidal decay studies. We find that the orbital decay rate in both WASP-18b and WASP-19b appears to be smaller than the measured orbital decay of WASP-12b. We show that the minimum value of $Q'_\star$ in WASP-18 is two orders of magnitude higher than that of WASP-12, while WASP-19 has a minimum value one order of magnitude higher, which is consistent with other similar targets. Further observations are required to constrain the orbital decay of WASP-18 and WASP-19., 10 pages plus 5-page appendix. To be published in Astronomy and Astrophysics
- Published
- 2022
16. Detection of barium in the atmospheres of the ultra-hot gas giants WASP-76b and WASP-121b
- Author
-
T. Azevedo Silva, O. D. S. Demangeon, N. C. Santos, R. Allart, F. Borsa, E. Cristo, E. Esparza-Borges, J. V. Seidel, E. Palle, S. G. Sousa, H. M. Tabernero, M. R. Zapatero Osorio, S. Cristiani, F. Pepe, R. Rebolo, V. Adibekyan, Y. Alibert, S. C. C. Barros, F. Bouchy, V. Bourrier, G. Lo Curto, P. Di Marcantonio, V. D’Odorico, D. Ehrenreich, P. Figueira, J. I. González Hernández, C. Lovis, C. J. A. P. Martins, A. Mehner, G. Micela, P. Molaro, D. Mounzer, N. J. Nunes, A. Sozzetti, A. Suárez Mascareño, and S. Udry
- Subjects
Space and Planetary Science ,Astronomy and Astrophysics - Abstract
Context. High-resolution spectroscopy studies of ultra-hot Jupiters have been key in our understanding of exoplanet atmospheres. Observing into the atmospheres of these giant planets allows for direct constraints on their atmospheric compositions and dynamics while laying the groundwork for new research regarding their formation and evolution environments. Aims. Two of the most well-studied ultra-hot Jupiters are WASP-76b and WASP-121b, with multiple detected chemical species and strong signatures of their atmospheric dynamics. We take a new look at these two exceptional ultra-hot Jupiters by reanalyzing the transit observations taken with ESPRESSO at the Very Large Telescope and attempt to detect additional species. Methods. To extract the planetary spectra of the two targets, we corrected for the telluric absorption and removed the stellar spectrum contributions. We then exploited new synthetic templates that were specifically designed for ultra-hot Jupiters in combination with the cross-correlation technique to unveil species that remained undetected by previous analyses. Results. We add a novel detection of Ba+ to the known atmospheric compositions of WASP-76b and WASP-121b, the heaviest species detected to date in any exoplanetary atmosphere, with additional new detections of Co and Sr+ and a tentative detection of Ti+ for WASP-121b. We also confirm the presence of Ca+, Cr, Fe, H, Li, Mg, Mn, Na, and V on both WASP-76b and WASP-121b, with the addition of Ca, Fe+, and Ni for the latter. Finally, we also confirm the clear asymmetric absorption feature of Ca+ on WASP-121b, with an excess absorption at the bluer wavelengths and an effective planet radius beyond the Roche lobe. This indicates that the signal may arise from the escape of planetary atmosphere.
- Published
- 2022
17. The atmosphere of HD 209458b seen with ESPRESSO. No detectable planetary absorptions at high resolution
- Author
-
Vardan Adibekyan, M. R. Zapatero Osorio, Yann Alibert, P. Di Marcantonio, François Bouchy, Cristina Martins, N. Casasayas-Barris, Francesco Borsa, Andrea Mehner, Giuseppina Micela, Paolo Molaro, S. Cristiani, Francesco Pepe, Nuno C. Santos, J. Lillo-Box, C. Lovis, Enric Palle, Vincent Bourrier, G. Lo Curto, Gang Chen, Rafael Rebolo, Fei Yan, O. D. S. Demangeon, J. I. González Hernández, V. D Odorico, Stéphane Udry, M. Stangret, S. G. Sousa, Mahmoudreza Oshagh, C. Allende Prieto, B. Lavie, A. Suárez Mascareño, P. Figueira, Alessandro Sozzetti, David Ehrenreich, R. Génova Santos, Romain Allart, Nelson J. Nunes, Hugo M. Tabernero, E. Poretti, Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737, Yan, F. [0000-0001-9585-9034], Sozzetti, A. [0000-0002-7504-365X], Nunes, N. [0000-0002-3837-6914], Santos, N. [0000-0003-4422-2919], National Natural Science Foundation of China (NSFC), Deutsche Forschungsgemeinschaft (DFG), European Research Council (ERC), Fundacao para a Ciencia e a Tecnologia (FCT), Istituto Nazionale di Astrofisica (INAF), Agencia Estatal de Investigación (AEI), Swiss National Science Foundation (SNSF), ITA, ESP, PRT, and CHE
- Subjects
individual: HD 209458b [Planets and satellites] ,Absorption spectroscopy ,Gas giant ,FOS: Physical sciences ,Astrophysics ,01 natural sciences ,Astronomical spectroscopy ,spectroscopic [Techniques] ,Atmosphere ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,observational [Methods] ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,Line (formation) ,Physics ,Earth and Planetary Astrophysics (astro-ph.EP) ,Atmospheric models ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,Light curve ,Wavelength ,Astrophysics - Solar and Stellar Astrophysics ,13. Climate action ,Space and Planetary Science ,atmospheres [Planets and satellites] ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - Earth and Planetary Astrophysics - Abstract
We observed two transits of the iconic gas giant HD 209458b between 380 and 780 nm, using the high-resolution ESPRESSO spectrograph. The derived planetary transmission spectrum exhibits features at all wavelengths where the parent star shows strong absorption lines, for example, NaI, MgI, FeI, FeII, CaI, VI, H$\alpha$, and KI. We interpreted these features as the signature of the deformation of the stellar line profiles due to the Rossiter-McLaughlin effect, combined with the centre-to-limb effects on the stellar surface, which is in agreement with similar reports recently presented in the literature. We also searched for species that might be present in the planetary atmosphere but not in the stellar spectra, such as TiO and VO, and obtained a negative result. Thus, we find no evidence of any planetary absorption, including previously reported NaI, in the atmosphere of HD 209458b. The high signal-to-noise ratio in the transmission spectrum allows us to compare the modelled deformation of the stellar lines in assuming different one-dimensional stellar atmospheric models. We conclude that the differences among various models and observations remain within the precision limits of the data. However, the transmission light curves are better explained when the centre-to-limb variation is not included in the computation and only the Rossiter-McLaughlin deformation is considered. This demonstrates that ESPRESSO is currently the best facility for spatially resolving the stellar surface spectrum in the optical range using transit observations and carrying out empirical validations of stellar models., Comment: 21 pages, 19 figures. Accepted
- Published
- 2021
18. Retrieving the transmission spectrum of HD 209458b using CHOCOLATE: A new chromatic Doppler tomography technique
- Author
-
E. Esparza-Borges, M. Oshagh, N. Casasayas-Barris, E. Pallé, G. Chen, G. Morello, N. C. Santos, J. V. Seidel, A. Sozzetti, R. Allart, P. Figueira, V. Bourrier, J. Lillo-Box, F. Borsa, M. R. Zapatero Osorio, H. Tabernero, O. D. S. Demangeon, V. Adibekyan, J. I. González Hernández, A. Mehner, C. Allende Prieto, P. Di Marcantonio, Y. Alibert, S. Cristiani, G. Lo Curto, C. J. A. P. Martins, G. Micela, F. Pepe, R. Rebolo, S. G. Sousa, A. Suárez Mascareño, and S. Udry
- Subjects
Astrophysics - instrumentation and methods for astrophysics ,Physics ,Earth and Planetary Astrophysics (astro-ph.EP) ,Astrophysics - earth and planetary astrophysics ,business.industry ,Methods - observational ,Techniques - spectroscopic ,Spectrum (functional analysis) ,Methods - numerical ,FOS: Physical sciences ,Astronomy and Astrophysics ,Doppler tomography ,Astrophysics ,Planets and satellites - atmospheres ,Astrophysics - solar and stellar astrophysics ,Optics ,Transmission (telecommunications) ,Space and Planetary Science ,Techniques - radial velocities ,Astrophysics::Solar and Stellar Astrophysics ,Chromatic scale ,Astrophysics::Earth and Planetary Astrophysics ,business ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Solar and Stellar Astrophysics (astro-ph.SR) - Abstract
Multiband photometric transit observations or low-resolution spectroscopy (spectro-photometry) are normally used to retrieve the broadband transmission spectra of transiting exoplanets in order to assess the chemical composition of their atmospheres. In this paper, we present an alternative approach for recovering the broadband transmission spectra using chromatic Doppler tomography based on physical modeling through the SOAP tool: CHOCOLATE (CHrOmatiC line prOfiLe tomogrAphy TEchnique). To validate the method and examine its performance, we use observational data recently obtained with the ESPRESSO instrument to retrieve the transmission spectra of the archetypal hot Jupiter HD 209458b. Our findings indicate that the recovered transmission spectrum is in good agreement with the results presented in previous studies, which used different methodologies to extract the spectrum, achieving similar precision. We explored several atmospheric models and inferred from spectral retrieval that a model containing H2O and NH3 is the preferred scenario. The CHOCOLATE methodology is particularly interesting for future studies of exoplanets around young and active stars or moderate to fast rotating stars, considering SOAP's ability to model stellar active regions and the fact that the rotational broadening of spectral lines favors its application. Furthermore, CHOCOLATE will allow the broad transmission spectrum of a planet to be retrieved using high signal-to-noise ratio, high-resolution spectroscopy with the next generation of Extremely Large Telescopes (ELTs), where low-resolution spectroscopy will not always be accessible., Comment: Accepted for Publication in Astronomy and Astrophysics
- Published
- 2021
- Full Text
- View/download PDF
19. The SOPHIE search for northern extrasolar planets XVII. A wealth of new objects: 6 cool Jupiters, 3 brown dwarfs and 16 low-mass binary stars
- Author
-
S. Dalal, F. Kiefer, G. Hébrard, J. Sahlmann, S. G. Sousa, T. Forveille, X. Delfosse, L. Arnold, N. Astudillo-Defru, X. Bonfils, I. Boisse, F. Bouchy, V. Bourrier, B. Brugger, P. Cortés-Zuleta, M. Deleuil, O. D. S. Demangeon, R. F. Díaz, N. C. Hara, N. Heidari, M. J. Hobson, T. Lopez, C. Lovis, E. Martioli, L. Mignon, O. Mousis, C. Moutou, J. Rey, A. Santerne, N. C. Santos, D. Ségransan, P. A.
