1. Hypoxia induces transgenerational epigenetic inheritance of small RNAs.
- Author
-
Wang SY, Kim K, O'Brown ZK, Levan A, Dodson AE, Kennedy SG, Chernoff C, and Greer EL
- Subjects
- Animals, Inheritance Patterns, RNA, Small Interfering genetics, RNA, Double-Stranded genetics, Epigenesis, Genetic, Hypoxia genetics, RNA Interference, Caenorhabditis elegans genetics, Caenorhabditis elegans metabolism, Caenorhabditis elegans Proteins genetics, Caenorhabditis elegans Proteins metabolism
- Abstract
Animals sense and adapt to decreased oxygen availability, but whether and how hypoxia exposure in ancestors can elicit phenotypic consequences in normoxia-reared descendants are unclear. We show that hypoxia educes an intergenerational reduction in lipids and a transgenerational reduction in fertility in the nematode Caenorhabditis elegans. The transmission of these epigenetic phenotypes is dependent on repressive histone-modifying enzymes and the argonaute HRDE-1. Feeding naive C. elegans small RNAs extracted from hypoxia-treated worms is sufficient to induce a fertility defect. Furthermore, the endogenous small interfering RNA F44E5.4/5 is upregulated intergenerationally in response to hypoxia, and soaking naive normoxia-reared C. elegans with F44E5.4/5 double-stranded RNA (dsRNA) is sufficient to induce an intergenerational fertility defect. Finally, we demonstrate that labeled F44E5.4/5 dsRNA is itself transmitted from parents to children. Our results suggest that small RNAs respond to the environment and are sufficient to transmit non-genetic information from parents to their naive children., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF