17 results on '"Nuclear-Data"'
Search Results
2. Total absorption gamma-ray spectroscopy of the ss decays of Y-96gs,Y-m
- Author
-
Fraile Prieto, Luis Mario, Vedia Fernández, María Victoria, otros, ..., Fraile Prieto, Luis Mario, Vedia Fernández, María Victoria, and otros, ...
- Abstract
©2022 American Physical Society. Artículo firmado por 45 autores. This work has been supported by the CNRS challenge NEEDS and the associated NACRE project, the CNRS/IN2P3 PICS TAGS between Subatech and IFIC, and the CNRS/IN2P3 Master projects Jyvaskyla and OPALE. This work has also been supported by the Spanish Ministerio de Economía y Competitividad under Grants No. FPA2011-24553, No. AIC-A-2011-0696, No. FPA2014-52823-C2-1-P, No. FPA2015-65035-P, No. FPI/BES-2014-068222, No. FPA2017-83946-C2-1-P, and No. RTI2018-098868-B-I00 and the program Severo Ochoa (SEV-2014-0398); by the Spanish Ministerio de Educación under Grant No. FPU12/01527; by the Spanish Ministerio de Ciencia e Innovación under Grant No. PID2019-104714GB-C21; by the European Commission under CHANDA project funded under FP7-EURATOM-FISSION Grant No. 605203; the FP7/ENSAR Contract No. 262010; the SANDA project funded under H2020-EURATOM-1.1 Grant No. 847552. V.G. acknowledges the support of the Polish National Agency for Academic Exchange (NAWA) under Grant No. PPN/ULM/2019/1/00220 and of the National Science Center, Poland, under Contract No. 2019/35/D/ST2/02081. W.G. acknowledges the support of the U.K. Science and Technology Facilities Council Grant No. ST/P005314/. This work was supported by the Academy of Finland under the Finnish Centre of Excellence Programme 2012-2017 (Project No. 213503, Nuclear and Accelerator-Based Physics Research at JYFL). Support from the IAEA Nuclear Data Section is acknowledged. Authors thank Tibor Kibedi for help with the new BrIcc version., The ss decays of the ground state (gs) and isomeric state (m) of Y-96 have been studied with the total absorption gamma-ray spectroscopy technique at the Ion Guide Isotope Separator On-Line facility. The separation of the 8(+) isomeric state from the 0(-) ground state was achieved thanks to the purification capabilities of the JYFLTRAP double Penning trap system. The ss-intensity distributions of both decays have been independently determined. In the analyses the deexcitation of the 1581.6 keV level in Zr-96, in which conversion electron emission competes with pair production, has been carefully considered and found to have significant impact on the ss-detector efficiency, influencing the ss-intensity distribution obtained. Our results for Y-96gs (0(-)) confirm the large ground state to ground state ss-intensity probability, although a slightly larger value than reported in previous studies was obtained, amounting to 96.6(-2.1)(+0.3) % of the total ss intensity. Given that the decay of Y-96gs is the second most important contributor to the reactor antineutrino spectrum between 5 and 7 MeV, the impact of the present results on reactor antineutrino summation calculations has been evaluated. In the decay of Y-96m (8(+)), previously undetected ss intensity in transitions to states above 6 MeV has been observed. This shows the importance of total absorption gamma-ray spectroscopy measurements of ss decays with highly fragmented deexcitation patterns. Y-96m (8(+)) is a major contributor to reactor decay heat in uranium-plutonium and thorium-uranium fuels around 10 s after fission pulses, and the newly measured average ss and gamma energies differ significantly from the previous values in evaluated databases. The discrepancy is far above the previously quoted uncertainties. Finally, we also report on the successful implementation of an innovative total absorption gamma-ray spectroscopy analysis of the module-multiplicity gated spectra, as a first proof of principle to dist, CNRS challenge NEEDS, NACRE project, Subatech, IFIC, CNRS/IN2P3 Master project Jyvaskyla, CNRS/IN2P3 Master project OPALE, Spanish Ministerio de Economía y Competitividad, FPI/BES-2014-068222, FPA2017-83946-C2-1-P, Program Severo Ochoa, RTI2018-098868-B-I00, Ministerio de Educación, Ministerio de Ciencia e Innovación, European Commission under CHANDA project under FP7-EURATOM-FISSION Grant, FP7/ENSAR Contract, SANDA project under H2020-EURATOM-1.1 Grant, Polish National Agency for Academic Exchange (NAWA), National Science Center, Poland, U.K. Science and Technology Facilities Council, Academy of Finland under the Finnish Centre of Excellence Programme 2012-2017, IAEA Nuclear Data Section, Depto. de Estructura de la Materia, Física Térmica y Electrónica, Fac. de Ciencias Físicas, TRUE, pub
- Published
- 2022
3. Validation of the collapsed cone algorithm for HDR liver brachytherapy against Monte Carlo simulations
- Author
-
Katia Parodi, Frank Verhaegen, Florian Streitparth, Max Seidensticker, Anna Sophie Duque, Jens Ricke, Franziska Walter, Gabriel P. Fonseca, Claus Belka, Guillaume Landry, Stefanie Corradini, Teun van Wagenberg, Radiotherapie, and RS: GROW - R3 - Innovative Cancer Diagnostics & Therapy
- Subjects
Dose-volume histogram ,NUCLEAR-DATA ,Collapsed cone ,Interstitial liver brachytherapy ,medicine.medical_treatment ,Liver volume ,Monte Carlo method ,Brachytherapy ,Planning target volume ,RECOMMENDATIONS ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,0302 clinical medicine ,Hounsfield scale ,AAPM ,medicine ,Dosimetry ,Humans ,Model-based dose calculation algorithm ,Radiology, Nuclear Medicine and imaging ,CT-GUIDED BRACHYTHERAPY ,TG-43 ,Retrospective Studies ,Radiotherapy ,business.industry ,Radiotherapy Planning, Computer-Assisted ,Monte Carlo Simulation ,Radiotherapy Dosage ,AAPM TG-186 ,DOSIMETRY ,IR-192 ,METASTASES ,Oncology ,Liver ,030220 oncology & carcinogenesis ,INTERSTITIAL BRACHYTHERAPY ,business ,Algorithm ,Monte Carlo Method ,DOSE CALCULATION ALGORITHM ,Algorithms - Abstract
PURPOSE: To validate the collapsed cone (CC) algorithm against Monte Carlo (MC) simulations for model-based dose calculations in high-dose-rate (HDR) liver brachytherapy.METHODS AND MATERIALS: Doses for liver brachytherapy treatment plans of 10 cases were retrospectively recalculated with a model-based approach using Monte Carlo n-Particle Code (MCNP) 6 (Dm,m-MC) and Oncentra Brachy ACE (Dm,m-ACE). Tissue segmentation consisted of assigning uniform compositions and mass densities to predefined Hounsfield Unit (HU) thresholds. Resulting doses were compared according to dose volume histogram parameters typical for clinical routine. These included the percentage liver volume receiving 5 Gy (V5Gy) or 10 Gy (V10Gy), the maximum dose to one cubic centimeter (D1cc) of organs at risk, the clinical target volume (CTV) fractions receiving 150% (V150), 100% (V100), 95% (V95) and 90% (V90) of the prescribed dose and the absolute doses to 95% (D95) and 90% (D90) of the CTV volumes.RESULTS: Doses from Oncentra Brachy ACE agreed well with MC simulations. Differences were seen far from the source, in low-density regions and bone structures. Median percentage deviations were 1.1% for the liver V5Gy and 0.4% for the liver V10Gy, with deviations of largest magnitude amounting to 2.2% and 1.0%, respectively. Organs at risk had median deviations ranging from 0.3% to 1.5% for D1cc, with outliers ranging up to 4.6%. CTV volume parameter deviations ranged between -1.5% and 0.5%, dose parameter deviations ranged mostly between -2% and 1%, with two outliers at -4.0% and -3.4% for a small CTV.
- Published
- 2021
4. Additional excitation functions for radionuclides obtained by deuteron irradiation of Ta up to 50 MeV
- Author
-
Ferenc Ditrói, Alex Hermanne, Ferenc Tarkanyi, Sandor Takacs, Vriendenkring VUB, Brussels Photonics Team, and Applied Physics and Photonics
- Subjects
Nuclear and High Energy Physics ,Radionuclide ,Materials science ,010308 nuclear & particles physics ,business.industry ,ACTIVATION CROSS-SECTIONS ,NUCLEAR-DATA ,PARTICLE ,TANTALUM ,High resolution ,01 natural sciences ,Nuclear physics ,Deuterium ,0103 physical sciences ,Irradiation ,Radiation protection ,Activation method ,010306 general physics ,business ,Instrumentation ,Excitation ,FOIL method - Abstract
Additional excitation functions for deuteron induced reactions up to 48.6 MeV on quasi mono-isotopic Ta (99.99% Ta-181) were experimentally determined using the activation method through stacked foil irradiation. Cross-sections for the production of W-17(7,)17(8,)181, Ta-177cum(, )178g,180g(, )182m+g and Hf-175,179m2,18(0m,)181 were derived from high resolution gamma-spectrometry and X-ray analysis. Comparison with the few earlier published experimental data and with values predicted by the theoretical code TALYS 1.6 (as available in the on-line library TENDL-2019) are discussed. Thick target yields for medically or industrially relevant longer-lived Ta-177,178g(,1)80g,182m+g and W-178(,1)81, calculated from fits to our experimental excitation curves, are discussed. Estimations on possible occupational doses to maintenance or scientific personnel around high power accelerators originating from activated Ta structural elements are updated.
- Published
- 2020
5. Data assimilation of post-irradiation examination data for fission yields from GEF
- Author
-
Henrik Sjöstrand, Georg Schnabel, Andreas Pautz, Daniel Siefman, Mathieu Hursin, and Dimitri Rochman
- Subjects
Fission ,covariance data ,01 natural sciences ,neutron cross-section ,nuclear-data ,Standard deviation ,Subatomär fysik ,Data assimilation ,0103 physical sciences ,Statistics ,Subatomic Physics ,010306 general physics ,Mathematics ,Burnup ,validation ,Fission products ,010308 nuclear & particles physics ,integral experiments ,Nuclear data ,uncertainty propagation ,lcsh:TK9001-9401 ,Spent nuclear fuel ,Marginal likelihood ,reactivity ,decay heat ,lcsh:Nuclear engineering. Atomic power ,product yields ,fuel - Abstract
Nuclear data, especially fission yields, create uncertainties in the predicted concentrations of fission products in spent fuel which can exceed engineering target accuracies. Herein, we present a new framework that extends data assimilation methods to burnup simulations by using post-irradiation examination experiments. The adjusted fission yields lowered the bias and reduced the uncertainty of the simulations. Our approach adjusts the model parameters of the code GEF. We compare the BFMC and MOCABA approaches to data assimilation, focusing especially on the effects of the non-normality of GEF’s fission yields. In the application that we present, the best data assimilation framework decreased the average bias of the simulations from 26% to 14%. The average relative standard deviation decreased from 21% to 14%. The GEF fission yields after data assimilation agreed better with those in JEFF3.3. For Pu-239 thermal fission, the average relative difference from JEFF3.3 was 16% before data assimilation and after it was 12%. For the standard deviations of the fission yields, GEF’s were 100% larger than JEFF3.3’s before data assimilation and after were only 4% larger. The inconsistency of the integral data had an important effect on MOCABA, as shown with the Marginal Likelihood Optimization method. When the method was not applied, MOCABA’s adjusted fission yields worsened the bias of the simulations by 30%. BFMC showed that it inherently accounted for this inconsistency. Applying Marginal Likelihood Optimization with BFMC gave a 2% lower bias compared to not applying it, but the results were more poorly converged.
- Published
- 2020
6. Large Impact of the Decay of Niobium Isomers on the Reactor (v)over-bar(e) Summation Calculations
- Author
-
Fraile Prieto, Luis Mario, Vedia Fernández, María Victoria, ... otros, Fraile Prieto, Luis Mario, Vedia Fernández, María Victoria, and ... otros
- Abstract
© 2019 American Physical Society. Artículo firmado por 44 autores. This work has been supported by the Spanish Ministerio de Economía y Competitividad under Grants No. FPA2011-24553, No. AIC-A-2011-0696, No. FPA2014-52823-C2-1P, No. FPA2015-65035-P, No. FPI/BES-2014-068222, and the program Severo Ochoa (SEV-2014-0398), by the Spanish Ministerio de Educación under the FPU12/01527 Grant, by the European Commission under the FP7/EURATOM Contract No. 605203 and the FP7/ENSAR Contract No. 262010, and by the Junta para la Ampliación de Estudios Programme (CSIC JAE-Doc contract) co-financed by ESF. V. G. thanks the support of K. Zygmunt. This work was supported by the Academy of Finland under the Finnish Centre of Excellence Programme (Project No. 213503, Nuclear and Accelerator-Based Physics Research at JYFL). It was also supported by the UK Science and Technology Facilities Council (STFC) Grant No. ST/F012012/1., Even mass neutron-rich niobium isotopes are among the principal contributors to the reactor antineutrino energy spectrum. They are also among the most challenging to measure due to the refractory nature of niobium, and because they exhibit isomeric states lying very close in energy. The beta-intensity distributions of Nb-100gs,Nb-100m and Nb-102gs,Nb-02m beta decays have been determined using the total absorption.-ray spectroscopy technique. The measurements were performed at the upgraded Ion Guide Isotope Separator On-Line facility at the University of Jyvaskyla. Here, the double Penning trap system JYFLTRAP was employed to disentangle the beta decay of the isomeric states. The new data obtained in this challenging measurement have a large impact in antineutrino summation calculations. For the first time the discrepancy between the summation model and the reactor antineutrino measurements in the region of the shape distortion has been reduced., Unión Europea. FP7, Ministerio de Economía y Competitividad (MINECO), Centro de Excelencia Severo Ochoa, Ministerio de Educación Cultura y Deporte, Junta para la Ampliación de Estudios Programme (CSIC JAE-Doc contract) - ESF, Academy of Finland under the Finnish Centre of Excellence Programme, UK Science and Technology Facilities Council (STFC), Depto. de Estructura de la Materia, Física Térmica y Electrónica, Fac. de Ciencias Físicas, TRUE, pub
- Published
- 2019
7. Testing of tritium breeder blanket activation foil spectrometer during JET operations
- Author
-
Bethany, Colling, Batistoni, P., Bradnam, S. C., Ghani, Z., Gilbert, M. R., Nobs, C. R., Packer, L. W., Pillon, M., Litaudon35, S. Popovichev X., Abduallev39, S., Abhangi46, M., Abreu53, P., Afzal7, M., Aggarwal29, K. M., Ahlgren101, T., Ahn8, J. H., Aho-Mantila112, L., Aiba69, N., Airila112, M., Albanese105, R., Aldred7, V., Alegre93, D., Alessi45, E., Aleynikov55, P., Alfier12, A., Alkseev72, A., Allinson7, M., Alper7, B., Alves53, E., Ambrosino105, G., Ambrosino106, R., Amicucci90, L., Amosov88, V., Andersson Sundén22, E., Angelone90, M., Anghel85, M., Angioni62, C., Appel7, L., Appelbee7, C., Arena30, P., Ariola106, M., Arnichand8, H., Arshad41, S., Ash7, A., Ashikawa68, N., Aslanyan64, V., Asunta1, O., Auriemma12, F., Austin7, Y., Avotina103, L., Axton7, M. D., Ayres7, C., Bacharis24, M., Baciero57, A., Baião53, D., Bailey7, S., Baker7, A., Balboa7, I., Balden62, M., Balshaw7, N., Bament7, R., Banks7, J. W., Baranov7, Y. F., Barnard7, M. A., Barnes7, D., Barnes27, M., Barnsley55, R., Baron Wiechec7, A., Barrera Orte34, L., Baruzzo12, M., Basiuk8, V., Bassan55, M., Bastow7, R., Batista53, A., Batistoni90, P., Baughan7, R., Bauvir55, B., Baylor73, L., Bazylev56, B., Beal110, J., Beaumont7, P. S., Beckers39, M., Beckett7, B., Becoulet8, A., Bekris35, N., Beldishevski7, M., Bell7, K., Belli90, F., Bellinger7, M., Belonohy62, É., Ben Ayed7, N., Benterman7, N. A., Bergsåker42, H., Bernardo53, J., Bernert62, M., Berry7, M., Bertalot55, L., Besliu7, C., Beurskens63, M., Bieg61, B., Bielecki47, J., Biewer73, T., Bigi12, M., Bílková50, P., Binda22, F., Bisoffi31, A., Bizarro53, J. P. S., Björkas101, C., Blackburn7, J., Blackman7, K., Blackman7, T. R., Blanchard33, P., Blatchford7, P., Bobkov62, V., Boboc7, A., Bodnár113, G., Bogar18, O., Bolshakova60, I., Bolzonella12, T., Bonanomi97, N., Bonelli56, F., Boom62, J., Booth7, J., Borba35, D., Borodin39, D., Borodkina39, I., Botrugno90, A., Bottereau8, C., Boulting7, P., Bourdelle8, C., Bowden7, M., Bower7, C., Bowman110, C., Boyce7, T., Boyd7, C., Boyer7, H. J., Bradshaw7, J. M. A., Braic87, V., Bravanec40, R., Breizman107, B., Bremond8, S., Brennan7, P. D., Breton8, S., Brett7, A., Brezinsek39, S., Bright7, M. D. J., Brix7, M., Broeckx78, W., Brombin12, M., Brosławski65, A., Brown7, D. P. D., Brown7, M., Bruno55, E., Bucalossi8, J., Buch46, J., Buchanan7, J., Buckley7, M. A., Budny76, R., Bufferand8, H., Bulman7, M., Bulmer7, N., Bunting7, P., Buratti90, P., Burckhart62, A., Buscarino30, A., Busse7, A., Butler7, N. K., Bykov42, I., Byrne7, J., Cahyna50, P., Calabrò90, G., Calvo57, I., Camenen4, Y., Camp7, P., Campling7, D. C., Cane7, J., Cannas17, B., Capel7, A. J., Card7, P. J., Cardinali90, A., Carman7, P., Carr7, M., Carralero62, D., Carraro12, L., Carvalho53, B. B., Carvalho53, I., Carvalho53, P., Casson7, F. J., Castaldo90, C., Catarino53, N., Caumont7, J., Causa90, F., Cavazzana12, R., Cave-Ayland7, K., Cavinato12, M., Cecconello22, M., Ceccuzzi90, S., Cecil76, E., Cenedese12, A., Cesario90, R., Challis7, C. D., Chandler7, M., Chandra46, D., Chang76, C. S., Chankin62, A., Chapman7, I. T., Chapman28, S. C., Chernyshova49, M., Chitarin12, G., Ciraolo8, G., Ciric7, D., Citrin38, J., Clairet8, F., Clark7, E., Clark7, M., Clarkson7, R., Clatworthy7, D., Clements7, C., Cleverly7, M., Coad7, . P., Coates7, P. A., Cobalt7, A., Coccorese105, V., Cocilovo90, V., Coda33, S., Coelho53, R., Coenen39, J. W., Coffey29, I., Colas8, L., Collins7, S., Conka103, D., Conroy22, S., Conway7, N., Coombs7, D., Cooper7, D., Cooper7, S. R., Corradino30, C., Corre8, Y., Corrigan7, G., Cortes53, S., Coster62, D., Couchman7, A. S., Cox7, M. P., Craciunescu86, T., Cramp7, S., Craven7, R., Crisanti90, F., Croci97, G., Croft7, D., Crombé15, K., Crowe7, R., Cruz53, N., Cseh113, G., Cufar81, A., Cullen7, A., Curuia85, M., Czarnecka49, A., Dabirikhah7, H., Dalgliesh7, P., Dalley7, S., Dankowski47, J., Darrow76, D., Davies7, O., Davis55, W., Day56, C., Day7, I. E., De Bock55, M., de Castro57, A., de la Cal57, E., de la Luna57, E., De Masi12, G., de Pablos57, J. L., De Temmerman55, G., De Tommasi105, G., de Vries55, P., Deakin7, K., Deane7, J., Degli Agostini12, F., Dejarnac50, R., Delabie73, E., den Harder38, N., Dendy7, R. O., Denis8, J., Denner39, P., Devaux62, S., 104, Devynck8, P., Di Maio55, F., Di Siena62, A., Di Troia90, C., Dinca86, P., D’Inca62, R., Ding51, B., Dittmar39, T., Doerk62, H., Doerner9, R. P., Donné34, T., Dorling7, S. E., Dormido-Canto93, S., Doswon7, S., Douai8, D., Doyle7, P. T., Drenik62, A., Drewelow63, P., Drews39, P., Duckworth55, Ph., Dumont8, R., Dumortier58, P., Dunai113, D., Dunne62, M., Ďuran50, I., Durodié58, F., Dutta46, P., Duval33, B. P., Dux62, R., Dylst78, K., Dzysiuk22, N., Edappala46, P. V., Edmond7, J., Edwards7, A. M., Edwards7, J., Eich62, Th., Ekedahl8, A., El-Jorf7, R., Elsmore7, C. G., Enachescu84, M., Ericsson22, G., Eriksson16, F., Eriksson22, J., Eriksson36, L. G., Esposito90, B., Esquembri94, S., Esser39, H. G., Esteve8, D., Evans7, B., Evans7, G. E., Evison7, G., Ewart7, G. D., Fagan7, D., Faitsch62, M., Falie86, D., Fanni17, A., Fasoli33, A., Faustin33, J. M., Fawlk7, N., Fazendeiro53, L., Fedorczak8, N., Felton7, R. C., Fenton7, K., Fernades53, A., Fernandes53, H., Ferreira53, J., Fessey7, J. A., Février8, O., Ficker50, O., Field7, A., Fietz62, S., Figueiredo53, A., Figueiredo53, J., Fil8, A., Finburg7, P., Firdaouss8, M., Fischer56, U., Fittill7, L., Fitzgerald7, M., Flammini90, D., Flanagan7, J., Fleming7, C., Flinders7, K., Fonnesu90, N., Fontdecaba57, J. M., Formisano79, A., Forsythe7, L., Fortuna30, L., Fortuna-Zalesna19, E., Fortune7, M., Foster7, S., Franke34, T., Franklin7, T., Frasca30, M., Frassinetti42, L., Freisinger39, M., Fresa98, R., Frigione90, D., Fuchs50, V., Fuller35, D., Futatani6, S., Fyvie7, J., Gál34, K., Galassi2, D., Gałązka49, K., Galdon-Quiroga92, J., Gallagher7, J., Gallart6, D., Galvão10, R., Gao51, X., Gao39, Y., Garcia8, J., Garcia-Carrasco42, A., García-Muñoz92, M., Gardarein3, J. -L., Garzotti7, L., Gaudio95, P., Gauthier8, E., Gear7, D. F., Gee7, S. J., Geiger62, B., Gelfusa95, M., Gerasimov7, S., Gervasini45, G., Gethins7, M., Ghani7, Z., Ghate46, M., Gherendi86, M., Giacalone8, J. C., Giacomelli45, L., Gibson7, C. S., Giegerich56, T., Gil8, C., Gil53, L., Gilligan7, S., Gin54, D., Giovannozzi90, E., Girardo8, J. B., Giroud7, C., Giruzzi8, G., Glöggler62, S., Godwin7, J., Goff7, J., Gohil43, P., Goloborod’Ko102, V., Gomes53, R., Gonçalves53, B., Goniche8, M., Goodliffe7, M., Goodyear7, A., Gorini97, G., Gosk65, M., Goulding76, R., Goussarov78, A., Gowland7, R., Graham7, B., Graham7, M. E., Graves33, J. P., Grazier7, N., Grazier7, P., Green7, N. R., Greuner62, H., Grierson76, B., Griph7, F. S., Grisolia8, C., Grist7, D., Groth1, M., Grove73, R., Grundy7, C. N., Grzonka19, J., Guard7, D., Guérard34, C., Guillemaut8, C., Guirlet8, R., Gurl7, C., Utoh69, H. H., Hackett7, L. J., Hacquin8, S., Hagar7, A., Hager76, R., Hakola112, A., Halitovs103, M., Hall7, S. J., Hallworth Cook7, S. P., Hamlyn-Harris7, C., Hammond7, K., Harrington7, C., Harrison7, J., Harting7, D., Hasenbeck39, F., Hatano108, Y., Hatch107, D. R., Haupt7, T. D. V., Hawes7, J., Hawkes7, N. C., Hawkins7, J., Hawkins7, P., Haydon7, P. W., Hayter7, N., Hazel7, S., Heesterman7, P. J. L., Heinola101, K., Hellesen22, C., Hellsten42, T., Helou8, W., Hemming7, O. N., Hender7, T. C., Henderson55, M., Henderson21, S. S., Henriques53, R., Hepple7, D., Hermon7, G., Hertout8, P., Hidalgo57, C., Highcock27, E. G., Hill7, M., Hillairet8, J., Hillesheim7, J., Hillis73, D., Hizanidis70, K., Hjalmarsson22, A., Hobirk62, J., Hodille8, E., Hogben7, C. H. A., Hogeweij38, G. M. D., Hollingsworth7, A., Hollis7, S., Homfray7, D. A., Horáček50, J., Hornung15, G., Horton7, A. R., Horton36, L. D., Horvath110, L., Hotchin7, S. P., Hough7, M. R., Howarth7, P. J., Hubbard64, A., Huber39, A., Huber39, V., Huddleston7, T. M., Hughes7, M., Huijsmans55, G. T. A., Hunter7, C. L., Huynh8, P., Hynes7, A. M., Iglesias7, D., Imazawa69, N., Imbeaux8, F., Imríšek50, M., Incelli109, M., Innocente12, P., Irishkin8, M., Ivanova-Stanik49, I., Jachmich58, S., Jacobsen83, A. S., Jacquet7, P., Jansons103, J., Jardin8, A., Järvinen1, A., Jaulmes38, F., Jednoróg49, S., Jenkins7, I., Jeong20, C., Jepu86, I., Joffrin8, E., Johnson7, R., Johnson42, T., Jane, Johnston7, Joita7, L., Jones7, G., Jones7, T. T. C., Hoshino69, K. K., Kallenbach62, A., Kamiya69, K., Kaniewski7, J., Kantor7, A., Kappatou62, A., Karhunen1, J., Karkinsky7, D., Karnowska7, I., Kaufman73, M., Kaveney7, G., Kazakov58, Y., Kazantzidis70, V., Keeling7, D. L., Keenan7, T., Keep7, J., Kempenaars7, M., Kennedy7, C., Kenny7, D., Kent7, J., Kent7, O. N., Khilkevich54, E., Kim35, H. T., Kim80, H. S., Kinch7, A., King7, C., King7, D., King7, R. F., Kinna7, D. J., Kiptily7, V., Kirk7, A., Kirov7, K., Kirschner39, A., Kizane103, G., Klepper73, C., Klix56, A., Knight7, P., Knipe7, S. J., Knott96, S., Kobuchi69, T., Köchl111, F., Kocsis113, G., Kodeli81, I., Kogan7, L., Kogut8, D., Koivuranta112, S., Kominis70, Y., Köppen39, M., Kos81, B., Koskela1, T., Koslowski39, H. R., Koubiti4, M., Kovari7, M., Kowalska-Strzęciwilk49, E., Krasilnikov88, A., Krasilnikov88, V., Krawczyk49, N., Kresina8, M., Krieger62, K., Krivska58, A., Kruezi7, U., Książek48, I., Kukushkin72, A., Kundu46, A., Kurki-Suonio1, T., Kwak20, S., Kwiatkowski65, R., Kwon13, O. J., Laguardia45, L., Lahtinen101, A., Laing7, A., Lam7, N., Lambertz39, H. T., Lane7, C., Lang62, P. T., Lanthaler33, S., Lapins103, J., Lasa101, A., Last7, J. R., Łaszyńska49, E., Lawless7, R., Lawson7, A., Lawson7, K. D., Lazaros70, A., Lazzaro45, E., Leddy110, J., Lee66, S., Lefebvre7, X., Leggate32, H. J., Lehmann7, J., Lehnen55, M., Leichtle41, D., Leichuer7, P., Leipold55, F., Lengar81, I., Lennholm36, M., Lerche58, E., Lescinskis103, A., Lesnoj7, S., Letellier7, E., Leyland110, M., Leysen78, W., Li39, L., Liang39, Y., Likonen112, J., Linke39, J., Linsmeier39, Ch., Lipschultz110, B., Liu55, G., Liu51, Y., Lo Schiavo105, V. P., Loarer8, T., Loarte55, A., Lobel7, R. C., Lomanowski1, B., Lomas7, P. J., Lönnroth1, J., López94, J. M., López-Razola57, J., Lorenzini12, R., Losada57, U., Lovell7, J. J., Loving7, A. B., Lowry36, C., Luce43, T., Lucock7, R. M. A., Lukin74, A., Luna5, C., Lungaroni95, M., Lungu86, C. P., Lungu86, M., Lunniss110, A., Lupelli7, I., Lyssoivan58, A., Macdonald7, N., Macheta7, P., Maczewa7, K., Magesh46, B., Maget8, P., Maggi7, C., Maier62, H., Mailloux7, J., Makkonen1, T., Makwana46, R., Malaquias53, A., Malizia95, A., Manas4, P., Manning7, A., Manso53, M. E., Mantica45, P., Mantsinen6, M., Manzanares91, A., Maquet55, Ph., Marandet4, Y., Marcenko88, N., Marchetto45, C., Marchuk39, O., Marinelli95, M., Marinucci90, M., Markovič50, T., Marocco90, D., Marot26, L., Marren7, C. A., Marshal7, R., Martin7, A., Martin33, Y., Martín de Aguilera57, A., Martínez93, F. J., Martín-Solís14, J. R., Martynova39, Y., Maruyama55, S., Masiello12, A., Maslov7, M., Matejcik18, S., Mattei79, M., Matthews7, G. F., Maviglia11, F., Mayer62, M., Mayoral34, M. L., May-Smith7, T., Mazon8, D., Mazzotta90, C., Mcadams7, R., Mccarthy96, P. J., Mcclements7, K. G., Mccormack12, O., Mccullen7, P. A., Mcdonald34, D., Mcintosh7, S., Mckean7, R., Mckehon7, J., Meadows7, R. C., Meakins7, A., Medina57, F., Medland7, M., Medley7, S., Meigh7, S., Meigs7, A. G., Meisl62, G., Meitner73, S., Meneses53, L., Menmuir7, S., Mergia71, K., Merrigan7, I. R., Mertens39, Ph., Meshchaninov88, S., Messiaen58, A., Meyer7, H., Mianowski65, S., Michling55, R., Middleton-Gear7, D., Miettunen1, J., Militello7, F., Militello-Asp7, E., Miloshevsky77, G., Mink62, F., Minucci105, S., Miyoshi69, Y., Mlynář50, J., Molina8, D., Monakhov7, I., Moneti109, M., Mooney7, R., Moradi37, S., Mordijck43, S., Moreira7, L., Moreno57, R., Moro90, F., Morris7, A. W., Morris7, J., Moser26, L., Mosher73, S., Moulton7, D., 