27 results on '"Nurtay, Anel"'
Search Results
2. EpiBeds: Data informed modelling of the COVID-19 hospital burden in England
- Author
-
Overton, Christopher E., Pellis, Lorenzo, Stage, Helena B., Scarabel, Francesca, Burton, Joshua, Fraser, Christophe, Hall, Ian, House, Thomas A., Jewell, Chris, Nurtay, Anel, Pagani, Filippo, and Lythgoe, Katrina A.
- Subjects
Quantitative Biology - Populations and Evolution ,Statistics - Applications - Abstract
The first year of the COVID-19 pandemic put considerable strain on the national healthcare system in England. In order to predict the effect of the local epidemic on hospital capacity in England, we used a variety of data streams to inform the construction and parameterisation of a hospital progression model, which was coupled to a model of the generalised epidemic. We named this model EpiBeds. Data from a partially complete patient-pathway line-list was used to provide initial estimates of the mean duration that individuals spend in the different hospital compartments. We then fitted EpiBeds using complete data on hospital occupancy and hospital deaths, enabling estimation of the proportion of individuals that follow different clinical pathways, and the reproduction number of the generalised epidemic. The construction of EpiBeds makes it straightforward to adapt to different patient pathways and settings beyond England. As part of the UK response to the pandemic, EpiBeds has provided weekly forecasts to the NHS for hospital bed occupancy and admissions in England, Wales, Scotland, and Northern Ireland.
- Published
- 2021
- Full Text
- View/download PDF
3. Host-virus evolutionary dynamics with specialist and generalist infection strategies: bifurcations, bistability and chaos
- Author
-
Nurtay, Anel, Hennessy, Matthew G., Alsedà, Lluís, Elena, Santiago F., and Sardanyés, Josep
- Subjects
Mathematics - Dynamical Systems ,Quantitative Biology - Populations and Evolution - Abstract
In this work we have investigated the evolutionary dynamics of a generalist pathogen, e.g. a virus population, that evolves towards specialisation in an environment with multiple host types. We have particularly explored under which conditions generalist viral strains may rise in frequency and coexist with specialist strains or even dominate the population. By means of a nonlinear mathematical model and bifurcation analysis, we have determined the theoretical conditions for stability of nine identified equilibria and provided biological interpretation in terms of the infection rates for the viral specialist and generalist strains. By means of a stability diagram we identified stable fixed points and stable periodic orbits, as well as regions of bistability. For arbitrary biologically feasible initial population sizes, the probability of evolving towards stable solutions is obtained for each point of the analyzed parameter space. This probability map shows combinations of infection rates of the generalist and specialist strains that might lead to equal chances for each type becoming the dominant strategy. Furthermore, we have identified infection rates for which the model predicts the onset of chaotic dynamics. Several degenerate Bogdanov-Takens and zero-Hopf bifurcations are detected along with generalized Hopf and zero-Hopf bifurcations. This manuscript provides additional insights into the dynamical complexity of host-pathogen evolution towards different infection strategies.
- Published
- 2019
- Full Text
- View/download PDF
4. Modeling the effect of exposure notification and non-pharmaceutical interventions on COVID-19 transmission in Washington state
- Author
-
Abueg, Matthew, Hinch, Robert, Wu, Neo, Liu, Luyang, Probert, William, Wu, Austin, Eastham, Paul, Shafi, Yusef, Rosencrantz, Matt, Dikovsky, Michael, Cheng, Zhao, Nurtay, Anel, Abeler-Dörner, Lucie, Bonsall, David, McConnell, Michael V., O’Banion, Shawn, and Fraser, Christophe
- Published
- 2021
- Full Text
- View/download PDF
5. Lineage replacement and evolution captured by 3 years of the United Kingdom Coronavirus (COVID-19) Infection Survey.
- Author
-
Lythgoe, Katrina A., Golubchik, Tanya, Hall, Matthew, House, Thomas, Cahuantzi, Roberto, MacIntyre-Cockett, George, Fryer, Helen, Thomson, Laura, Nurtay, Anel, Ghafani, Mahan, Buck, David, Green, Angie, Trebes, Amy, Piazza, Paolo, Lonie, Lorne J., Studley, Ruth, Rourke, Emma, Smith, Darren, Bashton, Matthew, and Nelson, Andrew
- Subjects
CORONAVIRUSES ,COVID-19 ,SARS-CoV-2 ,INFECTION ,EPIDEMICS - Abstract
The Office for National Statistics Coronavirus (COVID-19) Infection Survey (ONS-CIS) is the largest surveillance study of SARS-CoV-2 positivity in the community, and collected data on the United Kingdom (UK) epidemic from April 2020 until March 2023 before being paused. Here, we report on the epidemiological and evolutionary dynamics of SARS-CoV-2 determined by analysing the sequenced samples collected by the ONS-CIS during this period. We observed a series of sweeps or partial sweeps, with each sweeping lineage having a distinct growth advantage compared to their predecessors, although this was also accompanied by a gradual fall in average viral burdens from June 2021 to March 2023. The sweeps also generated an alternating pattern in which most samples had either S-gene target failure (SGTF) or non-SGTF over time. Evolution was characterized by steadily increasing divergence and diversity within lineages, but with step increases in divergence associated with each sweeping major lineage. This led to a faster overall rate of evolution when measured at the between-lineage level compared to within lineages, and fluctuating levels of diversity. These observations highlight the value of viral sequencing integrated into community surveillance studies to monitor the viral epidemiology and evolution of SARS-CoV-2, and potentially other pathogens. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
6. Viral burden is associated with age, vaccination, and viral variant in a population-representative study of SARS-CoV-2 that accounts for time-since-infection-related sampling bias.
- Author
-
Fryer, Helen R., Golubchik, Tanya, Hall, Matthew, Fraser, Christophe, Hinch, Robert, Ferretti, Luca, Thomson, Laura, Nurtay, Anel, Pellis, Lorenzo, House, Thomas, MacIntyre-Cockett, George, Trebes, Amy, Buck, David, Piazza, Paolo, Green, Angie, Lonie, Lorne J, Smith, Darren, Bashton, Matthew, Crown, Matthew, and Nelson, Andrew
- Subjects
PARTIAL least squares regression ,SARS-CoV-2 Delta variant ,VACCINATION status ,SARS-CoV-2 ,VACCINATION - Abstract
In this study, we evaluated the impact of viral variant, in addition to other variables, on within-host viral burden, by analysing cycle threshold (Ct) values derived from nose and throat swabs, collected as part of the UK COVID-19 Infection Survey. Because viral burden distributions determined from community survey data can be biased due to the impact of variant epidemiology on the time-since-infection of samples, we developed a method to explicitly adjust observed Ct value distributions to account for the expected bias. By analysing the adjusted Ct values using partial least squares regression, we found that among unvaccinated individuals with no known prior exposure, viral burden was 44% lower among Alpha variant infections, compared to those with the predecessor strain, B.1.177. Vaccination reduced viral burden by 67%, and among vaccinated individuals, viral burden was 286% higher among Delta variant, compared to Alpha variant, infections. In addition, viral burden increased by 17% for every 10-year age increment of the infected individual. In summary, within-host viral burden increases with age, is reduced by vaccination, and is influenced by the interplay of vaccination status and viral variant. Author summary: The SARS-CoV-2 epidemic in the United Kingdom (UK) has been characterized by the successive transmission of distinct viral variants. Viral variation can impact viral properties, including infectiousness and pathogenicity. These properties may be linked to the amount of virus present in an infected individual. In this study, we examined the association between intra-patient viral burden and a range of factors, including viral variant, using a large, population-representative SARS-CoV-2 survey conducted in the UK. As part of our investigation, we developed a novel method to account for bias in sampled viral burden resulting from the study's sampling methodology. Our findings indicate that viral burden within the host increases with age, is reduced by vaccination, and is influenced by the interplay between vaccination status and viral variant. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
7. EpiBeds: Data informed modelling of the COVID-19 hospital burden in England
- Author
-
Overton, Christopher E., primary, Pellis, Lorenzo, additional, Stage, Helena B., additional, Scarabel, Francesca, additional, Burton, Joshua, additional, Fraser, Christophe, additional, Hall, Ian, additional, House, Thomas A., additional, Jewell, Chris, additional, Nurtay, Anel, additional, Pagani, Filippo, additional, and Lythgoe, Katrina A., additional
- Published
- 2022
- Full Text
- View/download PDF
8. EpiBeds:Data informed modelling of the COVID-19 hospital burden in England
- Author
-
Struchiner, Claudio José, Overton, Christopher E., Pellis, Lorenzo, Stage, Helena B., Scarabel, Francesca, Burton, Joshua, Fraser, Christophe, Hall, Ian, House, Thomas A., Jewell, Chris, Nurtay, Anel, Pagani, Filippo, Lythgoe, Katrina A., Struchiner, Claudio José, Overton, Christopher E., Pellis, Lorenzo, Stage, Helena B., Scarabel, Francesca, Burton, Joshua, Fraser, Christophe, Hall, Ian, House, Thomas A., Jewell, Chris, Nurtay, Anel, Pagani, Filippo, and Lythgoe, Katrina A.
- Abstract
The first year of the COVID-19 pandemic put considerable strain on healthcare systems worldwide. In order to predict the effect of the local epidemic on hospital capacity in England, we used a variety of data streams to inform the construction and parameterisation of a hospital progression model, EpiBeds, which was coupled to a model of the generalised epidemic. In this model, individuals progress through different pathways (e.g. may recover, die, or progress to intensive care and recover or die) and data from a partially complete patient-pathway line-list was used to provide initial estimates of the mean duration that individuals spend in the different hospital compartments. We then fitted EpiBeds using complete data on hospital occupancy and hospital deaths, enabling estimation of the proportion of individuals that follow the different clinical pathways, the reproduction number of the generalised epidemic, and to make short-term predictions of hospital bed demand. The construction of EpiBeds makes it straightforward to adapt to different patient pathways and settings beyond England. As part of the UK response to the pandemic, EpiBeds provided weekly forecasts to the NHS for hospital bed occupancy and admissions in England, Wales, Scotland, and Northern Ireland at national and regional scales.
- Published
- 2022
9. EpiBeds:Data informed modelling of the COVID-19 hospital burden in England
- Author
-
Overton, Christopher E., Pellis, Lorenzo, Stage, Helena B., Scarabel, Francesca, Burton, Joshua, Fraser, Christophe, Hall, Ian, House, Thomas A., Jewell, Chris, Nurtay, Anel, Pagani, Filippo, and Lythgoe, Katrina A.
- Subjects
q-bio.PE ,stat.AP - Abstract
The first year of the COVID-19 pandemic put considerable strain on the national healthcare system in England. In order to predict the effect of the local epidemic on hospital capacity in England, we used a variety of data streams to inform the construction and parameterisation of a hospital progression model, which was coupled to a model of the generalised epidemic. We named this model EpiBeds. Data from a partially complete patient-pathway line-list was used to provide initial estimates of the mean duration that individuals spend in the different hospital compartments. We then fitted EpiBeds using complete data on hospital occupancy and hospital deaths, enabling estimation of the proportion of individuals that follow different clinical pathways, and the reproduction number of the generalised epidemic. The construction of EpiBeds makes it straightforward to adapt to different patient pathways and settings beyond England. As part of the UK response to the pandemic, EpiBeds has provided weekly forecasts to the NHS for hospital bed occupancy and admissions in England, Wales, Scotland, and Northern Ireland.
- Published
- 2021
- Full Text
- View/download PDF
10. Modelling the effectiveness and social costs of daily lateral flow antigen tests versus quarantine in preventing onward transmission of COVID-19 from traced contacts
- Author
-
Ferretti, Luca, primary, Wymant, Chris, additional, Nurtay, Anel, additional, Zhao, Lele, additional, Hinch, Robert, additional, Bonsall, David, additional, Kendall, Michelle, additional, Masel, Joanna, additional, Bell, John, additional, Hopkins, Susan, additional, Kilpatrick, A. Marm, additional, Peto, Tim, additional, Abeler-Dörner, Lucie, additional, and Fraser, Christophe, additional
- Published
- 2021
- Full Text
- View/download PDF
11. OpenABM-Covid19—An agent-based model for non-pharmaceutical interventions against COVID-19 including contact tracing
- Author
-
Hinch, Robert, primary, Probert, William J. M., additional, Nurtay, Anel, additional, Kendall, Michelle, additional, Wymant, Chris, additional, Hall, Matthew, additional, Lythgoe, Katrina, additional, Bulas Cruz, Ana, additional, Zhao, Lele, additional, Stewart, Andrea, additional, Ferretti, Luca, additional, Montero, Daniel, additional, Warren, James, additional, Mather, Nicole, additional, Abueg, Matthew, additional, Wu, Neo, additional, Legat, Olivier, additional, Bentley, Katie, additional, Mead, Thomas, additional, Van-Vuuren, Kelvin, additional, Feldner-Busztin, Dylan, additional, Ristori, Tommaso, additional, Finkelstein, Anthony, additional, Bonsall, David G., additional, Abeler-Dörner, Lucie, additional, and Fraser, Christophe, additional
- Published
- 2021
- Full Text
- View/download PDF
12. Host–virus evolutionary dynamics with specialist and generalist infection strategies: Bifurcations, bistability, and chaos
- Author
-
Fundación la Caixa, European Commission, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Ministerio de Economía y Competitividad (España), Generalitat Valenciana, Generalitat de Catalunya, Elena, Santiago F. [0000-0001-8249-5593], Sardanyés, Josep [0000-0001-7225-5158], Nurtay, Anel, Hennessy, Matthew G., Alsedà, Lluís, Elena, Santiago F., Sardanyés, Josep, Fundación la Caixa, European Commission, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Ministerio de Economía y Competitividad (España), Generalitat Valenciana, Generalitat de Catalunya, Elena, Santiago F. [0000-0001-8249-5593], Sardanyés, Josep [0000-0001-7225-5158], Nurtay, Anel, Hennessy, Matthew G., Alsedà, Lluís, Elena, Santiago F., and Sardanyés, Josep
- Abstract
In this work, we have investigated the evolutionary dynamics of a generalist pathogen, e.g., a virus population, that evolves toward specialization in an environment with multiple host types. We have particularly explored under which conditions generalist viral strains may rise in frequency and coexist with specialist strains or even dominate the population. By means of a nonlinear mathematical model and bifurcation analysis, we have determined the theoretical conditions for stability of nine identified equilibria and provided biological interpretation in terms of the infection rates for the viral specialist and generalist strains. By means of a stability diagram, we identified stable fixed points and stable periodic orbits, as well as regions of bistability. For arbitrary biologically feasible initial population sizes, the probability of evolving toward stable solutions is obtained for each point of the analyzed parameter space. This probability map shows combinations of infection rates of the generalist and specialist strains that might lead to equal chances for each type becoming the dominant strategy. Furthermore, we have identified infection rates for which the model predicts the onset of chaotic dynamics. Several degenerate Bogdanov–Takens and zero-Hopf bifurcations are detected along with generalized Hopf and zero-Hopf bifurcations. This manuscript provides additional insights into the dynamical complexity of host–pathogen evolution toward different infection strategies.
- Published
- 2020
13. OpenABM-Covid19 - an agent-based model for non-pharmaceutical interventions against COVID-19 including contact tracing
- Author
-
Hinch, Robert, primary, Probert, William J M, additional, Nurtay, Anel, additional, Kendall, Michelle, additional, Wymant, Chris, additional, Hall, Matthew, additional, Lythgoe, Katrina, additional, Cruz, Ana Bulas, additional, Zhao, Lele, additional, Stewart, Andrea, additional, Ferretti, Luca, additional, Montero, Daniel, additional, Warren, James, additional, Mather, Nicole, additional, Abueg, Matthew, additional, Wu, Neo, additional, Finkelstein, Anthony, additional, Bonsall, David G, additional, Abeler-Dörner, Lucie, additional, and Fraser, Christophe, additional
- Published
- 2020
- Full Text
- View/download PDF
14. The timing of COVID-19 transmission
- Author
-
Ferretti, Luca, primary, Ledda, Alice, additional, Wymant, Chris, additional, Zhao, Lele, additional, Ledda, Virginia, additional, Abeler-Dörner, Lucie, additional, Kendall, Michelle, additional, Nurtay, Anel, additional, Cheng, Hao-Yuan, additional, Ng, Ta-Chou, additional, Lin, Hsien-Ho, additional, Hinch, Rob, additional, Masel, Joanna, additional, Kilpatrick, A. Marm, additional, and Fraser, Christophe, additional
- Published
- 2020
- Full Text
- View/download PDF
15. Modeling the combined effect of digital exposure notification and non-pharmaceutical interventions on the COVID-19 epidemic in Washington state
- Author
-
Abueg, Matthew, primary, Hinch, Robert, additional, Wu, Neo, additional, Liu, Luyang, additional, Probert, William, additional, Wu, Austin, additional, Eastham, Paul, additional, Shafi, Yusef, additional, Rosencrantz, Matt, additional, Dikovsky, Michael, additional, Cheng, Zhao, additional, Nurtay, Anel, additional, Abeler-Dörner, Lucie, additional, Bonsall, David, additional, McConnell, Michael V., additional, O’Banion, Shawn, additional, and Fraser, Christophe, additional
- Published
- 2020
- Full Text
- View/download PDF
16. Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing
- Author
-
Ferretti, Luca, primary, Wymant, Chris, additional, Kendall, Michelle, additional, Zhao, Lele, additional, Nurtay, Anel, additional, Abeler-Dörner, Lucie, additional, Parker, Michael, additional, Bonsall, David, additional, and Fraser, Christophe, additional
- Published
- 2020
- Full Text
- View/download PDF
17. Host–virus evolutionary dynamics with specialist and generalist infection strategies: Bifurcations, bistability, and chaos
- Author
-
Nurtay, Anel, primary, Hennessy, Matthew G., additional, Alsedà, Lluís, additional, Elena, Santiago F., additional, and Sardanyés, Josep, additional
- Published
- 2020
- Full Text
- View/download PDF
18. Mathematical modelling of pathogen specialization
- Author
-
Nurtay, Anel, Alsedà, Lluís, Elena, Santiago F., and Fundación 'la Caixa'
- Abstract
Thesis submitted in order to be awarded the degree of Doctor of Phylosophy in Mathematics., [EN]: The occurrence of new disease-causing viruses is tightly linked to the specialisation of viral sub-populations towards new host types. Mathematical modelling provides a quantitative framework that can aid with the prediction of long-term processes such as specialisation. Due to the complex nature of intra- and interspecific interactions present in evolutionary processes, elaborate mathematical tools such as bifurcation analysis must be employed while studying population dynamics. In this thesis, a hierarchy of population models is developed to understand the onset and dynamics of specialisation and their dependence on the parameters of the system. Using a model for a wild-type and mutant virus that compete for the same host, conditions for the survival of only the mutant subpopulation, along with its coexistence with the wild-type strain, are determined. Stability diagrams that depict regions of distinct dynamics are constructed in terms of infection rates, virulence and the mutation rate; the diagrams are explained in terms of the biological characteristics of the sub-populations. For varying parameters, the phenomenon of intersection and exchange of stability between different periodic solutions of the system is observed and described in the scope of the competing wild-type and mutant strains. In the case of several types of hosts being available for competing specialist and generalist strains, regions of bistability exist, and the probabilities of observing each state are calculated as functions of the infection rates. A strange chaotic attractor is discovered and analysed with the use of Lyapunov exponents. This, combined with the stability diagrams, shows that the survival of the generalist in a stable environment is an unlikely event. Furthermore, the case of N >> 1 different strains competing for different types of host cells is studied. For this case, a counterintuitive and non-monotonic dependence of the specialisation time on the burst size and mutation rate is discovered as a result of carrying out a regression analysis on numerically obtained data. Overall, this work makes broad contributions to mathematical modelling and analys is of pathogen dynamics and evolutionary processes., [CAT]: L'aparició de nous virus causants de malalties està estretament lligada a l'especialització de subpoblacions virals cap a nous tipus d'amfitrions. La modelització matemàtica proporciona un marc quantitatiu que pot ajudar amb la predicció de processos a llarg termini com pot ser l'especialització. A causa de la naturalesa complexa que presenten les interaccions intra i interespecífiques en els processos evolutius, cal aplicar eines matemàtiques complexes, com ara l'anàlisi de bifurcacions, al estudiar dinàmiques de població. Aquesta tesi desenvolupa una jerarquia de models de població per poder comprendre l'aparició i les dinàmiques d'especialització, i la seva dependència dels paràmetres del sistema. Utilitzant un model per a un virus de tipus salvatge i un virus mutat que competeixen pel mateix amfitrió, es determinen les condicions per a la supervivència únicament de la subpoblació mutant, juntament amb la seva coexistència amb el cep de tipus salvatge. Els diagrames d'estabilitat que representen regions de dinàmiques diferenciades es construeixen en termes de taxa d'infecció, virulència i taxa de mutació; els diagrames s'expliquen en base a les característiques biològiques de les subpoblacions. Per a paràmetres variables, s'observa i es descriu el fenomen d'intersecció i intercanvi d'estabilitat entre diferents solucions sistemàtiques i periòdiques en l'àmbit dels ceps de tipus salvatge i els ceps mutants en competència directa. En el cas de que diversos tipus d'amfitrions estiguin disponibles per a ser disputats per ceps especialitzats i generalistes existeixen regions de biestabilitat, i les probabilitats d'observar cada estat es calculen com funcions de les taxes d'infecció. S'ha trobat un rar atractor caòtic i s'ha analitzat amb l'ús d'exponents de Lyapunov. Això, combinat amb els diagrames d'estabilitat, mostra que la supervivència del cep generalista en un entorn estable és un fet improbable. A més, s'estudia el cas dels diversos ceps N >> 1 que competeixen per diferents tipus de cèl·lules amfitriones. En aquest cas s'ha descobert una dependència no monotònica, contraria al que es preveia, del temps d'especialització sobre la mida inicial i la taxa de mutació, com a conseqüència de la realització d'un anàlisi de regressió sobre dades obtingudes numèricament. En general, aquest treball fa contribucions àmplies a la modelització matemàtica i anàlisi de la dinàmica dels patògens i els processos evolutius., [ES]: La aparición de nuevos virus causantes de enfermedades está estrechamente ligada a la especialización de las subpoblaciones virales hacia nuevos tipos de anfitriones. La modelización matemática proporciona un marco cuantitativo que puede ayudar a la predicción de procesos a largo plazo como