- Published
- 2021
- Full Text
- View/download PDF
20. CHEOPS precision phase curve of the Super-Earth 55 Cancri e
- Author
-
Luca Fossati, M. Fridlund, Giampaolo Piotto, M. Beck, D. L. Pollacco, G. Olofsson, M. Deleuil, K. G. Isaak, Alexis Brandeker, P. Guterman, A. Lecavelier des Etangs, Nicolas Billot, Heike Rauer, Michaël Gillon, Anders Erikson, N. C. Santos, Laetitia Delrez, Andrew Collier Cameron, T. G. Wilson, Wolfgang Baumjohann, D. Segransan, Yann Alibert, C. Lovis, Kevin Heng, C. Broeg, Gisbert Peter, B. Ulmer, Manuel Guedel, B. O. Demory, Sergio Hoyer, Monika Lendl, Mahmoudreza Oshagh, Melvyn B. Davies, Brett M. Morris, J. Cabrera, Roberto Ragazzoni, Gy. M. Szabó, D. Queloz, Vincent Bourrier, S. G. Sousa, A. García Muñoz, Davide Gandolfi, Jacques Laskar, Willy Benz, S. Charnoz, Francisco J. Pozuelos, T. Bárczy, Nicola Rando, Thomas Beck, D. De Miguel Ferreras, David Ehrenreich, Pierre F. L. Maxted, G. Anglada Escudé, S. C. C. Barros, H. G. Floren, A. Deline, László L. Kiss, A. Bekkelien, M. Steller, D. Futyan, G. Scandariato, A. M. Smith, S. Sulis, I. Pagano, O. D. S. Demangeon, I. Ribas, M. Lieder, A. E. Simon, X. Bonfils, Andrea Fortier, Maria Bergomi, Roland Ottensamer, V. Nascimbeni, Demetrio Magrin, N. Thomas, David Barrado, Enric Palle, A. Pizarro Rubio, Roi Alonso, Stéphane Udry, N. A. Walton, Valérie Van Grootel, Cavendish Laboratory, University of Cambridge [UK] (CAM), Stockholm University, Institut für Festkörper- und Materialphysik, Technische Universität Dresden, Technische Universität Dresden = Dresden University of Technology (TU Dresden), Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Center for Space and Habitability (CSH), University of Bern, Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Institut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Science & Technology Facilities Council, University of St Andrews. School of Physics and Astronomy, University of St Andrews. St Andrews Centre for Exoplanet Science, Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Swiss Space Office, Swiss National Science Foundation, European Commission, Fundação para a Ciência e a Tecnologia (Portugal), Queloz, Didier [0000-0002-3012-0316], Walton, Nicholas [0000-0003-3983-8778], and Apollo - University of Cambridge Repository
- Subjects
Atmospheres ,010504 meteorology & atmospheric sciences ,55 Cnc ,individual: 55 Cnc e [Planets and satellites] ,Astrophysics ,01 natural sciences ,techniques: photometric ,Spitzer Space Telescope ,Planet ,QB460 ,Methods ,QB Astronomy ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,Observational ,Instrumentation ,QC ,planets and satellites: individual: 55 Cnc e ,Eclipse ,QB ,Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,planets and satellites: atmospheres ,Super-Earth ,520 Astronomy ,Planets and Satellites ,Exoplanet ,instrumentation: photometers ,Amplitude ,atmospheres [Planets and satellites] ,Astrophysics::Earth and Planetary Astrophysics ,methods: observational ,individual: 55 Cnc [Stars] ,FOS: Physical sciences ,Individual ,Photometric ,Photometry (optics) ,stars: individual: 55 Cnc ,0103 physical sciences ,observational [Methods] ,invidual: 55 Cnc [Stars] ,QB600 ,0105 earth and related environmental sciences ,MCC ,Photometers ,Stars: invidual: 55 Cnc ,photometric [Techniques] ,Astronomy and Astrophysics ,DAS ,Phase curve ,620 Engineering ,Stars ,Techniques ,photometers [Instrumentation] ,QC Physics ,13. Climate action ,Space and Planetary Science ,Instrumentation: photometers ,Methods: observational ,Planets and satellites: atmospheres ,Planets and satellites: individual: 55 Cnc e ,Stars: individual: 55 Cnc ,Techniques: photometric ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,55 Cnc e ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Morris, B. M. et al., [Context] 55 Cnc e is a transiting super-Earth (radius 1.88 R⊕ and mass 8 M⊕) orbiting a G8V host star on a 17-h orbit. Spitzer observations of the planet's phase curve at 4.5 μm revealed a time-varying occultation depth, and MOST optical observations are consistent with a time-varying phase curve amplitude and phase offset of maximum light. Both broadband and high-resolution spectroscopic analyses are consistent with either a high mean molecular weight atmosphere or no atmosphere for planet e. A long-term photometric monitoring campaign on an independent optical telescope is needed to probe the variability in this system. [Aims] We seek to measure the phase variations of 55 Cnc e with a broadband optical filter with the 30 cm effective aperture space telescope CHEOPS and explore how the precision photometry narrows down the range of possible scenarios. [Methods] We observed 55 Cnc for 1.6 orbital phases in March of 2020. We designed a phase curve detrending toolkit for CHEOPS photometry which allowed us to study the underlying flux variations in the 55 Cnc system. [Results] We detected a phase variation with a full-amplitude of 72 ± 7 ppm, but did not detect a significant secondary eclipse of the planet. The shape of the phase variation resembles that of a piecewise-Lambertian; however, the non-detection of the planetary secondary eclipse, and the large amplitude of the variations exclude reflection from the planetary surface as a possible origin of the observed phase variations. They are also likely incompatible with magnetospheric interactions between the star and planet, but may imply that circumplanetary or circumstellar material modulate the flux of the system. [Conclusions] This year, further precision photometry of 55 Cnc from CHEOPS will measure variations in the phase curve amplitude and shape over time., Centre of Competence in Research (NCCR) supported by the Swiss National Science Foundation (SNSF). CHEOPS is an ESA mission in partnership with Switzerland with important contributions to the payload and the ground segment from Austria, Belgium, France, Germany, Hungary, Italy, Portugal, Spain, Sweden, and the United Kingdom. The Swiss participation to CHEOPS has been supported by the Swiss Space Office (SSO) in the framework of the Prodex programme and the Activités Nationales Complémentaires (ANC), the Universities of Bern and Geneva as well as of the NCCR PlanetS and the Swiss National Science Foundation. This work benefited from support from the Swiss National Science Foundation (PP00P2-163967 and PP00P2-190080). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (project FOUR ACES; grant agreement No 724427). This work was supported by FCT – Fundação para a Ciência e a Tecnologia through national funds and by FEDER through COMPETE2020 - Programa Operacional Competitividade e Internacionalização by these grants: UID/FIS/04434/2019; UIDB/04434/2020; UIDP/04434/2020; PTDC/FIS-AST/32113/2017 and POCI-01-0145-FEDER-032113; PTDC/FIS-AST/28953/2017 and POCI-01-0145-FEDER-028953; PTDC/FIS-AST/28987/2017 and POCI-01-0145-FEDER-028987. S.C.C.B. and S.G.S. acknowledge support from FCT through FCT contracts nr. IF/01312/2014/CP1215/CT0004, IF/00028/2014/CP1215/CT0002. O.D.S.D. is supported in the form of work contract (DL 57/2016/CP1364/CT0004) funded by national funds through Fundação para a Ciência e Tecnologia (FCT). X.B., S.C., D.G., M.F. and J.L. acknowledge their roles as ESA-appointed CHEOPS science team members. A.C.C. and T.W. acknowledge support from STFC consolidated grant number ST/R000824/1. This project was supported by the CNES. S.H. gratefully acknowledges CNES funding through the grant 837319. P.M. acknowledges support from STFC consolidated grant number ST/M001040/1. K.G.I. is the ESA CHEOPS Project Scientist and is responsible for the ESA CHEOPS Guest Observers Programme.
- Published
- 2021
21. CHEOPS observations of the HD 108236 planetary system
- Author
-
D. Segransan, Oscar Barragán, K. G. Isaak, I. Pagano, Monika Lendl, O. D. S. Demangeon, M. Beck, E. Hernandez, Thomas Beck, Luca Fossati, Sergio Hoyer, J. Cabrera, V. Van Eylen, I. Ribas, V. Nascimbeni, Giampaolo Piotto, Willy Benz, T. Kuntzer, L. Borsato, Vardan Adibekyan, Mario Salatti, T. Bandy, A. E. Simon, Heike Rauer, M. Steller, Matteo Munari, Jacopo Farinato, Gisbert Peter, Roi Alonso, Valérie Van Grootel, Luca Marafatto, J. Asquier, T. Bárczy, Alexander J. Mustill, B. Chazelas, Stéphane Udry, C. Corral Van Damme, Virginie Cessa, P. Guterman, Nicola Rando, Malcolm Fridlund, L. Delrez, Gy. M. Szabó, Anders Erikson, Alexis Brandeker, Harald Michaelis, D. Futyan, Nuno C. Santos, David Barrado, Enric Palle, Roberto Ragazzoni, Maria Bergomi, T. G. Wilson, S. Salmon, C. Broeg, M. Sordet, D. L. Pollacco, R. Rohlfs, N. A. Walton, M. J. Hooton, Didier Queloz, Davide Gandolfi, M. Gillon, Jacques Laskar, Valentina Viotto, Roland Ottensamer, B. O. Demory, A. Collier Cameron, Melvyn B. Davies, H. Ottacher, Pierre F. L. Maxted, S. C. C. Barros, Carina M. Persson, C. Lovis, Kevin Heng, L. Malvasio, Francois Wildi, X. Bonfils, M. Deleuil, M. Tschentscher, A. Lecavelier des Etangs, Hugh P. Osborn, Andrea Fortier, Daniele Piazza, László L. Kiss, S. G. Sousa, Martin Rieder, F. Ratti, G. Scandariato, S. Charnoz, A. García Muñoz, J. Hasiba, A. M. Smith, Ingo Walter, M.-D. Busch, G. Olofsson, F. Safa, David Ehrenreich, A. Bonfanti, Yann Alibert, G. Lacedelli, Nicolas Billot, A. Bekkelien, Wolfgang Baumjohann, Manuel Guedel, D. Wolter, Demetrio Magrin, N. Thomas, A. Tuson, Ministerio de Ciencia, Innovación y Universidades (España), Université de Liège, Fundação para a Ciência e a Tecnologia (Portugal), Swiss Space Office, Autoridade de Gestão do Programa Operacional Competitividade e Internacionalização (Portugal), European Commission, Swedish National Space Agency, Centre National D'Etudes Spatiales (France), Agenzia Spaziale Italiana, Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737, Bonfanti, A. [0000-0002-1916-5935], Cameron, A. [0000-0002-8863-7828], Santos, N. [0000-0003-4422-2919], Mustill, A. J. [0000-0002-2086-3642], Swiss Space Office (SSO), La Silla Observatory, Austrian Research Promotion Agency (FFG), European Research Council (ERC), Swiss National Science Foundation (SNSF), Agencia Estatal de Investigación (AEI), Generalitat de Catalunya, European Space Agency (ESA), Fundacao para a Ciencia e a Tecnologia (FCT), Belgian Federal Science Policy Office (BELSPO), Hungarian National Research, Development and Innovation Office (NKFIH), Istituto Nazionale di Astrofisica (INAF), Swedish National Infrastructure for Computing (SNIC), Science & Technology Facilities Council, University of St Andrews. School of Physics and Astronomy, University of St Andrews. St Andrews Centre for Exoplanet Science, Space Research Institute, Austrian Academy of Sciences, Laboratoire d'Astrophysique de Marseille (LAM), and Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
planets and satellites: detection ,Outer planets ,Fundamental Parameters ,010504 meteorology & atmospheric sciences ,Stellar mass ,Astrophysics::High Energy Astrophysical Phenomena ,Institut für Planetenforschung ,fundamental parameters [Planets and satellites] ,FOS: Physical sciences ,Astrophysics ,Ephemerides ,Ephemeris ,Planets and satellites: Detection ,Planets and satellites: Fundamental parameters ,Stars: Fundamental parameters ,01 natural sciences ,7. Clean energy ,fundamental parameters [Stars] ,Planet ,0103 physical sciences ,QB Astronomy ,planets and satellites: fundamental parameters ,010303 astronomy & astrophysics ,QC ,QB ,0105 earth and related environmental sciences ,Condensed Matter::Quantum Gases ,Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,DAS ,Astronomy and Astrophysics ,Planets and Satellites ,Planetary system ,Orbital period ,Light curve ,Stars ,Photometry (astronomy) ,detection [Planets and satellites] ,Detection ,QC Physics ,13. Climate action ,Space and Planetary Science ,Condensed Matter::Strongly Correlated Electrons ,stars: fundamental parameters ,Optik, Kalibrierung und Validierung ,QB799 ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Bonfati, A. et al. (Fermi-LAT Collaboration), [Context] The detection of a super-Earth and three mini-Neptunes transiting the bright (V = 9.2 mag) star HD 108236 (also known as TOI-1233) was recently reported on the basis of TESS and ground-based light curves. [Aims] We perform a first characterisation of the HD 108236 planetary system through high-precision CHEOPS photometry and improve the transit ephemerides and system parameters. [Methods] We characterise the host star through spectroscopic analysis and derive the radius with the infrared flux method. We constrain the stellar mass and age by combining the results obtained from two sets of stellar evolutionary tracks. We analyse the available TESS light curves and one CHEOPS transit light curve for each known planet in the system. [Results] We find that HD 108236 is a Sun-like star with R? = 0.877 ± 0.008 R? , M? = 0.869-0.048+0.050 M? , and an age of 6.7-5.1+4.0 Gyr. We report the serendipitous detection of an additional planet, HD 108236 f, in one of the CHEOPS light curves. For this planet, the combined analysis of the TESS and CHEOPS light curves leads to a tentative orbital period of about 29.5 days. From the light curve analysis, we obtain radii of 1.615 ± 0.051, 2.071 ± 0.052, 2.539-0.065+0.062, 3.083 ± 0.052, and 2.017-0.057+0.052 R? for planets HD 108236 b to HD 108236 f, respectively. These values are in agreement with previous TESS-based estimates, but with an improved precision of about a factor of two. We perform a stability analysis of the system, concluding that the planetary orbits most likely have eccentricities smaller than 0.1. We also employ a planetary atmospheric evolution framework to constrain the masses of the five planets, concluding that HD 108236 b and HD 108236 c should have an Earth-like density, while the outer planets should host a low mean molecular weight envelope. [Conclusions] The detection of the fifth planet makes HD 108236 the third system brighter than V = 10 mag to host more than four transiting planets. The longer time span enables us to significantly improve the orbital ephemerides such that the uncertainty on the transit times will be of the order of minutes for the years to come. A comparison of the results obtained from the TESS and CHEOPS light curves indicates that for a V - 9 mag solar-like star and a transit signal of -500 ppm, one CHEOPS transit light curve ensures the same level of photometric precision as eight TESS transits combined, although this conclusion depends on the length and position of the gaps in the light curve., National Science Foundation. Based on observations made with the ESO 3.6 m telescope at the La Silla Observatory under program ID 1102.C-0923. M.Le acknowledges support from the Austrian Research Promotion Agency (FFG) under project 859 724 “GRAPPA”. A.D. and D.E. acknowledge support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (project Four Aces; grant agreement No 724427). M.J.H. acknowledges the support of the Swiss National Fund under grant 200020172746. B.-O.D. acknowledges support from the Swiss National Science Foundation (PP00P2-190080). The Spanish scientific participation in CHEOPS has been supported by the Spanish Ministry of Science and Innovation and the European Regional Development Fund through grants ESP2016-80435-C2-1-R, ESP2016-80435-C2-2-R, ESP2017-87676-C5-1-R, PGC2018-098153-B-C31, PGC2018-098153-B-C33, and MDM-2017-0737 Unidad de Excelencia María de Maeztu-Centro de Astrobiología (INTA-CSIC), as well as by the Generalitat de Catalunya/CERCA programme. The MOC activities have been supported by the ESA contract No. 4000124370. This work was supported by Fundação para a Ciência e a Tecnologia (FCT) through national funds and by Fundo Europeu de Desenvolvimento Regional (FEDER) via COMPETE2020 - Programa Operacional Competitividade e Internacional-ização through the research grants: UID/FIS/04434/2019; UIDB/04434/2020; UIDP/04434/2020; PTDC/FIS-AST/32113/2017 & POCI-01-0145-FEDER-032113; PTDC/FIS-AST/28953/2017 & POCI-01-0145-FEDER-028953; PTDC/FIS-AST/28987/2017 & POCI-01-0145-FEDER-028987. S.C.C.B. and S.G.S. acknowledge support from FCT through FCT contracts nr. IF/01312/2014/CP1215/CT0004, IF/00028/2014/CP1215/CT0002. O.D.S.D. is supported in the form of work contract (DL 57/2016/CP1364/CT0004) funded by national funds through Fundação para a Ciência e Tecnologia (FCT). The Belgian participation to CHEOPS has been supported by the Belgian Federal Science Policy Office (BELSPO) in the framework of the PRODEX Program, and by the University of Liège through an ARC grant for Concerted Research Actions financed by the Wallonia-Brussels Federation. M.G. is F.R.S.-FNRS Senior Research Associate. S.Sa has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 833925, project STAREX). G.M.S. acknowledges funding from the Hungarian National Research, Development and Innovation Office (NKFIH) grant GINOP-2.3.2-15-2016-00003 and K-119517. For Italy, CHEOPS actvities have been supported by the Italian Space Agency, under the programs: ASI-INAF n. 2013-016-R.0 and ASI-INAF n. 2019-29-HH.0. L.B., G.P., I.P., G.S., and V.N. acknowledge the funding support from Italian Space Agency (ASI) regulated by “Accordo ASI-INAF n. 2013-016-R.0 del 9 luglio 2013 e integrazione del 9 luglio 2015”. G.La acknowledges support by CARIPARO Foundation, according to the agreement CARIPARO-Università degli Studi di Padova (Pratica n. 2018/0098). A.Mu acknowledges support from the Swedish National Space Agency (grant 120/19 C). The dynamical simulations were enabled by resources provided by the Swedish National Infrastructure for Computing (SNIC) at Lunarc partially funded by the Swedish Research Council through grant agreement no. 2016-07213. Simulations in this paper made use of the REBOUND code which is freely available at http://github.com/hannorein/rebound. S.Ho acknowledges CNES funding through the grant 837 319. K.G.I. is the ESA CHEOPS Project Scientist and is responsible for the ESA CHEOPS Guest Observers Programme. She does not participate in, or contribute to, the definition of the Guaranteed Time Programme of the CHEOPS mission through which observations described in this paper have been taken, nor to any aspect of target selection for the programme. X.B., S.C., D.G., M.F., and J.L. acknowledge their roles as ESA-appointed CHEOPS science team members. A.B. acknowledges B. Akinsanmi, G. Bruno, M. Günther, R. Luque, F.J. Pozuelos Romero, and L.M. Serrano for the very fruitful discussions. We acknowledge T. Daylan for his help in planning the CHEOPS observations.