1, Murari12, A., Muraro45, A., Murphy7, S., Asakura69, N. N., Na80, Y. S., Nabais53, F., Naish7, R., Nakano69, T., Nardon8, E., Naulin83, V., Nave53, M. F. F., Nedzelski53, I., Nemtsev88, G., Nespoli33, F., Neto41, A., Neu62, R., Neverov72, V. S., Newman7, M., Nicholls7, K. J., Nicolas33, T., Nielsen83, A. H., Nielsen12, P., Nilsson8, E., Nishijima99, D., Noble7, C., Nocente97, M., Nodwell7, D., Nordlund101, K., Nordman16, H., Nouailletas8, R., Nunes53, I., Oberkofler62, M., Odupitan7, T., Ogawa69, M. T., O’Gorman7, T., Okabayashi76, M., Olney7, R., Omolayo7, O., O’Mullane21, M., Ongena58, J., Orsitto11, F., Orszagh18, J., Oswuigwe7, B. I., Otin7, R., Owen7, A., Paccagnella12, R., Pace7, N., Pacella90, D., Packer7, L. W., Page7, A., Pajuste103, E., Palazzo30, S., Pamela7, S., Panja46, S., Papp18, P., Paprok50, R., Parail7, V., Park66, M., Parra Diaz27, F., Parsons73, M., Pasqualotto12, R., Patel7, A., Pathak46, S., Paton7, D., Patten33, H., Pau17, A., Pawelec48, E., Paz Soldan43, C., Peackoc36, A., Pearson7, I. J., Pehkonen112, S. -P., Peluso95, E., Penot55, C., Pereira57, A., Pereira53, R., Pereira Puglia7, P. P., Perez von Thun35, C., Peruzzo12, S., Peschanyi56, S., Peterka50, M., Petersson42, P., Petravich113, G., Petre84, A., Petrella7, N., Petržilka50, V., Peysson8, Y., Pfefferlé33, D., Philipps39, V., Pillon90, M., Pintsuk39, G., Piovesan12, P., Pires dos Reis52, A., Piron, L., Pironti105, A., Pisano17, F., Pitts55, R., Pizzo79, F., Plyusnin53, V., Pomaro12, N., Pompilian86, O. G., Pool7, P. J., Popovichev7, S., Porfiri90, M. T., Porosnicu86, C., Porton7, M., Possnert22, G., Potzel62, S., Powell7, T., Pozzi7, J., Prajapati46, V., Prakash46, R., Prestopino95, G., Price7, D., Price7, M., Price7, R., Prior7, P., Proudfoot7, R., Pucella90, G., Puglia52, P., Puiatti12, M. E., Pulley7, D., Purahoo7, K., Pütterich62, Th., Rachlew25, E., Rack39, M., Ragona58, R., Rainford7, M. S. J., Rakha6, A., Ramogida90, G., Ranjan46, S., Rapson62, C. J., Rasmussen83, J. J., Rathod46, K., Rattá57, G., Ratynskaia82, S., Ravera90, G., Rayner7, C., Rebai97, M., Reece7, D., Reed7, A., Réfy113, D., Regan7, B., Regaña34, J., Reich62, M., Reid7, N., Reimold39, F., Reinhart34, M., Reinke110, M., Reiser39, D., Rendell7, D., Reux8, C., Reyes Cortes53, S. D. A., Reynolds7, S., Riccardo7, V., Richardson7, N., Riddle7, K., Rigamonti97, D., Rimini7, F. G., Risner73, J., Riva90, M., Roach7, C., Robins7, R. J., Robinson7, S. A., Robinson7, T., Robson7, D. W., Roccella55, R., Rodionov88, R., Rodrigues53, P., Rodriguez7, J., Rohde62, V., Romanelli90, F., Romanelli7, M., Romanelli7, S., Romazanov39, J., Rowe7, S., Rubel42, M., Rubinacci105, G., Rubino12, G., Ruchko52, L., Ruiz94, M., Ruset86, C., Rzadkiewicz65, J., Saarelma7, S., Sabot8, R., Safi101, E., Sagar7, P., Saibene41, G., Saint-Laurent8, F., Salewski83, M., Salmi112, A., Salmon7, R., Salzedas53, F., Samaddar7, D., Samm39, U., Sandiford7, D., Santa46, P., Santala1, M. I. K., Santos53, B., Santucci90, A., Sartori41, F., Sartori41, R., Sauter33, O., Scannell7, R., Schlummer39, T., Schmid62, K., Schmidt12, V., Schmuck7, S., Schneider8, M., Schöpf102, K., Schwörer32, D., Scott76, S. D., Sergienko39, G., Sertoli62, M., Shabbir15, A., Sharapov7, S. E., Shaw7, A., Shaw7, R., Sheikh7, H., Shepherd7, A., Shevelev54, A., Shumack38, A., Sias17, G., Sibbald7, M., Sieglin62, B., Silburn7, S., Silva53, A., Silva53, C., Simmons7, P. A., Simpson7, J., Simpson-Hutchinson7, J., Sinha46, A., Sipilä1, S. K., Sips36, A. C. C., Sirén112, P., Sirinelli55, A., Sjöstrand22, H., Skiba22, M., Skilton7, R., Slabkowska49, K., Slade7, B., Smith7, N., Smith7, P. G., Smith7, R., Smith7, T. J., Smithies110, M., Snoj81, L., Soare85, S., Solano35, E. R., Somers32, A., Sommariva8, C., Sonato12, P., Sopplesa12, A., Sousa53, J., Sozzi45, C., Spagnolo12, S., Spelzini7, T., Spineanu86, F., Stables7, G., Stamatelatos71, I., Stamp7, M. F., Staniec7, P., Stankūnas59, G., Stan-Sion84, C., Stead7, M. J., Stefanikova42, E., Stepanov58, I., Stephen7, A. V., Stephen46, M., Stevens7, A., Stevens7, B. D., Strachan76, J., Strand16, P., Strauss44, H. R., Ström42, P., Stubbs7, G., Studholme7, W., Subba75, F., Summers21, H. P., Svensson63, J., Świderski65, Ł., Szabolics113, T., Szawlowski49, M., Szepesi7, G., Suzuki69, T. T., Tál113, B., Tala112, T., Talbot7, A. R., Talebzadeh95, S., Taliercio12, C., Tamain8, P., Tame7, C., Tang76, W., Tardocchi45, M., Taroni12, L., Taylor7, D., Taylor7, K. A., Tegnered16, D., Telesca15, G., Teplova54, N., Terranova12, D., Testa33, D., Tholerus42, E., Thomas7, J., Thomas7, J. D., Thomas55, P., Thompson7, A., Thompson7, C. -A., Thompson7, V. K., Thorne7, L., Thornton7, A., Thrysøe83, A. S., Tigwell7, P. A., Tipton7, N., Tiseanu86, I., Tojo69, H., Tokitani67, M., Tolias82, P., Tomeš50, M., Tonner7, P., Towndrow7, M., Trimble7, P., Tripsky58, M., Tsalas38, M., Tsavalas71, P., Tskhakaya jun102, D., Turner7, I., Turner32, M. M., Turnyanskiy34, M., Tvalashvili7, G., Tyrrell7, S. G. J., Uccello45, A., Ul-Abidin7, Z., Uljanovs1, J., Ulyatt7, D., Urano69, H., Uytdenhouwen78, I., Vadgama7, A. P., Valcarcel7, D., Valentinuzzi8, M., Valisa12, M., Vallejos Olivares42, P., Valovic7, M., Van De Mortel7, M., Van Eester58, D., Van Renterghem78, W., van Rooij38, G. J., Varje1, J., Varoutis56, S., Vartanian8, S., Vasava46, K., Vasilopoulou71, T., Vega57, J., Verdoolaege58, G., Verhoeven7, R., Verona95, C., Verona Rinati95, G., Veshchev55, E., Vianello45, N., Vicente53, J., Viezzer62, E., Villari90, S., Villone100, F., Vincenzi12, P., Vinyar74, I., Viola90, B., Vitins103, A., Vizvary7, Z., Vlad86, M., Voitsekhovitch34, I., Vondráček50, P., Vora7, N., Vu8, T., Pires de Sa52, W. W., Wakeling7, B., Waldon7, C. W. F., Walkden7, N., Walker7, M., Walker7, R., Walsh55, M., Wang39, E., Wang39, N., Warder7, S., Warren7, R. J., Waterhouse7, J., Watkins28, N. W., Watts55, C., Wauters58, T., Weckmann42, A., Weiland23, J., Weisen33, H., Weiszflog22, M., Wellstood7, C., West7, A. T., Wheatley7, M. R., Whetham7, S., Whitehead7, A. M., Whitehead7, B. D., Widdowson7, A. M., Wiesen39, S., Wilkinson7, J., Williams7, J., Williams7, M., Wilson7, A. R., Wilson7, D. J., Wilson110, H. R., Wilson7, J., Wischmeier62, M., Withenshaw7, G., Withycombe7, A., Witts7, D. M., Wood7, D., Wood7, R., Woodley7, C., Wray7, S., Wright7, J., Wright64, J. C., Wu89, J., Wukitch64, S., Wynn110, A., Xu7, T., Yadikin16, D., Yanling39, W., Yao89, L., Yavorskij102, V., Yoo80, M. G., Young7, C., Young7, D., Young7, I. D., Young7, R., Zacks7, J., Zagorski49, R., Zaitsev18, F. S., Zanino75, R., Zarins103, A., Zastrow7, K. D., Zerbini90, M., Zhang62, W., Zhou42, Y., Zilli12, E., Zoita86, V., Zoletnik113, S., and Zychor, I.
- Subjects
iter ,tbm ,jet ,activation ,neutronics ,nuclear-data ,science - Abstract
Accurate measurement of the nuclear environment within a test tritium breeding-blanket module of a fusion reactor is crucial to determine tritium production rates which are relevant to self-sufficiency of tritium fuel supply, tritium accountancy and also to the evaluation of localised power levels produced in blankets. This requires evaluation of the time-dependent spectral neutron flux within the test tritium breeding-blanket module under harsh radiation and temperature environments. The application of an activation foil-based spectrometer system to determine neutron flux density using a pneumatic transfer system in ITER has been studied, deployed and tested on the Joint European Torus (JET) machine in a recent deuterium - deuterium campaign for a selection of high purity activation foils. Deployment of the spectrometer system has provided important functional and practical testing of the detector measurement system, associated hardware and post processing techniques for the analysis of large data sets produced through the use of list mode data collection. The testing is invaluable for the optimisation of systems for future planned testing in tritium - tritium and deuterium - tritium conditions. Analysis of the time and energy spectra collected to date and the status of the development of methods for post processing are presented in this paper.
- Published
- 2018
8. Neutron capture cross section measurement of ${}^{238}U$ at the CERN n_TOF facility in the energy region from 1 eV to 700 keV
- Author
-
Mingrone, F., F., Gunsing, F., Belloni, E., Berthoumieux, K., Fraval, C., Lampoudis, European Organization for Nuclear Research (CERN), Istituto Nazionale di Fisica Nucleare, Sezione di Bologna (INFN, Sezione di Bologna), Istituto Nazionale di Fisica Nucleare (INFN), Département de Physique Nucléaire (ex SPhN) (DPHN), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, and n TOF Collaboration
- Subjects
COVARIANCES ,RESONANCE PARAMETERS ,NUCLEAR-DATA ,RESOLUTION ,SIMULATION ,DATA LIBRARY ,OF-FLIGHT FACILITY ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,COLLABORATION ,FISSION ,C6D6 - Abstract
International audience; The aim of this work is to provide a precise and accurate measurement of the ${}^{238}U$($n$,$\gamma$) reaction cross section in the energy region from 1 eV to 700 keV. This reaction is of fundamental importance for the design calculations of nuclear reactors, governing the behavior of the reactor core. In particular, fast reactors, which are experiencing a growing interest for their ability to burn radioactive waste, operate in the high energy region of the neutron spectrum. In this energy region most recent evaluations disagree due to inconsistencies in the existing measurements of up to 15%. In addition, the assessment of nuclear data uncertainty performed for innovative reactor systems shows that the uncertainty in the radiative capture cross section of ${}^{238}U$ should be further reduced to 1-3% in the energy region from 20 eV to 25 keV. To this purpose, addressed by the Nuclear Energy Agency as a priority nuclear data need, complementary experiments, one at the GELINA and two at the n_TOF facility, were proposed and carried out within the 7th Framework Project ANDES of the European Commission. The results of one of these ${}^{238}U$($n$,$\gamma$) measurements performed at the n_TOF CERN facility are presented in this work. The $\gamma$-ray cascade following the radiative neutron capture has been detected exploiting a setup of two C$_6$D$_6$ liquid scintillators. Resonance parameters obtained from this work are on average in excellent agreement with the ones reported in evaluated libraries. In the unresolved resonance region, this work yields a cross section in agreement with evaluated libraries up to 80 keV, while for higher energies our results are significantly higher.
- Published
- 2017
- Full Text
- View/download PDF
9. Accelerator mass spectrometry measurements of the 13C(n,γ)14C and 14N(n,p)14C cross sections
- Author
-
Wallner, A, Bichler, M, Buczak, K, Dillmann, I, Käppeler, F, Karakas, A, Lederer, C, Lugaro, M, Mair, K, Mengoni, A, Schätzel, G, Steier, P, and Trautvetter, H P
- Subjects
STELLAR ENERGIES ,NUCLEOSYNTHESIS ,Astrophysics and Astronomy ,C-13 POCKET ,AGB STARS ,NUCLEAR-DATA ,METAL-POOR STARS ,Astrophysics::High Energy Astrophysical Phenomena ,Nuclear Physics - Experiment ,NEUTRON-CAPTURE ,GIANT BRANCH STARS ,S-PROCESS ,LOW METALLICITY - Abstract
The technique of accelerator mass spectrometry (AMS), offering a complementary tool for sensitive studies of key reactions in nuclear astrophysics, was applied for measurements of the C-13(n,gamma)C-14 and the N-14(n,p)C-14 cross sections, which act as a neutron poison in s-process nucleosynthesis. Solid samples were irradiated at Karlsruhe Institute of Technology with neutrons closely resembling a Maxwell-Boltzmann distribution for kT = 25 keV, and also at higher energies between En = 123 and 182 keV. After neutron irradiation the produced amount of C-14 in the samples was measured by AMS at the Vienna Environmental Research Accelerator (VERA) facility. For both reactions the present results provide important improvements compared to previous experimental data, which were strongly discordant in the astrophysically relevant energy range and missing for the comparably strong resonances above 100 keV. For C-13(n,gamma) we find a four times smaller cross section around kT = 25 keV than a previous measurement. For N-14(n,p), the present data suggest two times lower cross sections between 100 and 200 keV than had been obtained in previous experiments and data evaluations. The effect of the new stellar cross sections on the s process in low-mass asymptotic giant branch stars was studied for stellar models of 2 M-circle dot initial mass, and solar and 1/10th solar metallicity.
- Published
- 2016
- Full Text
- View/download PDF
10. Integral measurement of the C-12(n, p)B-12 reaction up to 10 GeV
- Author
-
Zugec, P, Colonna, N, Bosnar, D, Ventura, A, Mengoni, A, Altstadt, S, Andrzejewski, J, Audouin, L, Barbagallo, M, Becares, V, Becvar, F, Belloni, F, Berthoumieux, E, Billowes, J, Boccone, V, Brugger, M, Calviani, M, Calvino, F, Cano Ott, D, Carrapico, C, Cerutti, F, Chiaveri, E, Chin, M, Cortes, G, Cortes Giraldo MA, Cosentino, L, Diakaki, M, Domingo Pardo, C, Dressler, R, Duran, I, Eleftheriadis, C, Ferrari, A, Finocchiaro, P, Fraval, K, Ganesan, S, Garcia, Ar, Giubrone, G, Gomez Hornillos MB, Goncalves, If, Gonzalez Romero, E, Griesmayer, E, Guerrero, C, Gunsing, F, Gurusamy, P, Heinitz, S, Jenkins, Dg, Jericha, E, Kappeler, F, Karadimos, D, Kivel, N, Kokkoris, M, Krticka, M, Kroll, J, Langer, C, Lederer, C, Leeb, H, Leong, Ls, Lo Meo, S, Losito, R, Manousos, A, Marganiec, J, Martinez, T, Massimi, C, Mastinu, P, Mastromarco, M, Mendoza, E, Milazzo, Pm, Mingrone, F, Mirea, M, Mondalaers, W, Musumarra, Agatino, Paradela, C, Pavlik, A, Perkowski, J, Plompen, A, Praena, J, Quesada, J, Rauscher, T, Reifarth, R, Riego, A, Roman, F, Rubbia, C, Sarmento, R, Saxena, A, Schillebeeckx, P, Schmidt, S, Schumann, D, Tagliente, G, Tain, Jl, Tarrio, D, Tassan Got, L, Tsinganis, A, Valenta, S, Vannini, G, Variale, V, Vaz, P, Versaci, R, Vermeulen, Mj, Vlachoudis, V, Vlastou, R, Wallner, A, Ware, T, Weigand, M, Weiss, C, and Wright, T.
