45 results on '"Ntentas G"'
Search Results
2. Individualised Estimation of Quality-adjusted Survival Benefit and Cost-effectiveness of Proton Beam Therapy in Intermediate-stage Hodgkin Lymphoma
- Author
-
Jones, D.A., Candio, P., Shakir, R., Ramroth, J., Wolstenholme, J., Gray, A.M., Cutter, D.J., and Ntentas, G.
- Published
- 2023
- Full Text
- View/download PDF
3. PO-1858 Dosimetric and volumetric effects of end expiration breath hold radiotherapy for oesophageal cancer
- Author
-
Mayhew, C., primary, Venkatasai, J., additional, Khan, M., additional, Leung, B., additional, Owczarczyk, K., additional, and Ntentas, G., additional
- Published
- 2023
- Full Text
- View/download PDF
4. Association of Radiation and Procarbazine Dose With Risk of Colorectal Cancer Among Survivors of Hodgkin Lymphoma.
- Author
-
Geurts, Y.M., Shakir, R., Ntentas, G., Roberti, S., Aznar, M.C., John, K.M., Ramroth, J., Janus, C.P., Krol, A.D., Roesink, J.M., Maazen, R.W.M. van der, Zijlstra, J.M., Darby, S.C., Aleman, B.M.P., Leeuwen, F.E. van, Cutter, D.J., Schaapveld, M., Geurts, Y.M., Shakir, R., Ntentas, G., Roberti, S., Aznar, M.C., John, K.M., Ramroth, J., Janus, C.P., Krol, A.D., Roesink, J.M., Maazen, R.W.M. van der, Zijlstra, J.M., Darby, S.C., Aleman, B.M.P., Leeuwen, F.E. van, Cutter, D.J., and Schaapveld, M.
- Abstract
Item does not contain fulltext, IMPORTANCE: Hodgkin lymphoma (HL) survivors have higher rates of colorectal cancer, which may be associated with subdiaphragmatic radiation therapy and/or alkylating chemotherapy. Although radiation dose-response associations with breast, lung, stomach, pancreatic, and esophageal cancer after HL have been demonstrated, the association of radiation therapy with colorectal cancer remains unclear. OBJECTIVE: To quantify the rate of colorectal cancer according to radiation dose to the large bowel and procarbazine dose among HL survivors. DESIGN, SETTING, AND PARTICIPANTS: A nested case-control study examined 5-year HL survivors at 5 hospital centers in the Netherlands. Participants had been diagnosed with HL in 1964 to 2000, when they were 15 to 50 years of age, and were followed for a median of approximately 26 years. Survivors of HL who developed colorectal cancer and survivors who were selected as controls were individually matched on sex, age at HL diagnosis, and date of HL diagnosis. Data were analyzed from July 2021 to October 2022. EXPOSURES: Mean radiation doses to the large bowel were estimated by reconstructing individual radiation therapy treatments on representative computed tomography data sets. MAIN OUTCOMES AND MEASURES: Excess rate ratios (ERRs) were modeled to evaluate the excess risk associated with each 1-gray increase in radiation dose, and potential effect modification by procarbazine was explored. RESULTS: The study population included 316 participants (mean [SD] age at HL diagnosis, 33.0 [9.8] years; 221 [69.9%] men), 78 of whom were HL survivors who developed colorectal cancer (cases) and 238 who did not (controls). The median (IQR) interval between HL and colorectal cancer was 25.7 (18.2-31.6) years. Increased colorectal cancer rates were seen for patients who received subdiaphragmatic radiation therapy (rate ratio [RR], 2.4; 95% CI, 1.4-4.1) and those who received more than 8.4 g/m2 procarbazine (RR, 2.5; 95% CI, 1.3-5.0). Overall, colorectal c
- Published
- 2023
5. Informing radiotherapy decisions in stage I/IIa Hodgkin lymphoma: modeling life expectancy using radiation dosimetry
- Author
-
Jones, DA, Candio, P, Shakir, R, Ntentas, G, Ramroth, J, Gray, AM, and Cutter, DJ
- Subjects
Adult ,Male ,Young Adult ,Life Expectancy ,Humans ,Hematology ,Neoplasm Recurrence, Local ,Radiometry ,Combined Modality Therapy ,Hodgkin Disease - Abstract
In recent randomized trials, omitting consolidative radiotherapy (RT) in early-stage Hodgkin lymphoma (ESHL) increased relapses. However, decades of follow-up are required to observe whether lower initial disease control is compensated by reduced risk of late effects. Extrapolation beyond trial follow-up is therefore necessary to inform current treatment decisions. To this end, we developed a microsimulation model to estimate lifetime quality-adjusted life years (QALYs) after combined modality treatment (CMT) or chemotherapy-alone for stage I/IIa ESHL. For CMT, the model included risks of breast and lung cancer, coronary heart disease, and ischemic stroke. Comparative outcomes were assessed for a clinically relevant range of example patients differing by age, sex, smoking status, and representative organs at risk (OAR) radiation doses informed by the RAPID trial. Analysis was performed with and without a 3.5% discount rate on future health. Smoking status had a large effect on optimal treatment choice. CMT was superior for nearly all never smoker example patients regardless of age, sex, and OAR doses. At a maximum, CMT produced a 1.095 (95% CI: 1.054-1.137) gain in undiscounted QALYs for a 20-year-old male never smoker with unilateral neck disease. In contrast, current smokers could substantially gain from chemotherapy-alone treatment. Again at a maximum, a 20-year-old male current smoker with bilateral neck and whole mediastinum involvement gained 3.500 (95% CI: 3.400 to 3.600) undiscounted QALYs with chemotherapy-alone treatment. Overall, CMT was more favorable the younger the patient, when future health discounting was included, and in never smokers.