la especialización. Debido a la naturaleza compleja que presentan las interacciones intra e interespecíficas en los procesos evolutivos, aplicar herramientas matemáticas complejas, tales como el análisis de bifurcación, al estudiar dinámicas de población. Esta tesis desarrolla una jerarquía de modelos de población para poder comprender la aparición y las dinámicas de especialización, y su dependencia de los parámetros del sistema. Utilizando un modelo para un virus de tipo salvaje y un virus mutado que compiten por el mismo anfitrión, se determinan las condiciones para la supervivencia únicamente de la subpoblación mutante, junto con su coexistencia con la cepa de tipo salvaje. Los diagramas de estabilidad que representan regiones de dinámicas diferenciadas se construyen en términos de tasa de infección, virulencia y tasa de mutación; los diagramas se explican en base a las características biológicas de las subpoblaciones. Para parámetros variables, se observa y se describe el fenómeno de intersección e intercambio de estabilidad entre diferentes soluciones sistemáticas y periódicas en el ámbito de las cepas de tipo salvaje y las cepas mutantes en competencia directa. En el caso de que varios tipos de anfitriones estén disponibles para ser disputados por cepas especializadas y generalistas existen regiones de biestabilidad, y las probabilidades de observar cada estado se calculan como funciones de las tasas de infección. Se ha encontrado un raro atractor caótico y se ha analizado con el uso de exponentes de Lyapunov. Esto, combinado con los diagramas de estabilidad, muestra que la supervivencia de la cepa generalista en un entorno estable es un hecho improbable. Además, se estudia el caso de los varias cepas N >> 1 que compiten por diferentes tipos de células anfitrionas. En este caso se ha descubierto una dependencia no monotónica, contraria a lo que se preveía, del tiempo de especialización sobre el tamaño inicial y la tasa de mutación, como consecuencia de la realización de un análisis de regresión sobre datos obtenidos numéricamente. En general, este trabajo hace contribuciones amplias a la modelización matemática y el análisis de la dinámica de los patógenos y los procesos evolutivos., La meva formació al CRM compta amb el finançament de l'Obra Social "la Caixa" dins del programa Recerca en Matemàtica Col·laborativa (My training at CRM is funded by "la Caixa" Foundation within the programme Research on Collaborative Mathematics).
- Published
- 2019
19. Theoretical conditions for the coexistence of viral strains with differences in phenotypic traits : A bifurcation analysis
- Author
-
Nurtay, Anel, Hennessy, Matthew G., Sardanyés, Josep, Alsedà i Soler, Lluís, Elena, Santiago F., Universitat Autònoma de Barcelona. Departament de Matemàtiques, Nurtay, Anel, Hennessy, Matthew G., Sardanyés, Josep, Alsedà i Soler, Lluís, Elena, Santiago F., and Universitat Autònoma de Barcelona. Departament de Matemàtiques
- Abstract
Altres ajuts: CERCA Programme/Generalitat de Catalunya, We investigate the dynamics of a wild-type viral strain which generates mutant strains differing in phenotypic properties for infectivity, virulence and mutation rates. We study, by means of a mathematical model and bifurcation analysis, conditions under which the wild-type and mutant viruses, which compete for the same host cells, can coexist. The coexistence conditions are formulated in terms of the basic reproductive numbers of the strains, a maximum value of the mutation rate and the virulence of the pathogens. The analysis reveals that parameter space can be divided into five regions, each with distinct dynamics, that are organized around degenerate Bogdanov-Takens and zero- Hopf bifurcations, the latter of which gives rise to a curve of transcritical bifurcations of periodic orbits. These results provide new insights into the conditions by which viral populations may contain multiple coexisting strains in a stable manner.
- Published
- 2019
20. Mathematical modelling of pathogen specialisation
- Author
-
Alsedà i Soler, Lluís, Elena Fito, Santiago F., Nurtay, Anel, Universitat Autònoma de Barcelona. Departament de Matemàtiques, Alsedà i Soler, Lluís, Elena Fito, Santiago F., Nurtay, Anel, and Universitat Autònoma de Barcelona. Departament de Matemàtiques
- Abstract
L'aparició de nous virus causants de malalties està estretament lligada a l'especialització de subpoblacions virals cap a nous tipus d'amfitrions. La modelització matemàtica proporciona un marc quantitatiu que pot ajudar amb la predicció de processos a llarg termini com pot ser l'especialització. A causa de la naturalesa complexa que presenten les interaccions intra i interespecífiques en els processos evolutius, cal aplicar eines matemàtiques complexes, com ara l'anàlisi de bifurcacions, al estudiar dinàmiques de població. Aquesta tesi desenvolupa una jerarquia de models de població per poder comprendre l'aparició i les dinàmiques d'especialització, i la seva dependència dels paràmetres del sistema. Utilitzant un model per a un virus de tipus salvatge i un virus mutat que competeixen pel mateix amfitrió, es determinen les condicions per a la supervivència únicament de la subpoblació mutant, juntament amb la seva coexistència amb el cep de tipus salvatge. Els diagrames d'estabilitat que representen regions de dinàmiques diferenciades es construeixen en termes de taxa d'infecció, virulència i taxa de mutació; els diagrames s'expliquen en base a les característiques biològiques de les subpoblacions. Per a paràmetres variables, s'observa i es descriu el fenomen d'intersecció i intercanvi d'estabilitat entre diferents solucions sistemàtiques i periòdiques en l'àmbit dels ceps de tipus salvatge i els ceps mutants en competència directa. En el cas de que diversos tipus d'amfitrions estiguin disponibles per a ser disputats per ceps especialitzats i generalistes existeixen regions de biestabilitat, i les probabilitats d'observar cada