- Subjects
ENERGY ,FACILITY N-TOF ,NUCLEAR-DATA ,SIMULATION ,CAPTURE-CROSS-SECTION, FACILITY N-TOF, NUCLEAR-DATA, NEUTRONS, ENERGY, SIMULATION, DETECTOR, SCIENCE ,SCIENCE ,NEUTRONS ,DETECTOR ,CAPTURE-CROSS-SECTION - Published
- 2016
11. Photoneutron cross sections for neodymium isotopes : toward a unified understanding of (γ,n) and (n,γ) reactions in the rare earth region
- Author
-
Nyhus, Hilde-Therese, Renstrøm, Therese, Utsunomiya, Hiroaki, Goriely, S., Filipescu, D. M., Gheorghe, I., Tesileanu, O., Glodariu, T., Shima, T., Takahisa, K., Miyamoto, S., Lui, Y. W., Hilaire, S., Péru, S., Martini, M., Siess, L., and Koning, A. J.
- Subjects
NUCLEOSYNTHESIS ,ASTROPHYSICS ,AGB STARS ,NUCLEAR-DATA ,Astrophysics::High Energy Astrophysical Phenomena ,Nuclear Theory ,STELLAR NEUTRON-CAPTURE ,SCIENCE ,PHOTONS ,Physique atomique et nucléaire ,GIANT DIPOLE RESONANCE ,Physics and Astronomy ,LIBRARY ,S-PROCESS ,Astrophysique - Abstract
Photoneutron cross sections were measured for five stable Nd isotopes, 143,144,145,146,148Nd, near neutron threshold with highly monochromatic laser-Compton scattering γ rays. The photoneutron data were compared with the calculations performed with the talys reaction code with inputs of the Skyrme Hartree-Fock-Bogoliubov (HFB) plus quasi-particle random phase approximation (QRPA) model and the axially symmetric deformed Gogny HFB plus QRPA model of E1 γ-ray strength. Using the γ-ray strength function constrained by the present photoneutron data, a thorough analysis of the reverse (n,γ) cross sections is made. Radiative neutron capture cross sections for an s-process branching-point nucleus in the rare earth region, Nd147 with the half-life 10.98 d, are deduced with the γ-ray strength function method. The impact of the newly evaluated 147Nd(n,γ)148Nd cross section on s-process nucleosynthesis is discussed., info:eu-repo/semantics/published
- Published
- 2015
12. HOLMES: The electron capture decay of 163Ho to measure the electron neutrino mass with sub-eV sensitivity
- Author
-
Alpert, B, Balata, M, Bennett, D, Biasotti, M, Boragno, C, Brofferio, C, Ceriale, V, Corsini, D, Day, P, De Gerone, M, Dressler, R, Faverzani, M, Ferri, E, Fowler, J, Gatti, F, Giachero, A, Hays Wehle, J, Heinitz, S, Hilton, G, Köster, U, Lusignoli, M, Maino, M, Mates, J, Nisi, S, Nizzolo, R, Nucciotti, A, Pessina, G, Pizzigoni, G, Puiu, P, Ragazzi, S, Reintsema, C, Gomes, M, Schmidt, D, Schumann, D, Sisti, M, Swetz, D, Terranova, F, Ullom, J, BROFFERIO, CHIARA, DAY, PETER KENNETH, FAVERZANI, MARCO, FERRI, ELENA, GIACHERO, ANDREA, MAINO, MATTEO, NIZZOLO, RICCARDO, NUCCIOTTI, ANGELO ENRICO LODOVICO, PESSINA, GIANLUIGI EZIO, PUIU, PAUL ANDREI, RAGAZZI, STEFANO, SISTI, MONICA, TERRANOVA, FRANCESCO, Ullom, J., Alpert, B, Balata, M, Bennett, D, Biasotti, M, Boragno, C, Brofferio, C, Ceriale, V, Corsini, D, Day, P, De Gerone, M, Dressler, R, Faverzani, M, Ferri, E, Fowler, J, Gatti, F, Giachero, A, Hays Wehle, J, Heinitz, S, Hilton, G, Köster, U, Lusignoli, M, Maino, M, Mates, J, Nisi, S, Nizzolo, R, Nucciotti, A, Pessina, G, Pizzigoni, G, Puiu, P, Ragazzi, S, Reintsema, C, Gomes, M, Schmidt, D, Schumann, D, Sisti, M, Swetz, D, Terranova, F, Ullom, J, BROFFERIO, CHIARA, DAY, PETER KENNETH, FAVERZANI, MARCO, FERRI, ELENA, GIACHERO, ANDREA, MAINO, MATTEO, NIZZOLO, RICCARDO, NUCCIOTTI, ANGELO ENRICO LODOVICO, PESSINA, GIANLUIGI EZIO, PUIU, PAUL ANDREI, RAGAZZI, STEFANO, SISTI, MONICA, TERRANOVA, FRANCESCO, and Ullom, J.
- Abstract
The European Research Council has recently funded HOLMES, a new experiment to directly measure the neutrino mass. HOLMES will perform a calorimetric measurement of the energy released in the decay of 163Ho. The calorimetric measurement eliminates systematic uncertainties arising from the use of external beta sources, as in experiments with beta spectrometers. This measurement was proposed in 1982 by A. De Rujula and M. Lusignoli, but only recently the detector technological progress allowed to design a sensitive experiment. HOLMES will deploy a large array of low temperature microcalorimeters with implanted 163Ho nuclei. The resulting mass sensitivity will be as low as 0.4 eV. HOLMES will be an important step forward in the direct neutrino mass measurement with a calorimetric approach as an alternative to spectrometry. It will also establish the potential of this approach to extend the sensitivity down to 0.1 eV. We outline here the project with its technical challenges and perspectives.