- Published
- 2022
- Full Text
- View/download PDF
6. Predicted cardiac and second cancer risks for patients undergoing VMAT for mediastinal Hodgkin lymphoma
- Author
-
Houlihan, OA, Ntentas, G, Cutter, DJ, Daly, P, Gillham, C, McArdle, O, and Duane, FK
- Subjects
Cancer Research ,Oncology ,SDG 3 - Good Health and Well-being ,General Medicine - Abstract
Background and purpose To predict treatment-related cardiovascular disease (CVD) and second cancer 30-year absolute mortality risks (AMR30) for patients with mediastinal Hodgkin lymphoma in a large multicentre radiation oncology network in Ireland. Material and methods This study includes consecutive patients treated for mediastinal lymphoma using chemotherapy and involved site radiotherapy (RT) 2016–2019. Radiation doses to heart, left ventricle, cardiac valves, lungs, oesophagus, carotid arteries and female breasts were calculated. Individual CVD and second cancer AMR30 were predicted using Irish background population rates and dose–response relationships. Results Forty-four patients with Hodgkin lymphoma were identified, 23 females, median age 28 years. Ninety-eight percent received anthracycline, 80% received 4–6 cycles ABVD. Volumetric modulated arc therapy (VMAT) ± deep inspiration breath hold (DIBH) was delivered, median total prescribed dose 30 Gy. Average mean heart dose 9.8 Gy (range 0.2–23.8 Gy). Excess treatment-related mean AMR30 from CVD was 2.18% (0.79, 0.90, 0.01, 0.13 and 0.35% for coronary disease, heart failure, valvular disease, stroke and other cardiac diseases), 1.07% due to chemotherapy and a further 1.11% from RT. Excess mean AMR30 for second cancers following RT were: lung cancer 2.20%, breast cancer in females 0.34%, and oesophageal cancer 0.28%. Conclusion For patients with mediastinal lymphoma excess mortality risks from CVD and second cancers remain clinically significant despite contemporary chemotherapy and photon-RT. Efforts to reduce the toxicity of combined modality treatment, for example, using DIBH, reduced margins and advanced RT, e.g. proton beam therapy, should be continued to further reduce potentially fatal treatment effects.
- Published
- 2022
- Full Text
- View/download PDF
7. Proton beam therapy for early breast cancer: a systematic review and quantitative synthesis of adverse clinical outcomes
- Author
-
Holt, F., primary, Probert, J., additional, Liu, Z., additional, Duane, F., additional, Ntentas, G., additional, Darby, S., additional, Dodwell, D., additional, Coles, C., additional, Haviland, J., additional, Kirby, A., additional, and Taylor, C., additional
- Published
- 2022
- Full Text
- View/download PDF
8. OC-0292 Estimating risk of radiation toxicity for lymphoma patients using pre-chemotherapy PET-CT scans
- Author
-
Shakir, R., Butterworth, V., Ramroth, J., Cutter, D., and Ntentas, G.
- Published
- 2022
- Full Text
- View/download PDF
9. OC-0295 Colorectal cancer risk following radiotherapy and procarbazine for Hodgkin lymphoma
- Author
-
Shakir, R., primary, Geurts, Y., additional, Ntentas, G., additional, Aleman, B., additional, Ramroth, J., additional, John, K., additional, Janus, C., additional, Krol, A., additional, Roesink, J., additional, van den Maazen, R., additional, Zijlstra, J., additional, van Leeuwen, F., additional, Cutter, D., additional, and Schaapveld, M., additional
- Published
- 2022
- Full Text
- View/download PDF
10. Hippocampal Sparing Radiotherapy in adults with Primary Brain Tumors: A comparative planning and dosimetric study using IMPT, IMRT and 3DCRT
- Author
-
Aka, P, Taylor, R, Hugtenburg, R, Lambert, J, Powell, J, Bevolo, T, Gao, M, Gondi, V, Hartsell, W.H, Bolsi, A, Beer, J, Belosi, M.F, Siewert, D, Lomax, A.J, Weber, D.C, Huang, Y.J, Huang, C.C, Chao, P.J, Liu, C, Shang, H, Ding, X, Wang, Y, Mammar, H, Froelich, Sébastien, Alapetite, Claire, Bolle, Stéphanie, Calugaru, Valentin, Feuvret, Loic, Helfre, Sylvie, Champion, Laurence, Goudjil, Farid, Dendal, Remi, Engelholm, S.A, Munck Af Rosenschold, P, Kristensen, I, Smulders, B, Muhic, A, Alkner, S, Jacob, E, Engelholm, S, Aljabab, S, Lui, A, Wong, T, Liao, J, Laramore, G, Parvathaneni, U, Kharouta, M, Pidikiti, R, Jesseph, F, Smith, M, Dobbins, D, Mattson, D, Choi, S, Mansur, D, Machtay, M, Bhatt, A, Lütgendorf-Caucig, C, Dunavölgyi, R, Georg, P, Perpar, A, Fussl, C, Konstantinovic, R, Ulrike, M, Piero, F, Eugen, H, Vidal, M, Gerard, A, Barnel, C, Maneval, D, Herault, J, Claren, A, Doyen, J, Dendale, R, Toutee, A, Pasquie, I, Goudjil, F, Lumbroso Lerouic, L, Levy, C, Desjardins, L, Cassoux, N, Elisei, G, Pella, A, Calvi, G, Ricotti, R, Tagaste, B, Valvo, F, Ciocca, M, Via, R, Mastella, E, Baroni, G, Saotome, N, Yonai, S, Makishima, H, Hara, Y, Inaniwa, T, Sakama, M, Kanematsu, N, Tsuji, H, Furukawa, T, Shirai, T, Sauerwein, W, Finger, P.T, Gallie, B, Gavrylyuk, Y, Thariat, J, Salleron, J, Maschi, C, Fevrier, E, Caujolle, J.P, Hofverberg, P, Angellier, G, Peyrichon, M.L, Breneman, J, Esslinger, H, Pater, L, Vatner, R, Habrand, J.L, Stefan, D, Lesueur, P, Kao, W, Véla, A, Geffrelot, J, Tessonnier, T, Balosso, J, Mahé, M.A, Lim, P.S, Rompokos, V, Chang, Y.C, Royle, G, Gaze, M, Gains, J, Vennarini, S, Francesco, F, Rombi, B, Amichetti, M, Schwarz, M, Lorentini, S, Mee, T, Burnet, N.G, Crellin, A, Kirkby, N.F, Smith, E, Kirkby, K.J, Roggio, M, Buwenge, M, Melchionda, F, Ammendolia, I, Ronchi, L, Cammelli, S, Morganti, A.G, Youn, S.H, Kim, J.Y, Park, H.J, Shin, S.H, Lee, S.H, Hong, E.K, Czerska, K, Winczura, P, Wejs-Maternik, J, Blukis, A, Antonowicz-Szydlowska, M, Rucinski, A, Olko, P, Badzio, A, Kopec, R, Franceschini, D, Cozzi, L, De Rose, F, Meattini, I, Fogliata, A, Cozzi, S, Becherini, C, Tomatis, S, Livi, L, Scorsetti, M, Garda, A, Fattahi, S, Michel, A, Mutter, R, Yan, E, Park, S, Corbin, K, Giap, H, LAM, W.W, Geng, H, Tang, K.K, Lee, T.Y, Kong, C.W, Yang, B, Chiu, T.L, Cheung, K.Y, Yu, S.K, Ma, M, Gao, X, Zhao, Z, Zhao, B, Mullikin, T, Routman, D, Yu, J, Greco, K, Fagundes, M, Shan, J, Daniels, T, Rule, W, DeWees, T, Hu, Y, Bues, M, Sio, T, Liu, W, chenbin, L, yuehu, P, yuenan, W, Bai, Y, Gao, X.S, Zhao, Z.L, Ma, M.W, Ren, X.Y, Salem, A, Woolf, D, Aznar, M, Azadeh, A, Eccles, C, Charlwood, F, Faivre-Finn, C, Teoh, S, Fiorini, F, George, B, Vallis, K, Van den Heuvel, F, Huang, E.Y, Juang, P.J, Pan, S, Hawkins, M, Clarke, M, Lowe, M, Radhakrishna, G, Schaub, S, Bowen, S, Nyflot, M, Chapman, T, Apisarnthanarax, S, Vitek, P, Kubes, J, Vondracek, V, Vinakurau, S, Zamecnik, L, Vitolo, V, Barcellini, A, Brugnatelli, S, Cobianchi, L, Vanoli, A, Fossati, P, Facoetti, A, Dionigi, P, Orecchia, R, Iannalfi, A, Vischioni, B, Ronchi, S, D’Ippolito, E, Petrucci, R, Yamaguchi, H, Honda, M, Hamada, K, Todate, Y, Seto, I, Suzuki, M, Wada, H, Murakami, M, Yu, Z, Zheng, W, Lien-Chun, L, Zhengshan, H, Qing, Z, Jiade, L, Guoliang, J, Fiore, M.R, D'Ippolito, E, Fukumitsu, N, Hayakawa, T, Yamashita, T, Mima, M, Demizu, Y, Suzuki, T, Soejima, T, Hartsell, W, Collins, S, Casablanca, V, Mihalcik, S, Brennan, E, Van