- Published
- 2021
22. Broadband transmission spectroscopy of HD 209458b with ESPRESSO: evidence for Na, TiO, or both
- Author
-
Cristina Martins, Marco Riva, C. Lovis, Enric Palle, E. Poretti, O. D. S. Demangeon, S. G. Sousa, S. C. C. Barros, P. Figueira, G. Lo Curto, Xavier Dumusque, Nelson J. Nunes, Romain Allart, J. I. González Hernández, Vardan Adibekyan, Rafael Rebolo, François Bouchy, S. Cristiani, Yann Alibert, Stéphane Udry, Andrea Mehner, M. R. Zapatero Osorio, C. Allende Prieto, B. Lavie, David Ehrenreich, Alessandro Sozzetti, A. Suárez Mascareño, Paolo Molaro, Francesco Pepe, E. Cristo, N. C. Santos, Denis Mégevand, Giuseppina Micela, J. H. C. Martins, Vincent Bourrier, P. Di Marcantonio, Hugo M. Tabernero, A. Cabral, N. Casasayas-Barris, Francesco Borsa, Antonio Manescau, M. Oshagh, Hans Dekker, J. P. Faria, V. D'Odorico, Fundacao para a Ciencia e a Tecnologia (FCT), Istituto Nazionale di Astrofisica (INAF), European Research Council (ERC), Agencia Estatal de Investigación (AEI), Santos, N. C. [0000-0003-4422-2919], Cristo, E. [0000-0001-5992-7589], Demangeon, O. D. S. [0000-0001-7918-0355], Oshagh, M. [0000-0002-0715-8789], Palle, E. [0000-0003-0987-1593], Portuguese Foundation for Science and Technology, FEDER through COMPETE2020 -Programa Operacional Competitividade e Internacionalizacao, Italian Ministry of Education University, and Research, European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (project Four Aces grant), and Spanish Ministry of Science Innovation and Universities (MICIU)
- Subjects
FOS: Physical sciences ,Context (language use) ,01 natural sciences ,7. Clean energy ,Spectral line ,spectroscopic [Techniques] ,Espresso ,Planet ,0103 physical sciences ,HD 209458b ,Chromatic scale ,Spectroscopy ,010303 astronomy & astrophysics ,Physics ,Earth and Planetary Astrophysics (astro-ph.EP) ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,Exoplanet ,3. Good health ,Computational physics ,Planetary systems ,Transmission (telecommunications) ,13. Climate action ,Space and Planetary Science ,atmospheres [Planets and satellites] ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Context. The detection and characterization of exoplanet atmospheres is currently one of the main drivers pushing the development of new observing facilities. In this context, high-resolution spectrographs are proving their potential and showing that high-resolution spectroscopy will be paramount in this field. Aims. We aim to make use of ESPRESSO high-resolution spectra, which cover two transits of HD 209458b, to probe the broadband transmission optical spectrum of the planet. Methods. We applied the chromatic Rossiter-McLaughin method to derive the transmission spectrum of HD 209458b. We compared the results with previous HST observations and with synthetic spectra. Results. We recover a transmission spectrum of HD 209458b similar to the one obtained with HST data. The models suggest that the observed signal can be explained by only Na, only TiO, or both Na and TiO, even though none is fully capable of explaining our observed transmission spectrum. Extra absorbers may be needed to explain the full dataset, though modeling approximations and observational errors can also be responsible for the observed mismatch. Conclusions. Using the chromatic Rossiter-McLaughlin technique, ESPRESSO is able to provide broadband transmission spectra of exoplanets from the ground, in conjunction with space-based facilities, opening good perspectives for similar studies of other planets., With funding from the Spanish government through the "María de Maeztu Unit of Excellence" accreditation (MDM-2017-0737)
- Published
- 2020
- Full Text
- View/download PDF
23. Masses for the seven planets in K2-32 and K2-233
- Author
-
J. Lillo-Box, T. A. Lopez, A. Santerne, L. D. Nielsen, S. C. C. Barros, M. Deleuil, L. Acuña, O. Mousis, S. G. Sousa, V. Adibekyan, D. J. Armstrong, D. Barrado, D. Bayliss, D. J. A. Brown, O. D. S. Demangeon, X. Dumusque, P. Figueira, S. Hojjatpanah, H. P. Osborn, N. C. Santos, S. Udry
- Published
- 2020
- Full Text
- View/download PDF
24. HD219666b: A hot-Neptune from TESS Sector 1
- Author
-
