1. Efficient noble gas purification using hot getters and gas circulation by convection
- Author
-
Teixeira, J. M. R., Henriques, C. A. O., Silva, P. A. O. C., Mano, R. D. P., Santos, J. M. F. Dos, and Monteiro, C. M. B.
- Subjects
Physics - Instrumentation and Detectors - Abstract
Noble gas radiation detectors with optical readout are gaining popularity in fields like astrophysics and particle physics due to their ability to produce both ionization and scintillation signals in response to ionizing radiation interaction. In addition, the amplification of primary ionization signals can be achieved by promoting secondary scintillation in the gas. Noble gas purity, especially concerning impurities like H$_{2}$O, N$_{2}$, O$_{2}$, CO$_{2}$, and hydrocarbons, greatly influences its performance. These impurities can cause the loss of primary electrons and quench the scintillation signal. A very high purity level of the gas is required. In the early 90's, a simple method was developed for noble gas purification in sealed, small volume (up to few litters) gas radiation detectors. Gas purification is achieved promoting gas circulation through Zr-based hot getters, simply maintaining the gas circulation by convection. The effectiveness of this method has been only confirmed by the energy resolutions achieved in those detectors, which were similar to that achieved in other high-performance noble gas detectors. In this work, we used waveform analysis of the primary and secondary scintillation signals and we were able to evaluate the impact of the attachment and quenching caused by impurities in one of our detectors filled with pure Xe, and estimate upper values for the impurity content in the gas. The maximum overall impurity concentration was estimated to be below 4 ppm, considering nearly all the impurities, and below 82 ppm if N$_{2}$ is considered. The electron lifetime was measured to be 2.1 $\pm$ 0.1 ms, in line with those achieved in other high-performance optical detectors.
- Published
- 2024