estat es calculen com funcions de les taxes d'infecció. S'ha trobat un rar atractor caòtic i s'ha analitzat amb l'ús d'exponents de Lyapunov. Això, combinat amb els diagrames d'estabilitat, mostra que la supervivència del cep generalista en un entorn estable és un fet improbable. A més, s'estudia el cas dels diversos ceps N»1 que competeixen pe, La aparición de nuevos virus causantes de enfermedades está estrechamente ligada a la especialización de las subpoblaciones virales hacia nuevos tipos de anfitriones. La modelizaci ón matemática proporciona un marco cuantitativo que puede ayudar a la predicción de procesos a largo plazo como la especialización. Debido a la naturaleza compleja que presentan las interacciones intra e interespecíficas en los procesos evolutivos, aplicar herramientas matemáticas complejas, tales como el análisis de bifurcación, al estudiar dinámicas de población. Esta tesis desarrolla una jerarquía de modelos de población para poder comprender la aparición y las dinámicas de especialización, y su dependencia de los parámetros del sistema. Utilizando un modelo para un virus de tipo salvaje y un virus mutado que compiten por el mismo anfitrión, se determinan las condiciones para la supervivencia únicamente de la subpoblación mutante, junto con su coexistencia con la cepa de tipo salvaje. Los diagramas de estabilidad que representan regiones de dinámicas diferenciadas se construyen en términos de tasa de infección, virulencia y tasa de mutación; los diagramas se explican en base a las características biológicas de las subpoblaciones. Para parámetros variables, se observa y se describe el fenómeno de intersección e intercambio de estabilidad entre diferentes soluciones sistemáticas y periódicas en el ámbito de las cepas de tipo salvaje y las cepas mutantes en competencia directa. En el caso de que varios tipos de anfitriones estén disponibles para ser disputados por cepas especializadas y generalistas existen regiones de biestabilidad, y las probabilidades de observar cada estado se calculan como funciones de las tasas de infección. Se ha encontrado un raro atractor caótico y se ha analizado con el uso de exponentes de Lyapunov. Esto, combinado con los diagramas de estabilidad, muestra que la supervivencia de la cepa generalista en un entorno estable es un hecho improbable. Además, se estud, The occurrence of new disease-causing viruses is tightly linked to the specialisation of viral sub-populations towards new host types. Mathematical modelling provides a quantitative framework that can aid with the prediction of long-term processes such as specialisation. Due to the complex nature of intra- and interspecific interactions present in evolutionary processes, elaborate mathematical tools such as bifurcation analysis must be employed while studying population dynamics. In this thesis, a hierarchy of population models is developed to understand the onset and dynamics of specialisation and their dependence on the parameters of the system. Using a model for a wild-type and mutant virus that compete for the same host, conditions for the survival of only the mutant subpopulation, along with its coexistence with the wild-type strain, are determined. Stability diagrams that depict regions of distinct dynamics are constructed in terms of infection rates, virulence and the mutation rate; the diagrams are explained in terms of the biological characteristics of the sub-populations. For varying parameters, the phenomenon of intersection and exchange of stability between different periodic solutions of the system is observed and described in the scope of the competing wild-type and mutant strains. In the case of several types of hosts being available for competing specialist and generalist strains, regions of bistability exist, and the probabilities of observing each state are calculated as functions of the infection rates. A strange chaotic attractor is discovered and analysed with the use of Lyapunov exponents. This, combined with the stability diagrams, shows that the survival of the generalist in a stable environment is an unlikely event. Furthermore, the case of N=1 different strains competing for different types of host cells is studied. For this case, a counterintuitive and non-monotonic dependence of the specialisation time on the burst size and mutation rate
- Published
- 2019
21. Theoretical conditions for the coexistence of viral strains with differences in phenotypic traits: a bifurcation analysis
- Author
-
Fundación la Caixa, Ministerio de Economía y Competitividad (España), Generalitat de Catalunya, European Commission, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Nurtay, Anel, Hennessy, Matthew G., Sardanyés, Josep, Alsedà, Lluís, Elena, Santiago F., Fundación la Caixa, Ministerio de Economía y Competitividad (España), Generalitat de Catalunya, European Commission, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Nurtay, Anel, Hennessy, Matthew G., Sardanyés, Josep, Alsedà, Lluís, and Elena, Santiago F.
- Abstract
We investigate the dynamics of a wild-type viral strain which generates mutant strains differing in phenotypic properties for infectivity, virulence and mutation rates. We study, by means of a mathematical model and bifurcation analysis, conditions under which the wild-type and mutant viruses, which compete for the same host cells, can coexist. The coexistence conditions are formulated in terms of the basic reproductive numbers of the strains, a maximum value of the mutation rate and the virulence of the pathogens. The analysis reveals that parameter space can be divided into five regions, each with distinct dynamics, that are organized around degenerate Bogdanov–Takens and zero-Hopf bifurcations, the latter of which gives rise to a curve of transcritical bifurcations of periodic orbits. These results provide new insights into the conditions by which viral populations may contain multiple coexisting strains in a stable manner.
- Published
- 2019
22. Mathematical modelling of pathogen specialization
- Author
-
Alsedà, Lluís, Elena, Santiago F., Fundación la Caixa, Nurtay, Anel, Alsedà, Lluís, Elena, Santiago F., Fundación la Caixa, and Nurtay, Anel
- Abstract
[EN]: The occurrence of new disease-causing viruses is tightly linked to the specialisation of viral sub-populations towards new host types. Mathematical modelling provides a quantitative framework that can aid with the prediction of long-term processes such as specialisation. Due to the complex nature of intra- and interspecific interactions present in evolutionary processes, elaborate mathematical tools such as bifurcation analysis must be employed while studying population dynamics. In this thesis, a hierarchy of population models is developed to understand the onset and dynamics of specialisation and their dependence on the parameters of the system. Using a model for a wild-type and mutant virus that compete for the same host, conditions for the survival of only the mutant subpopulation, along with its coexistence with the wild-type strain, are determined. Stability diagrams that depict regions of distinct dynamics are constructed in terms of infection rates, virulence and the mutation rate; the diagrams are explained in terms of the biological characteristics of the sub-populations. For varying parameters, the phenomenon of intersection and exchange of stability between different periodic solutions of the system is observed and described in the scope of the competing wild-type and mutant strains. In the case of several types of hosts being available for competing specialist and generalist strains, regions of bistability exist, and the probabilities of observing each state are calculated as functions of the infection rates. A strange chaotic attractor is discovered and analysed with the use of Lyapunov exponents. This, combined with the stability diagrams, shows that the survival of the generalist in a stable environment is an unlikely event. Furthermore, the case of N >> 1 different strains competing for different types of host cells is studied. For this case, a counterintuitive and non-monotonic dependence of the specialisation time on the burst size and mutat, [CAT]: L'aparició de nous virus causants de malalties està estretament lligada a l'especialització de subpoblacions virals cap a nous tipus d'amfitrions. La modelització matemàtica proporciona un marc quantitatiu que pot ajudar amb la predicció de processos a llarg termini com pot ser l'especialització. A causa de la naturalesa complexa que presenten les interaccions intra i interespecífiques en els processos evolutius, cal aplicar eines matemàtiques complexes, com ara l'anàlisi de bifurcacions, al estudiar dinàmiques de població. Aquesta tesi desenvolupa una jerarquia de models de població per poder comprendre l'aparició i les dinàmiques d'especialització, i la seva dependència dels paràmetres del sistema. Utilitzant un model per a un virus de tipus salvatge i un virus mutat que competeixen pel mateix amfitrió, es determinen les condicions per a la supervivència únicament de la subpoblació mutant, juntament amb la seva coexistència amb el cep de tipus salvatge. Els diagrames d'estabilitat que representen regions de dinàmiques diferenciades es construeixen en termes de taxa d'infecció, virulència i taxa de mutació; els diagrames s'expliquen en base a les característiques biològiques de les subpoblacions. Per a paràmetres variables, s'observa i es descriu el fenomen d'intersecció i intercanvi d'estabilitat entre diferents solucions sistemàtiques i periòdiques en l'àmbit dels ceps de tipus salvatge i els ceps mutants en competència directa. En el cas de que diversos tipus d'amfitrions estiguin disponibles per a ser disputats per ceps especialitzats i generalistes existeixen regions de biestabilitat, i les probabilitats d'observar cada estat es calculen com funcions de les taxes d'infecció. S'ha trobat un rar atractor caòtic i s'ha analitzat amb l'ús d'exponents de Lyapunov. Això, combinat amb els diagrames d'estabilitat, mostra que la supervivència del cep generalista en un entorn estable és un fet improbable. A més, s'estudia el cas dels diversos ceps N >> 1 que comp, [ES]: La aparición de nuevos virus causantes de enfermedades está estrechamente ligada a la especialización de las subpoblaciones virales hacia nuevos tipos de anfitriones. La modelización matemática proporciona un marco cuantitativo que puede ayudar a la predicción de procesos a largo plazo como la especialización. Debido a la naturaleza compleja que presentan las interacciones intra e interespecíficas en los procesos evolutivos, aplicar herramientas matemáticas complejas, tales como el análisis de bifurcación, al estudiar dinámicas de población. Esta tesis desarrolla una jerarquía de modelos de población para poder comprender la aparición y las dinámicas de especialización, y su dependencia de los parámetros del sistema. Utilizando un modelo para un virus de tipo salvaje y un virus mutado que compiten por el mismo anfitrión, se determinan las condiciones para la supervivencia únicamente de la subpoblación mutante, junto con su coexistencia con la cepa de tipo salvaje. Los diagramas de estabilidad que representan regiones de dinámicas diferenciadas se construyen en términos de tasa de infección, virulencia y tasa de mutación; los diagramas se explican en base a las características biológicas de las subpoblaciones. Para parámetros variables, se observa y se describe el fenómeno de intersección e intercambio de estabilidad entre diferentes soluciones sistemáticas y periódicas en el ámbito de las cepas de tipo salvaje y las cepas mutantes en competencia directa. En el caso de que varios tipos de anfitriones estén disponibles para ser disputados por cepas especializadas y generalistas existen regiones de biestabilidad, y las probabilidades de observar cada estado se calculan como funciones de las tasas de infección. Se ha encontrado un raro atractor caótico y se ha analizado con el uso de exponentes de Lyapunov. Esto, combinado con los diagramas de estabilidad, muestra que la supervivencia de la cepa generalista en un entorno estable es un hecho improbable. Además, se
- Published
- 2019
23. Theoretical conditions for the coexistence of viral strains with differences in phenotypic traits: a bifurcation analysis
- Author
-
Nurtay, Anel, primary, Hennessy, Matthew G., additional, Sardanyés, Josep, additional, Alsedà, Lluís, additional, and Elena, Santiago F., additional
- Published
- 2019
- Full Text
- View/download PDF
24. Correction: Viral burden is associated with age, vaccination, and viral variant in a population-representative study of SARS-CoV-2 that accounts for time-since-infection-related sampling bias.