V. Van Eylen, J. N. Winn, Teriyuki Hirano, M. Esposito, D. L. Pollacco, Ignasi Ribas, J. de León, M. Tala-Pinto, David Nespral, H. J. Deeg, P. Figueira, S. Hojjatpanah, O. D. S. Demangeon, Grzegorz Nowak, M. Hjorth, John H. Livingston, Hugh P. Osborn, Farzana Meru, François Bouchy, William D. Cochran, Alexis M. S. Smith, S. C. C. Barros, Davide Gandolfi, Edward M. Bryant, Anders Erikson, N. C. Santos, Louise D. Nielsen, Michael Endl, Norio Narita, Vardan Adibekyan, Sascha Grziwa, K. W. F. Lam, D. Hidalgo, P. G. Beck, Duncan A. Brown, Peter J. Wheatley, Carina M. Persson, Mikkel N. Lund, Xavier Dumusque, Savita Mathur, A. P. Hatzes, Judith Korth, Anders Bo Justesen, Szilard Csizmadia, J. Prieto-Arranz, Fei Dai, J. Cabrera, Francesca Faedi, Rafael Luque, Emil Knudstrup, E. Delgado Mena, M. Pätzold, M. Fridlund, Oscar Barragán, Eike W. Guenther, J. Lillo-Box, Benjamin F. Cooke, Heike Rauer, Luca Fossati, Prajwal Niraula, S. Redfield, M. M. Musso, Patricio Cubillos, Roi Alonso, Rodrigo F. Díaz, Stéphane Udry, David Barrado, Enric Palle, A. S. Bonomo, P. Montanes Rodriguez, David J. Armstrong, Philipp Eigmüller, M. Deleuil, S. G. Sousa, D. Bayliss, A. Fukui, Laboratoire d'Astrophysique de Marseille (LAM), and Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Dwarf star ,010504 meteorology & atmospheric sciences ,fundamental parameters [Planets and satellites] ,FOS: Physical sciences ,Astrophysics ,Planets and satellites: individual: HD 219666 b ,01 natural sciences ,fundamental parameters [Stars] ,Planet ,0103 physical sciences ,Planets and satellites: detection ,Planets and satellites: fundamental parameters ,Stars: fundamental parameters ,Techniques: photometric ,Techniques: radial velocities ,Hot Neptune ,Spectroscopy ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,0105 earth and related environmental sciences ,QB ,Physics ,Earth and Planetary Astrophysics (astro-ph.EP) ,radial velocities [Techniques] ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,photometric [Techniques] ,Astronomy and Astrophysics ,Radius ,Light curve ,Orbital period ,Exoplanet ,detection [Planets and satellites] ,Astrophysics - Solar and Stellar Astrophysics ,13. Climate action ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,individual: HD 219666 b [Planets and satellites] ,Astrophysics - Earth and Planetary Astrophysics - Abstract
We report on the confirmation and mass determination of a transiting planet orbiting the old and inactive G7 dwarf star HD219666 (Mstar = 0.92 +/- 0.03 MSun, Rstar = 1.03 +/- 0.03 RSun, tau_star = 10 +/- 2 Gyr). With a mass of Mb = 16.6 +/- 1.3 MEarth, a radius of Rb = 4.71 +/- 0.17 REarth, and an orbital period of P ~ 6 days, HD219666b is a new member of a rare class of exoplanets: the hot-Neptunes. The Transiting Exoplanet Survey Satellite (TESS) observed HD219666 (also known as TOI-118) in its Sector 1 and the light curve shows four transit-like events, equally spaced in time. We confirmed the planetary nature of the candidate by gathering precise radial-velocity measurements with HARPS@ESO3.6m. We used the co-added HARPS spectrum to derive the host star fundamental parameters (Teff = 5527 +/- 65 K, log g = 4.40 +/- 0.11 (cgs), [Fe/H]= 0.04 +/- 0.04 dex, log R'HK = -5.07 +/- 0.03), as well as the abundances of many volatile and refractory elements. The host star brightness (V = 9.9) makes it suitable for further characterisation by means of in-transit spectroscopy. The determination of the planet orbital obliquity, along with the atmospheric metal-to-hydrogen content and thermal structure could provide us with important clues on the formation mechanisms of this class of objects., Comment: Accepted for publication in A&A
- Published
- 2019
25. K2-19, The first K2 muti-planetary system showing TTVs
- Author
-
M. Deleuil, K. W. F. Lam, P. Bendjoya, G. Hebrard, M. Tsantaki, D. Toublanc, Rodrigo F. Díaz, S. R. Walker, François Bouchy, O. D. S. Demangeon, A. S. Rajpurohit, S. C. C. Barros, D. L. Pollacco, L. Abe, J. Lillo-Box, A. Santerne, David Barrado, O. Suarez, Jessica Spake, J. C. Lachurié, Jason M. Kirk, J. McCormac, Hugh P. Osborn, Pascale Andre, A. S. Bonomo, B. Courcol, Isabelle Boisse, G. Bruno, J. Rey Cerda, P. Martinez, J. M. Almenara, Duncan A. Brown, David J. Armstrong, J. P. Rivet, and C. Moutou
- Subjects
Radial velocity ,Physics ,Mean motion ,Space and Planetary Science ,Planet ,Libration ,Astronomy and Astrophysics ,Transit (astronomy) ,Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Planetary system ,Light curve ,System dynamics - Abstract
In traditional transit timing variations (TTVs) analysis of multi-planetary systems, the individual TTVs are first derived from transit fitting and later modelled using n-body dynamic simulations to constrain planetary masses. We show that fitting simultaneously the transit light curves with the system dynamics (photo-dynamical model) increases the precision of the TTV measurements and helps constrain the system architecture. We exemplify the advantages of applying this photo-dynamical model to a multi-planetary system found in K2 data very close to 3:2 mean motion resonance, K2-19. In this case the period of the larger TTV variations (libration period) is much longer (>1.5 years) than the duration of the K2 observations (80 days). However, our method allows to detect the short period TTVs produced by the orbital conjunctions between the planets that in turn permits to uniquely characterise the system. Therefore, our method can be used to constrain the masses of near-resonant systems even when the full libration curve is not observed.