- Published
- 2015
13. HOLMES - The Electron Capture Decay of 163Ho to Measure the Electron Neutrino Mass with sub-eV sensitivity
- Author
-
Alpert, B., Balata, M., Bennett, D., Biasotti, M., Boragno, C., Brofferio, C., Ceriale, V., Corsini, D., Day, P. K., De Gerone, M., Dressler, R., Faverzani, M., Ferri, E., Fowler, J., Gatti, F., Giachero, A., Hays-Wehle, J., Heinitz, S., Hilton, G., Koester, U., Lusignoli, M., Maino, M., Mates, J., Nisi, S., Nizzolo, R., Nucciotti, A., Pessina, G., Pizzigoni, G., Puiu, A., Ragazzi, S., Reintsema, C., Gomes, M. Ribeiro, Schmidt, D., Schumann, D., Sisti, M., Swetz, D., Terranova, F., Ullom, J., Alpert, B, Balata, M, Bennett, D, Biasotti, M, Boragno, C, Brofferio, C, Ceriale, V, Corsini, D, Day, P, De Gerone, M, Dressler, R, Faverzani, M, Ferri, E, Fowler, J, Gatti, F, Giachero, A, Hays Wehle, J, Heinitz, S, Hilton, G, Köster, U, Lusignoli, M, Maino, M, Mates, J, Nisi, S, Nizzolo, R, Nucciotti, A, Pessina, G, Pizzigoni, G, Puiu, P, Ragazzi, S, Reintsema, C, Gomes, M, Schmidt, D, Schumann, D, Sisti, M, Swetz, D, Terranova, F, and Ullom, J
- Subjects
Probabilities ,Physics - Instrumentation and Detectors ,Physics and Astronomy (miscellaneous) ,Engineering (miscellaneous) ,Mare Experiment ,Microcalorimeter Detector ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,Nuclear Experiment (nucl-ex) ,Nuclear Experiment ,Nuclear-Data ,FIS/04 - FISICA NUCLEARE E SUBNUCLEARE - Abstract
The European Research Council has recently funded HOLMES, a new experiment to directly measure the neutrino mass. HOLMES will perform a calorimetric measurement of the energy released in the decay of 163Ho. The calorimetric measurement eliminates systematic uncertainties arising from the use of external beta sources, as in experiments with beta spectrometers. This measurement was proposed in 1982 by A. De Rujula and M. Lusignoli, but only recently the detector technological progress allowed to design a sensitive experiment. HOLMES will deploy a large array of low temperature microcalorimeters with implanted 163Ho nuclei. The resulting mass sensitivity will be as low as 0.4 eV. HOLMES will be an important step forward in the direct neutrino mass measurement with a calorimetric approach as an alternative to spectrometry. It will also establish the potential of this approach to extend the sensitivity down to 0.1 eV. We outline here the project with its technical challenges and perspectives., Comment: 11 pages, 9 figures
- Published
- 2014
- Full Text
- View/download PDF
14. Systematic study of (n, p) reaction cross sections from the reaction threshold to 20 MeV
- Author
-
Lalremruata, B., Otuka, N., Tambave, G. J., Mulik, V. K., Patil, B. J., Dhole, S. D., Saxena, A., Ganesan, S., Bhoraskar, V. N., and KVI - Center for Advanced Radiation Technology
- Subjects
EXCITATION-FUNCTIONS ,N,ALPHA REACTIONS ,SN ,ENERGY-RANGE ,N,P REACTION ,NUCLEAR-DATA ,MOLYBDENUM ISOTOPES ,CHROMIUM ,14 MEV NEUTRONS ,ZN ISOTOPES - Abstract
The cross sections of Cr-nat(n, x)V-52, Cr-52(n, p)V-52, Cr-nat(n, x)V-53, Cr-53(n, p)V-53, Zn-nat(n, x)Cu-66, Zn-66(n, p)Cu-66, Zn-nat(n, x)Cu-68(m), Zn-68(n, p)Cu-68(m), Mo-nat(n, x)Nb-97(g), Mo-97(n, p)Nb-97(g), Mo-nat(n, x)Nb-97(m), Mo-97(n, p)Nb-97(m), Sn-nat(n, x)In-116(m1+m2), Sn-116(n, p)In-116(m1+m2), Sn-nat(n, x)In-117(g), Sn-117(n, p)In-117(g), Sn-nat(n, x)In-118(m1+m2), Sn-118(n, p)In-118(m1+m2), Sn-nat(n, x)In-120(x), Sn-120(n, p)In-120(x), Ba-nat(n, x)Cs-138, and Ba-138(n, p)Cs-138 reactions have been measured at 14.8 MeV neutron energy. In the present work, the contributions of (n, np), (n, pn), and (n, d) reactions from heavier isotopes are subtracted. The cross sections were also estimated with the TALYS-1.2 nuclear model code using different level density models, at neutron energies varying from the reaction threshold to 20 MeV. The variations in the (n, p) cross sections with the neutron number in the isotopes of an element are also discussed in brief.
- Published
- 2012
15. Systematic study of (n, p) reaction cross sections from the reaction threshold to 20 MeV
- Subjects
EXCITATION-FUNCTIONS ,ALPHA REACTIONS ,SN ,ENERGY-RANGE ,NUCLEAR-DATA ,MOLYBDENUM ISOTOPES ,CHROMIUM ,14 MEV NEUTRONS ,ZN ISOTOPES ,P REACTION - Abstract
The cross sections of Cr-nat(n, x)V-52, Cr-52(n, p)V-52, Cr-nat(n, x)V-53, Cr-53(n, p)V-53, Zn-nat(n, x)Cu-66, Zn-66(n, p)Cu-66, Zn-nat(n, x)Cu-68(m), Zn-68(n, p)Cu-68(m), Mo-nat(n, x)Nb-97(g), Mo-97(n, p)Nb-97(g), Mo-nat(n, x)Nb-97(m), Mo-97(n, p)Nb-97(m), Sn-nat(n, x)In-116(m1+m2), Sn-116(n, p)In-116(m1+m2), Sn-nat(n, x)In-117(g), Sn-117(n, p)In-117(g), Sn-nat(n, x)In-118(m1+m2), Sn-118(n, p)In-118(m1+m2), Sn-nat(n, x)In-120(x), Sn-120(n, p)In-120(x), Ba-nat(n, x)Cs-138, and Ba-138(n, p)Cs-138 reactions have been measured at 14.8 MeV neutron energy. In the present work, the contributions of (n, np), (n, pn), and (n, d) reactions from heavier isotopes are subtracted. The cross sections were also estimated with the TALYS-1.2 nuclear model code using different level density models, at neutron energies varying from the reaction threshold to 20 MeV. The variations in the (n, p) cross sections with the neutron number in the isotopes of an element are also discussed in brief.
- Published
- 2012
16. Excitation funcitons of alpha-particle induced reactions on enriched Sb-123 and Sb-nat for production of I-124
- Author
-
Uddin, M.s., Hermanne, Alex, Sudar, S., Aslam, M.n., Scholten, B., Coenen, H.h., Qaim, S.m., and Applied Physics and Photonics
- Subjects
HE-3 ,RELEVANT ,ISOTOPES ,PREEQUILIBRIUM EMISSION ,NATURAL ANTIMONY ,NUCLEAR-DATA ,RADIOCHEMICAL DETERMINATION - Abstract
Excitation functions of (alpha,xrk) reactions on 98.28% enriched Sb-123 and on Sb-nat were measured from 9 to 40 MeV. The data could be described well in terms of statistical and precompound models using the code TALYS. The discrepancies in the literature data for the formation of I-125 and I-126 were solved. The nuclear reaction Sb-123(alpha,3n)I-124 on an enriched target appears to be interesting for the production of I-124 (T-1/2=4.18 d) over the energy range E-alpha=42 -> 32 MeV, its yield being 11.7 MBq/mu A h. The levels of the radionuclidic impurities I-125 and I-126 amount to 1.8% and 0.6%, respectively. The use of Sb-nat as target material for 1241 production is unsuitable due to the high level of I-123 impurity. (C) 2010 Elsevier Ltd. All rights reserved.
- Published
- 2011
17. Treatment of the implicit effect in Shark-X
- Author
-
Hursin, Mathieu, Pelloni, Sandro, Vasiliev, Alexander, and Ferroukhi, Hakim
- Subjects
shark-x ,uncertainty quantification ,core ,methodology ,sensitivity ,implicit effect ,uncertainty analysis ,nuclear-data ,resonance self-shielding ,casmo-5 - Abstract
Shark-X is a set of Perl-based tools build around the deterministic neutron transport code CASMO-5, used to perform uncertainty quantification for lattice calculations at the Paul Scherrer Institut (PSI). While perturbing an input parameter, e.g. a cross section in a given energy range, the resulting perturbation to the effective cross section, e.g. multigroup cross section, can be expressed as the sum of an explicit and implicit component. The implicit term stems from changes in the neutron flux resulting from the cross section perturbation. This effect is neglected when using the standard perturbation theory methodology, even though its importance for uncertainty quantification is reported in the literature. The objectives of the paper are, in view of further enhancing Shark-X, to review a set of existing methods and to propose novel methodologies in order to accurately take the implicit effect into account in the resonance shielding treatment of CASMO-5; as well as to assess the importance of the new tool for typical LWR applications. Amongst the methods considered, those based on an equivalence in dilution allow perturbing the group-averaged cross sections without having to solve the slowing down problem in conjunction with the perturbed point-wise cross sections. However, such methods are found to show only limited improvements as compared to the standard perturbed self-shielded cross sections determined neglecting the implicit effect. As a result, a simpler approach based on the pre-determination of perturbation factors is adopted and implemented into Shark-X and CASMO-5. The new implementation is successfully tested and verified by comparing k-inf sensitivity coefficients computed with Shark-X with those from a Monte-Carlo reference solution, and this for a range of simple homogeneous mixtures as well as for LWR pin cells and lattices. Finally, the paper demonstrates through simple considerations, that the magnitude of the implicit effect is related to the energy group structure in the resolved resonance region, which might be specific to the code used to compute the sensitivity coefficients. The finer is the energy mesh; the smaller is also the impact of the implicit effect, and as such the necessity for a specific treatment. (C) 2019 Elsevier Ltd. All rights reserved.
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.