Nispen, A, Corbett, A, Mohammed, N, Lee, P, van Nispen, A, Liang, Y.S, Mein, S, Kopp, B, Choi, K, Haberer, T, Debus, J, Abdollahi, A, Mairani, A, Ogino, H, Iwata, H, Hashimoto, S, Nakajima, K, Hattori, Y, Nomura, K, Shibamoto, Y, Li, P, Wu, S, Deng, L, Zhang, G, Zhang, Q, Fu, S, Yang, Z, Zhang, Y, Sasaki, R, Okimoto, T, Akasaka, H, Miyawaki, D, Yoshida, K, Wang, T, Komatsu, S, Fukumoto, T, Shuang, W, Xin, C, zhengshan, H, Shen, F, Vorobyov, N, Andreev, G, Martynova, N, Lyubinsky, A, Kubasov, A, Chen, J, Ma, N, Lu, Y, Zhao, J, Shahnazi, K, Lu, J, Jiang, G, Mao, J, Walser, M, Bojaxhiu, B, Kawashiro, S, Tran, S, Pica, A, Bachtiary, B, Weber, D, Gaito, S, Abravan, A, Richardson, J, Colaco, R, Saunders, D, Brennan, B, Petersen, I, Ahmed, S, Laack, N, Mizoe, J.E, Iizumi, T, Minohara, S, Kusano, Y, Matsuzaki, Y, Tsuchida, K, Serizawa, I, Yoshida, D, Katoh, H, Sakurai, H, Tujii, H, Kim, T.H, Park, J.W, Bo Hyun, K, Hyunjung, K, Sung Ho, M, Sang Soo, K, Sang Myung, W, Young-Hwan, K, Woo Jin, L, Dae Yong, K, Hong, Z, Wang, Z, Koroulakis, A, Molitoris, J, Kaiser, A, Hanna, N, Jiang, Y, Regine, W, DeCesaris, C.M, Choi, J.I, Carr, S.R, Burrows, W.M, Regine, W.F, Simone, C.B, Aihara, T, Hiratsuka, J, Kamitani, N, Higashino, M, Kawata, R, Kumada, H, Ono, K, Chou, Y.C, Dippolito, E, Bonora, M, Alterio, D, Gandini, S, Jereczeck, B.A, Kelly, C, Dobeson, C, Iqbal, S, Chatterjee, S, Hague, C, Li, T, Lin, A, Lukens, J, Slevin, N, Thomson, D, van Herk, M, West, C, Teo, K, Jeans, E, Manzar, G, Patel, S, Ma, D, Lester, S, Foote, R, Friborg, J, Jensen, K, Hansen, C.R, Andersen, E, Andersen, M, Eriksen, J.G, Johansen, J, Overgaard, J, Grau, C, Dědečková, K, Vítek, P, Ondrová, B, Sláviková, S, Zapletalová, S, Zapletal, R, Vondráček, V, Rotnáglová, E, Kwanghyun, J, Woojin, L, Dongryul, O, Yong Chan, A, Paudel, N, Schmidt, S, Ruckman, M, Gans, S, Stauffer, M, Helenowski, I, Patel, U, Samant, S, Gentile, M, Damico, N, Yao, M, Shuja, M, Routman, D.M, Foote, R.L, Garces, Y.I, Neben-Wittich, M.A, Patel, S.H, McGee, L.A, Harmsen, W.S, Ma, D.J, Sommat, K, Tong, A.K.T, Hu, J, Ong, A.L.K, Wang, F, Sin, S.Y, Wee, T.S, Tan, W.K, Fong, K.W, Soong, Y.L, Wallace, N, Fredericks, S, Fitzgerald, T, Vernimmen, F, Petringa, G, Cirrone, P, Agosteo, S, Attili, A, Cammarata, F.P, Cuttone, G, Conte, V, La Tessa, C, Manti, L, Rosenfeld, A, Lojacono, P.A, Hennings, F, Fattori, G, Peroni, M, Lomax, A, Hrbacek, J, Nguyen, H.G, Bach Cuadra, M, Sznitman, R, Schalenbourg, A, Pflaeger, A, Weber, A, Seidel, S, Stark, R, Heufelder, J, Mailhot Vega, R, Bradley, J, Lockney, N, Macdonald, S, Liang, X, Mazal, A, Mendenhall, N, Sher, D, Korreman, S.S, Andreasen, S, Petersen, J.B, Offersen, B.V, Gergelis, K, Jethwa, K, Whitaker, T, Shiraishi, S, Shumway, D, Press, R, Shelton, J, Zhang, C, Dang, Q, Tian, S, Shu, T, Seldon, C, Jani, A, Zhou, J, McDonald, M, Gort, E, Beukema, J.C, Spijkerman-Bergsma, M.J, Both, S, Langendijk, J.A, Matysiak, W.P, Brouwer, C.L, Baba, K, Numajiri, H, Murofushi, K, Oshiro, Y, Mizumoto, M, Onishi, K, Nonaka, T, Ishikawa, H, Okumura, T, Dominietto, M, Adam, K, Ahlhelm, F.J, Safai, S, Abdul-Jabbar, L, Song, J, Tseng, Y. D, Rockhill, J, Fink, J, Chang, L, Halasz, L. M, Guntrum, F, Steinmeier, T, Nagaraja, S, Jazmati, D, Geismar, D, Timmermann, B, Plaude, S, Lynch, C, Petras, K, Chang, J, Grimm, S, Lukas, R, Kumthekar, P, Merrell, R, Kalapurakal, J, Gross, J, Hoppe, B, Simone, C, Nichols, R.C, Pham, D, Mohindra, P, Chon, B, Morris, C, Li, Z, Flampouri, S, Powell, J.R, Murray, L, Burnet, N, Fernandez, S, Lingard, Z, McParland, L, O’Hara, D, Whitfield, G, Short, S.C, Guan, X, Gao, J, Hu, W, Yang, J, Xing, X, Hu, C, Kong, L, Zou, Z, Thomas, H, Sasidharan, B.K, Rengan, R, Zeng, J, Busold, S, Heese, J, Cerello, P, Bottura, L, Felcini, E, Ferrero, V, Monaco, V, Pennazio, F, de Rijk, G, Chang, H, KyungDon, C, Byunghun, H, Gyuseong, C, Chilukuri, S, Jalali, R, Panda, P.K, Korn, G, Larosa, G, Russo, A, Schillaci, F, Scuderi, V, Margarone, D, Fredén, E, Almhagen, E, Mejaddam, Y, Siegbahn, A, Guardiola, C, Gómez, F, Prieto-Pena, J, Fleta, C, De Marzi, L, Prezado, Y, Kabolizadeh, P, Reitemeier, P, Navin, M, Hamstra, D, Anderson, J, Stevens, C, Bartolucci, L, Adrien, C, Lejars, M, Vaillant, M, Fourquet, A, Robillard, M, Costa, E, Kirova, Y, Kolano, A.M, Degiovanni, A, Farr, J.B, Kundel, S, Pinto, M, Kurichiyanil, N, Würl, M, Englbrecht, F, Hillbrand, M, Schreiber, J, Parodi, K, Kurup, A, Magliari, A, Perez, J, Masui, S, Asano, T, Owen, H, Burt, G, Apsimon, R, Pitman, S, Popovici, M.A, Vasilache, R, Safavi-Naeini, M, Chacon, A, Howell, N, Middleton, R.J, Fraser, B, Guatelli, S, Rendina, L, Matsufuji, N, Gregoire, M.C, Sikora, K, Pettingell, J, Crocker, M, Saplaouras, A, Snijders, A, Mao, J.H, Nakamura, K, Bin, J, Gonsalves, A, Mao, H.S, Steinke, S, Roach, M, Leemans, W, Blakely, E, Takayama, K, Tan, T.S, Wee, J.T.S, Tuan, J.K.L, Wang, M.L.C, Quah, J.S.H, Tay, N.C.W, Lee, J.C.L, Lim, J.K.H, Oei, A.A, Tan, J.M, Park, S.Y, Chow, W.W.L, Omar, Y.B, Chew, P.G, Taylor, P, Lee, J, Tsurudome, T, Hirabayashi, M, Tsutsui, H, Yoshida, J, Takahashi, N, Kamiguchi, N, Hashimoto, A, Tachikawa, T, Mikami, Y, Kumata, Y, Wang, M, Chua, E.T, Wee, J, Wong, F.Y, Tuan, J, Master, Z, Wong, S, Welsh, J, Hentz, C, Pankuch, M, DeJongh, F, Xia, Y, Aitkenhead, A.H, Appleby, R, Merchant, M.J, MacKay, R.I, Young, H, Hughes, V, Alsulimane, M, Barajas, C.A, Taylor, J, Casse, G, Omar, A, Burdin, S, Boon, C, Lester, J, Thomas, A.J, Khan, A, Huthart, L, Leaver, K, Snell, J, Warlow, A, Burigo, L.N, Oborn, B, Belosi, F, Fredh, A, van de Water, S, Schneider, T, Patriarca, A, Bergs, J, Hierso, E, Hirayama, R, Martínez-Rovira, I, Seksek, O, Shirato, H, Nakamura, T, Ogino, T, Akimoto, T, Tamamura, H, Nishimoto, N, Proton-Net, G, Shimizu, S, Fabiano, S, Bangert, M, Guckenberger, M, Unkelbach, J, Mcauley, G, Teran, A, Slater, J, Wroe, A, Boon, I, Clorley, J, Owen, K, Oliver, T, Cicchetti, A, Ballarini, F, Rancati, T, Carrara, M, Zaffaroni, N, Bezawy, R. El, Carante, M, Valdagni, R, Faccini, R, Forte, G.I, Dhinsey, S, Greenshaw, T, Parsons, J, Welsch, C, Stock, M, Grevillot, L, Kragl, G, Carlino, A, Martino, G, Hug, E, Arya, H, Chirayath, V.A, Jin, M, Weiss, A.H, Glass, G.A, Chi, Y, Kaplan, L.P, Perez, R.A, Vestergaard, A, Gittings, E, Stamper, J, Beltran, C, Mark, P, Furutani, K, McAuley, G, Gordon, J, Boisseau, P, Dart, A, Nett, W, Kollipara, S, Grossmann, M, Actis, O, Diete, W, Rudolf, D, Klein, H.U, Kramert, R, Meer, D, Venkataraman, C, Waterstradt, T, Hérault, J, Bergerot, J.M, Hsi, W.C, Zhou, R, Zhang, X, Yang, F, Yinxiangzi, S, Sun, J, Li, X, Zhiling, C, Yuehu, P, Mengya, G, Haiyun, K, Qi, L, Zhentang, Z, Lin, Y.H, Tan, H.Q, Tan, L.K.R, Ang, K.W, Xiufang, L, Milkowski, K, Pang, D, Jones, M, Mizota, M, Tsunashima, Y, Himukai, T, Ogata, R, Uno, T, Ouyang, L, Jia, B, Li, D, Paul, K, Pullia, M, Savazzi, S, Lante, V, Foglio, S, Donetti, M, Falbo, L, Casalegno, L, Rousseau, M, Shinomiya, K, Yazawa, T, Iseki, Y, Kanai, Y, Hirata, Y, Powers, J, Solovev, A, Chernukha, A, Saburov, V, Shegai, P, Ivanov, S, Kaprin, A, Stolarczyk, L, Mojżeszek, N, Van Hoey, O, Farah, J, Domingo, C, Mares, V, Ploc, O, Trinkl, S, Harrison, R, Toltz, A, Nevitt, Z, Bloch, C, Taddei, P, Saini, J, Regmi, R, Yuntao, S, Jinxing, Z, Yap, J.S.L, Hentz, M, Silverman, J, Jolly, S, Boogert, S, Nevay, L, Kacperek, A, Schnuerer, R, Resta-Lopez, J, Zeng, X, Zheng, J, Li, M, Han, M, Song, Y, Holm, A, Korreman, S, Petersen, J.B.B, Bäumer, C, Fuenstes, C, Janson, M, Matic, A, Wulff, J, Psoroulas, S, Lomax, T, Arjomandy, B, Athar, B, Tesfamicael, B, Bejarano Buele, A, Deemer, J, Kozlyuk, V, VanSickle, K, Bolt, R, van Goethem, M.J, Langendijk, J, van t Veld, A, Chen, K.L, Wlodarczyk, B, Wu, H, Chen, Z, Shen, L, Fachouri, N, Placidi, L, Böhlen, T, Ieko, Y, Iwai, T, Nemoto, K, Suzuki, K, Kanai, T, Miyasaka, Y, Harada, M, Yamashita, H, Kubota, I, Kayama, T, Jensen, M.F, Bræmer-Jensen, P, Randers, P, Søndergaard, C.S, Nørrevang, O, Taasti, V.T, Kong, H, Yin, C, Gu, M, Liu, M, Shu, H, Chongxian, Y, Haiyang, Z, Juan, Z, Ming, L, Manzhou, Z., Liying, Z, Kecheng, C, Xiaolei, D, Castro, J, Freire, J, Cremades, M, Moral, L, Rico, P, Ares, C, Miralbell, R, Shi, J, Xia, J, Wang, B, Li, Q, Liu, X, Sung, C.C, Chen, W.P, Liao, T.Y, Takashina, M, Hamatani, N, Tsubouchi, T, Yagi, M, Mizoe, J, Titt, U, Mirkovic, D, Yepes, P, Wang, Q, Grosshans, D, Wieser, H.P, Mohan, R, Vadrucci, M, Xiao, G, Cai, X, Li, G, Yuan, Y, Lu, R, Sun, G, Zhang, M, Deming, L, lianhua, O, Takada, K, Tanaka, S, Matsumoto, Y, Naito, F, Kurihara, T, Nakai, K, Matsumura, A, Sakae, T, Shamurailatpam, D, P, K, Mp, N, A, M, Kg, G, T, R, C, S, J, R, Rozes, A, Dutheil, P, Batalla, A, Vela, A, Rana, S, Bennouna, J, Gutierrez, A, He, P, Shen, G, Dai, Z, Ma, Y, Chen, W, Pandey, J, Chirvase, C, Osborne, M, Ilsley, E, Di Biase, I, Kato, T, Hirose, K, Arai, K, Motoyanagi, T, Harada, T, Takeuchi, A, Kato, R, Tanaka, H, Mitsumoto, T, Takai, Y, Bolsa-Ferruz, M, Palmans, H, Chen, Y.S, Wu, S.W, Huang, H.C, Wang, H.T, Yeh, C.Y, Chen, H.H, Cook, H, Lourenço, A, Dal Bello, R, Magalhaes Martins, P, Hermann, G, Kihm, T, Seimetz, M, Brons, S, Seco, J, De Saint-Hubert, M, Swakon, J, De Freitas Nascimento, L, Tessaro, V.B, Poignant, F, Gervais, B, Beuve, M, Galassi, M.E, Harms, J, Chang, C.W, Zhang, R, Lin, Y, Langen, K, Liu, T, Lin, L, Howard, M, Denbeigh, J, Remmes, N, Debrot, E, Herman, M, Huang, Y.Y, Tsai, S.H, Fang, F.M, Mizuno, H, Sagara, T, Yamazaki, Y, Kato, M, Oyama, S, Pembroke, C, Joslin-Tan, T, Maggs, R, O’Neil, K, Barrett-Lee, P, Staffurth, J, Resch, A, Heyes, P, Georg, D, Fuchs, H, Hideyuki, M, katsuhisa, N, Wataru, Y, Samnøy, A.T, Ytre-Hauge, K.S, Povoli, M, Kok, A, Summanwar, A, Linh, T, Malinen, E, Röhrich, D, Asp, J, Santos, A, Afshar, V.S, Zhang, W.Q, Bezak, E, a, M, k, G, p, K, mp, N, t, R, c, S, j, R, Smith, B, Hammer, C, Hyer, D, DeWerd, L, Culberson, W, Brooke, M, Straticiuc, M, Craciun, L, Matei, C.E, Radu, M, Xiao, M, Paschalis, S, Joshi, P, Price, T, Mehta, M, Graça, J, Biglin, E, Aitkenhead, A, Price, G, Williams, K, Chadwick, A, Schettino, G, Robinson, A, Kirkby, K, Catanzano, D, Cessac, R, Rutherford, R, Ahmed, A, Mohammadi, A, Tashima, H, Yamaya, T, Chavez