- Author
-
Fryer, Helen R., Golubchik, Tanya, Hall, Matthew, Fraser, Christophe, Hinch, Robert, Ferretti, Luca, Thomson, Laura, Nurtay, Anel, Pellis, Lorenzo, House, Thomas, MacIntyre-Cockett, George, Trebes, Amy, Buck, David, Piazza, Paolo, Green, Angie, Lonie, Lorne J, Smith, Darren, Bashton, Matthew, Crown, Matthew, and Nelson, Andrew
- Subjects
SARS-CoV-2 ,VACCINATION ,AGE - Abstract
The correct expressions are: Graph HT ht There are a number of errors in the caption for Fig 4, "Adjusted Ct values plotted against different factors". [Extracted from the article]
- Published
- 2023
- Full Text
- View/download PDF
25. EpiBeds: Data informed modelling of the COVID-19 hospital burden in England
- Author
-
Christopher E. Overton, Lorenzo Pellis, Helena B. Stage, Francesca Scarabel, Joshua Burton, Christophe Fraser, Ian Hall, Thomas A. House, Chris Jewell, Anel Nurtay, Filippo Pagani, Katrina A. Lythgoe, Overton, Christopher E [0000-0002-8433-4010], Stage, Helena B [0000-0001-9938-8452], Scarabel, Francesca [0000-0003-0250-4555], Burton, Joshua [0000-0001-8530-0464], Nurtay, Anel [0000-0001-7107-1656], and Apollo - University of Cambridge Repository
- Subjects
FOS: Computer and information sciences ,FOS: Physical sciences ,Statistics - Applications ,Cellular and Molecular Neuroscience ,Genetics ,Humans ,Applications (stat.AP) ,Quantitative Biology - Populations and Evolution ,Molecular Biology ,Pandemics ,Ecology, Evolution, Behavior and Systematics ,Medicine and health sciences ,Ecology ,Biology and life sciences ,Populations and Evolution (q-bio.PE) ,COVID-19 ,Hospitals ,Research and analysis methods ,Physical sciences ,Hospitalization ,Computational Theory and Mathematics ,England ,FOS: Biological sciences ,Modeling and Simulation ,People and places ,Research Article - Abstract
Acknowledgements: The authors would like to thank colleagues in SPI-M-O and JUNIPER consortium for various discussions around hospital modelling and forecasting., Funder: National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Emergency Preparedness and Response, Funder: Li Ka Shing Foundation; funder-id: http://dx.doi.org/10.13039/100007421, Funder: National Institute for Health Research Policy Research Programme in Operational Research (OPERA), The first year of the COVID-19 pandemic put considerable strain on healthcare systems worldwide. In order to predict the effect of the local epidemic on hospital capacity in England, we used a variety of data streams to inform the construction and parameterisation of a hospital progression model, EpiBeds, which was coupled to a model of the generalised epidemic. In this model, individuals progress through different pathways (e.g. may recover, die, or progress to intensive care and recover or die) and data from a partially complete patient-pathway line-list was used to provide initial estimates of the mean duration that individuals spend in the different hospital compartments. We then fitted EpiBeds using complete data on hospital occupancy and hospital deaths, enabling estimation of the proportion of individuals that follow the different clinical pathways, the reproduction number of the generalised epidemic, and to make short-term predictions of hospital bed demand. The construction of EpiBeds makes it straightforward to adapt to different patient pathways and settings beyond England. As part of the UK response to the pandemic, EpiBeds provided weekly forecasts to the NHS for hospital bed occupancy and admissions in England, Wales, Scotland, and Northern Ireland at national and regional scales.
- Published
- 2022
26. Lineage replacement and evolution captured by 3 years of the United Kingdom Coronavirus (COVID-19) Infection Survey.
- Author
-
Lythgoe KA, Golubchik T, Hall M, House T, Cahuantzi R, MacIntyre-Cockett G, Fryer H, Thomson L, Nurtay A, Ghafani M, Buck D, Green A, Trebes A, Piazza P, Lonie LJ, Studley R, Rourke E, Smith D, Bashton M, Nelson A, Crown M, McCann C, Young GR, Andre Nunes Dos Santos R, Richards Z, Tariq A, Fraser C, Diamond I, Barrett J, Walker AS, and Bonsall D
- Subjects
- Humans, SARS-CoV-2, United Kingdom epidemiology, Surveys and Questionnaires, COVID-19 epidemiology, Epidemics
- Abstract
The Office for National Statistics Coronavirus (COVID-19) Infection Survey (ONS-CIS) is the largest surveillance study of SARS-CoV-2 positivity in the community, and collected data on the United Kingdom (UK) epidemic from April 2020 until March 2023 before being paused. Here, we report on the epidemiological and evolutionary dynamics of SARS-CoV-2 determined by analysing the sequenced samples collected by the ONS-CIS during this period. We observed a series of sweeps or partial sweeps, with each sweeping lineage having a distinct growth advantage compared to their predecessors, although this was also accompanied by a gradual fall in average viral burdens from June 2021 to March 2023. The sweeps also generated an alternating pattern in which most samples had either S-gene target failure (SGTF) or non-SGTF over time. Evolution was characterized by steadily increasing divergence and diversity within lineages, but with step increases in divergence associated with each sweeping major lineage. This led to a faster overall rate of evolution when measured at the between-lineage level compared to within lineages, and fluctuating levels of diversity. These observations highlight the value of viral sequencing integrated into community surveillance studies to monitor the viral epidemiology and evolution of SARS-CoV-2, and potentially other pathogens.
- Published
- 2023
- Full Text
- View/download PDF
27. Host-virus evolutionary dynamics with specialist and generalist infection strategies: Bifurcations, bistability, and chaos.
- Author
-
Nurtay A, Hennessy MG, Alsedà L, Elena SF, and Sardanyés J
- Subjects
- Computer Simulation, Host-Pathogen Interactions, Humans, Nonlinear Dynamics, Virus Physiological Phenomena, Models, Biological, Viruses pathogenicity
- Abstract
In this work, we have investigated the evolutionary dynamics of a generalist pathogen, e.g., a virus population, that evolves toward specialization in an environment with multiple host types. We have particularly explored under which conditions generalist viral strains may rise in frequency and coexist with specialist strains or even dominate the population. By means of a nonlinear mathematical model and bifurcation analysis, we have determined the theoretical conditions for stability of nine identified equilibria and provided biological interpretation in terms of the infection rates for the viral specialist and generalist strains. By means of a stability diagram, we identified stable fixed points and stable periodic orbits, as well as regions of bistability. For arbitrary biologically feasible initial population sizes, the probability of evolving toward stable solutions is obtained for each point of the analyzed parameter space. This probability map shows combinations of infection rates of the generalist and specialist strains that might lead to equal chances for each type becoming the dominant strategy. Furthermore, we have identified infection rates for which the model predicts the onset of chaotic dynamics. Several degenerate Bogdanov-Takens and zero-Hopf bifurcations are detected along with generalized Hopf and zero-Hopf bifurcations. This manuscript provides additional insights into the dynamical complexity of host-pathogen evolution toward different infection strategies.
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.