1. The TraK accessory factor activates substrate transfer through the pKM101 type IV secretion system independently of its role in relaxosome assembly.
- Author
-
Li YG and Christie PJ
- Subjects
- Adenosine Triphosphatases metabolism, Bacterial Outer Membrane Proteins metabolism, Bacterial Outer Membrane Proteins physiology, Bacterial Proteins metabolism, Conjugation, Genetic genetics, DNA, Bacterial metabolism, DNA-Binding Proteins physiology, Escherichia coli genetics, Escherichia coli metabolism, Escherichia coli Proteins physiology, Membrane Proteins metabolism, Nucleoproteins physiology, Periplasmic Proteins physiology, Plasmids genetics, DNA-Binding Proteins metabolism, Escherichia coli Proteins metabolism, Nucleoproteins metabolism, Periplasmic Proteins metabolism, Type IV Secretion Systems metabolism
- Abstract
A large subfamily of the type IV secretion systems (T4SSs), termed the conjugation systems, transmit mobile genetic elements (MGEs) among many bacterial species. In the initiating steps of conjugative transfer, DNA transfer and replication (Dtr) proteins assemble at the origin-of-transfer (oriT) sequence as the relaxosome, which nicks the DNA strand destined for transfer and couples the nicked substrate with the VirD4-like substrate receptor. Here, we defined contributions of the Dtr protein TraK, a predicted member of the Ribbon-Helix-Helix (RHH) family of DNA-binding proteins, to transfer of DNA and protein substrates through the pKM101-encoded T4SS. Using a combination of cross-linking/affinity pull-downs and two-hybrid assays, we determined that TraK self-associates as a probable tetramer and also forms heteromeric contacts with pKM101-encoded TraI relaxase, VirD4-like TraJ receptor, and VirB11-like and VirB4-like ATPases, TraG and TraB, respectively. TraK also promotes stable TraJ-TraB complex formation and stimulates binding of TraI with TraB. Finally, TraK is required for or strongly stimulates the transfer of cognate (pKM101, TraI relaxase) and noncognate (RSF1010, MobA relaxase) substrates. We propose that TraK functions not only to nucleate pKM101 relaxosome assembly, but also to activate the Tra
pKM101 T4SS via interactions with the ATPase energy center positioned at the channel entrance., (© 2020 John Wiley & Sons Ltd.)- Published
- 2020
- Full Text
- View/download PDF