Barajas, C, Taylor, A, Vossebeld, J, Barwick, I, CHEON, W, Jo, K, Ahn, S.W, Cho, J, Han, Y, Choi, H.H.F, Cheung, C.W, Cohilis, M, Lee, J.A, Sterpin, E, Souris, K, Mundy, D, Petasecca, M, Rosenfeld, A.B, Boso, A, Di Fulvio, A, Becchetti, F.D, Torres-Isea, R.O, Febbraro, M, Gagnon-Moisan, F, Feng, Y, Fontana, M, Etxebeste, A, Dauvergne, D, Letang, J.M, Testa, E, Sarrut, D, Maxim, V, Gajewski, J, Durante, M, Garbacz, M, Krah, N, Krzempek, K, Schiavi, A, Skrzypek, A, Tommasino, F, Ruciński, A, Gillin, M, Sahoo, N, Zhu, X.R, Van Delinder, K.W, Crawford, D, Khan, R, Gräfe, J, Kakiuchi, G, Shioyama, Y, Shimokomaki, R, Huang, Z, Wang, W, Sheng, Y, Lee, M.W, Jan, M.L, Hong, J.H, Okamoto, K, Sato, H, Kalantan, S, Boston, A, Kang, Y, Shen, J, Casey, W, Vern-Gross, T, Wong, W, McGee, L, Halyard, M, Keole, S, Kelleter, L, Radogna, R, Saakyan, R, Basharina-Freshville, A, Attree, D, Volz, L, Komenda, W, Krzempek, D, Mierzwińska, G, Barbara, M, Kopeć, R, Lan, J.H, Chang, F.X, Lin, C.H, Lee, T.F, Ahn, S, Cheon, W, Lee, M, Letellier, V, Osorio, J, Dreindl, R, Livingstone, J, Gallin-Martel, M.L, Létang, J.M, Marcatili, S, Morel, C, Maggi, P, Chen, H, Yang, H, Panthi, R, Mackin, D, Peterson, S, Beddar, S, Polf, J, Masuda, T, Nishio, T, Sano, A, Tomozawa, H, Nishio, A, Tsuneda, M, Okamoto, T, Karasawa, K, Miszczynska Giza, O, Sánchez-Parcerisa, D, Herraiz, J. L, Rojo-Santiago, J, Udias, J.M, Mitrović, U, Hager, M, List, I, Fischer, C, Cecowski, M, Gajšek, R, Mizutani, S, Hotta, K, Baba, H, Tanizaki, N, Yamaguchi, T, Moon, S.Y, Rah, J.E, Yoon, M, Shin, D, Nebah, P, Dugas, J, Syh, J, Maynard, M, Marsh, N, Rosen, L, Nichiporov, D, Watts, D.A, Chen, Y, Petterson, M, Lee, W.D, Penfold, S.N, Ruebel, N, Piersimoni, P, Mille, M, Mossahebi, S, Chen-Mayer, H, Allport, P, Green, S, Shaikh, S, Walker, D, Qamhiyeh, S, Levegruen, S, Kutscher, S, Kranke, H, Olbrich, G, Stuschke, M, Baran, J, Pawlik-Niedzwiecka, M, Moskal, P, Rutherford, H, Poenisch, F, Martin, C, Wu, R, Mayo, L.L, Shah, S.J, Frank, S.J, Gunn, G.B, Sakurai, Y, Takata, T, Kondo, N, Schlegel, N, Deng, Y, Sun, W, Wu, X, Yap, J, Zhang, H, Szumlak, T, Schuy, C, Simeonov, Y, Zink, K, Graeff, C, Weber, U, Allred, B, Robertson, D, Dewees, T, Gagneur, J, Stoker, J, Stützer, K, Valentini, C, Agolli, L, Hölscher, T, Thiele, J, Dutz, A, Löck, S, Krause, M, Baumann, M, Richter, C, Takayanagi, T, Uesaka, T, Nakamura, Y, Unlu, M.B, Kuriyama, Y, Uesugi, T, Ishi, Y, Umegaki, K, Matsuura, T, Watts, D. A, Huisman, B, Valladolid Onecha, V, Fraile, L.M, Sanchez Parcerisa, D, España, S, Ze, W, Chen, H.Y, Chuang, K.S, Wilson, M, Lui, J, Noble, D, Holloway, S, Yap, J.H.H, Chew, M.M.L, Pang, P.P, Lim, C.J.C, Gan, S.A, Tan, T.W.K, Shen, Z.M, Moyers, M, Qianxia, W, Chen, H.L, Li, J, Lin, J, Zhao, L, Myers, W, Ates, O, Faught, J, Yan, Y, Faught, A, Sobczak, D, Hua, C.H, Moskvin, V, Merchant, T, Henkner, K, Ecker, S, Chaudhri, N, Ellerbrock, M, Jäkel, O, Hernandez Morales, D, Augustine, K, Johnson, J, Younkin, J, Fiorina, E, Mattei, I, Morrocchi, M, Sarti, A, Traini, G, Valle, S.M, Bert, C, Karger, C.P, Kamada, T, Scholz, M, DeLuca, P.M, De Simoni, M, Dong, Y, Embriaco, A, Fischetti, M, Mancini-Terracciano, C, Mirabelli, R, Muraro, S, Lens, E, de Blécourt, A, Schaart, D, Vos, F, van