- Published
- 2016
26. The SOPHIE search for northern extrasolar planets VII. A warm Neptune orbiting HD164595
- Author
-
François Bouchy, Anne-Marie Lagrange, X. Bonfils, M. Deleuil, Paul Wilson, X. Delfosse, Isabelle Boisse, Luc Arnold, B. Courcol, Francesco Pepe, G. Hebrard, A. Santerne, David Ehrenreich, Nicola Astudillo-Defru, N. Cabrera, S. Borgniet, J. Rey, Rodrigo F. Díaz, Stéphane Udry, Vincent Bourrier, N. C. Santos, T. Forveille, D. Segransan, C. Moutou, G. Montagnier, O. D. S. Demangeon, Observatoire de Haute-Provence (OHP), Institut Pythéas (OSU PYTHEAS), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Observatoire Astronomique de l'Université de Genève (ObsGE), Université de Genève (UNIGE), Centro de Astrofísica da Universidade do Porto (CAUP), Universidade do Porto [Porto], Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Grenoble (LAOG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), European Southern Observatory (ESO), Canada-France-Hawaii Telescope Corporation (CFHT), National Research Council of Canada (NRC)-Centre National de la Recherche Scientifique (CNRS)-University of Hawai'i [Honolulu] (UH), UDELAR, Facultad de Ingenieria [Montevideo] (UDELAR), Universidad de la República [Montevideo] (UCUR), Departamento de Física e Astronomia [Porto], Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut de Recherche pour le Développement (IRD), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Universidade do Porto, Institut de Planétologie et d'Astrophysique de Grenoble (IPAG ), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Departamento de Física e Astronomia [Porto] (DFA/FCUP), Faculdade de Ciências da Universidade do Porto (FCUP), Universidade do Porto-Universidade do Porto, Université de Genève = University of Geneva (UNIGE), Universidade do Porto = University of Porto, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Universidad de la República [Montevideo] (UDELAR), Universidade do Porto = University of Porto-Universidade do Porto = University of Porto, Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, and PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)
- Subjects
Population ,Minimum mass ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Neptune ,Planet ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,education ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Earth and Planetary Astrophysics (astro-ph.EP) ,education.field_of_study ,Solar analog ,010308 nuclear & particles physics ,Astronomy ,Astronomy and Astrophysics ,Exoplanet ,Radial velocity ,Stars ,Space and Planetary Science ,Astrophysics::Earth and Planetary Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Geology ,Astrophysics - Earth and Planetary Astrophysics - Abstract
High-precision radial velocity surveys explore the population of low-mass exoplanets orbiting bright stars. This allows accurately deriving their orbital parameters such as their occurrence rate and the statistical distribution of their properties. Based on this, models of planetary formation and evolution can be constrained. The SOPHIE spectrograph has been continuously improved in past years, and thanks to an appropriate correction of systematic instrumental drift, it is now reaching 2 m/s precision in radial velocity measurements on all timescales. As part of a dedicated radial velocity survey devoted to search for low-mass planets around a sample of 190 bright solar-type stars in the northern hemisphere, we report the detection of a warm Neptune with a minimum mass of 16.1 +- 2.7 Mearth orbiting the solar analog HD164595 in 40 +- 0.24 days . We also revised the parameters of the multiplanetary system around HD190360. We discuss this new detection in the context of the upcoming space mission CHEOPS, which is devoted to a transit search of bright stars harboring known exoplanets., Comment: 11 pages, 9 figures
- Published
- 2015
27. HD 22496 b: The first ESPRESSO stand-alone planet discovery
- Author
-
Paolo Molaro, O. D. S. Demangeon, Luca Pasquini, Vardan Adibekyan, Nelson J. Nunes, Artur M. S. Silva, Alessandro Sozzetti, C. Allende Prieto, P. Figueira, Stéphane Udry, Hugo M. Tabernero, S. Cristiani, A. Cabral, C. Lovis, Enric Palle, S. Hojjatpanah, Andrea Mehner, S. Benatti, J. P. Faria, Cristina Martins, Francesco Pepe, E. Poretti, J. I. González Hernández, P. Di Marcantonio, A. Suárez Mascareño, J. Lillo-Box, G. Lo Curto, Rafael Rebolo, N. C. Santos, Romain Allart, M. R. Zapatero Osorio, Mario Damasso, Giuseppina Micela, Denis Mégevand, S. G. Sousa, Laboratoire d'Astrophysique de Marseille (LAM), and Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
planets and satellites: detection ,Gas giant ,Minimum mass ,FOS: Physical sciences ,0102 computer and information sciences ,Astrophysics ,01 natural sciences ,Planet ,techniques: radial velocities ,0103 physical sciences ,planets and satellites: fundamental parameters ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Physics ,Earth and Planetary Astrophysics (astro-ph.EP) ,Astronomy and Astrophysics ,Orbital period ,Exoplanet ,Radial velocity ,[SDU]Sciences of the Universe [physics] ,010201 computation theory & mathematics ,13. Climate action ,Space and Planetary Science ,planets and satellites: individual: HD 22496 ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,Circumstellar habitable zone ,Main sequence ,Astrophysics - Earth and Planetary Astrophysics - Abstract
The ESPRESSO spectrograph is a new powerful tool to detect and characterize extrasolar planets. Its design allows unprecedented radial velocity precision (down to a few tens of cm/s) and long-term thermo-mechanical stability. We present the first standalone detection of an extrasolar planet by blind radial velocity search using ESPRESSO and aim at showing the power of the instrument in characterizing planetary signals at different periodicities in long time spans. We use 41 ESPRESSO measurements of HD\,22496 within a time span of 895 days with a median photon noise of 18 cm/s. A radial velocity analysis is performed to test the presence of planets in the system and to account for the stellar activity of this K5-K7 main sequence star. For benchmarking and comparison, we attempt the detection with 43 archive HARPS measurements and compare the results yielded by the two datasets. We also use four TESS sectors to search for transits. We find radial velocity variations compatible with a close-in planet with an orbital period of $P=5.09071\pm0.00026$ days when simultaneously accounting for the effects of stellar activity at longer time scales ($P_{\rm rot}=34.99^{+0.58}_{-0.53}$ days). We characterize the physical and orbital properties of the planet and find a minimum mass of $5.57^{+0.73}_{-0.68}$ $\mathrm{M}_{\oplus}$, right in the dichotomic regime between rocky and gaseous planets. Although not transiting according to TESS data, if aligned with the stellar spin axis, the absolute mass of the planet must be below 16 $\mathrm{M}_{\oplus}$. We find no significant evidence for additional signals with semi-amplitudes above 56 cm/s at 95% confidence. With a modest set of radial velocity measurements, ESPRESSO is capable of detecting and characterizing low-mass planets and constrain the presence of planets in the habitable zone of K-dwarfs down to the rocky-mass regime., Comment: Accepted for publication in A&A. 12 pages, 8 figures, 3 tables
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.