Dongen, K, Berthold, J, Khamfongkhruea, C, Petzoldt, J, Wohlfahrt, P, Pausch, G, Janssens, G, Smeets, J, Shamblin, J, Blakey, M, Moore, R, Matteo, J, Schreuder, N, Derenchuk, V, Shin, J, Jee, K.W, Clasie, B.M, Depauw, N, Batin, E, Madden, T.M, Schuemann, J, Paganetti, H, Kooy, H.M, Daniel, M, Abbassi, L, Arsène-Henry, A, Amessis, M, Maes, S, O’Ryan-Blair, A, Laval, G, Ermoian, R, Taddei, P. J, Andersson, K, Norrlid, O, Lindbäck, E, Vallhagen Dahlgren, C, Witt Nyström, P, Argota Perez, R, Sharma, M.B, Elstrøm, U.V, Bizzocchi, N, Albertini, F, Branco, D, Kry, S, Rong, J, Frank, S, Followill, D, Busch, K, Muren, L.P, Thörnqvist, S, Andersen, A.G, Pedersen, J, Dong, L, Cao, W, Bai, X, Van Lobenstein, N, Traneus, E, Anson, C, Comi, S, Marvaso, G, Russo, S, Giandini, T, Avuzzi, B, Ciardo, D, Cattani, F, Jereczek-Fossa, B, Cotterill, J, Esposito, M, Winter, A, Allinson, N, Liu, G, Yan, D, Jawad, S, Dilworth, J, Chen, P, Ackermann, B, Florijn, M, Sharfo, A.W.M, Wiggenraad, R.G.J, van Santvoort, J.P.C, Petoukhova, A.L, Hoogeman, M.S, Mast, M.E, Dirkx, M.L.P, Fujitaka, S, Fujii, Y, Nihongi, H, Nakayama, S, Ho, M.W, Artz, M, Tong, K.T.A, Hytonen, R, Koponen, T, Niemela, P, Iancu, G, Lautenschlaeger, S, Eberle, F, Horst, F, Ringbaek, T, Engenhart-Cabillic, R, Kim, M.J, Hong, C.S, Kim, Y.B, Park, S.H, Kim, J.S, Reiterer, J, Steffal, C, Gora, J, Kann, T, Schratter-Sehn, A.U, Li, H, Chen, M, wu, R, Li, Y, zhang, X, Gautam, A, poenisch, F, sahoo, N, Zhu, R, Lin, M, Chang, J.T.C, Maeda, Y, Sato, Y, Shibata, S, Bou, S, Yamamoto, K, Sasaki, M, Fuwa, N, Takamatsu, S, Kume, K, Lim, F, Faller, F, Stiller, W, Ming, X, Hui, H, Mukawa, T, Takashi, Y, Stephenson, L, Pang, E.P.P, Paz, A.E, Yoshida, Y, Righetto, R, Vecchi, C, Alparone, A, De Spirito, M, Radhakrishnan, S, Chandrashekaran, A, Nandigam, J, Sarma, Y, Rechner, L, Munck af Rosenschöld, P, Bäck, A, Johansen, T.S, Schut, D.A, Aznar, M.C, Nyman, J, Ren, X, Rosas, S, Vanderstraeten, R, Jyske, T, Jari, L, Yuenan, W, Henthorn, N, Warmenhoven, J, Merchant, M, Kirkby, N, Ranald, M, Stefanowicz, S, Zschaeck, S, Troost, E.G.C, Stubington, E, Ehrgott, M, Nohadani, O, Shentall, G, Sun, T, yin, Y, Lin, X, Yoshimura, T, Matsuo, Y, Yamazaki, R, Takao, S, Miyamoto, N, Toussaint, L, Indelicato, D.J, Lassen-Ramshad, Y, Kirby, K, Mikkelsen, R, Di Pinto, M, Høyer, M, Stokkevåg, C.H, Van Herk, M, Shortall, J, Green, A, Vasquez Osorio, E, Mackay, R, Navratil, M, Andrlik, M, Chiang, Y.Y, Yeh, Y.H, Yeh, Y.J, Chang, T.C, Eaton, B, Yang, X, Esiashvili, N, Gu, W, Ruan, D, O’Connor, D, Zou, W, Tsai, M.Y, Jia, X, Sheng, K, Hyde, C, Chen, P.Y, Deraniyagala, R, Petoukhova, A, Klaassen, L, Habraken, S, Jacobs, J, Sattler, M, Verhoeven, K, Klaver, Y, Widesott, L, Fracchiolla, F, Algranati, C, Scifoni, E, Scartoni, D, Farace, P, Kröniger, K, Bauer, J, Nilsson, R, Chen, X, Liu, R, Sun, B, Mutic, S, Zhang, T, Zhao, T, Kajdrowicz, T, Wochnik, A, Swakoń, J, Małecki, K, Michalec, B, Moffitt, G, Wootton, L, Hardemark, B, Sandison, G, Emery, R, Stewart, R, Reidel, C.A, Finck, C, Deisher, A, Mahajan, A, Michael, H, Ahn, S.H, Kwang Hyeon, K, Chankyu, K, Youngmoon, G, Shinhaeng, C, Se Byeong, L, Young Kyung, L, Haksoo, K, Dongho, S, Jong Hwi, J, Ali, Y, Monini, C, Maigne, L, Alshaikhi, J, D’Souza, D, Amos, R. A, Baumann, K.S, Gomà, C, Flatten, V, Lautenschläger, S, Abdel-Rehim, A, Wan Chan Tseung, H.S, Ma, J, Kamal Syed, H, Boscolo, D, Krämer, M, Fuss, M, Braunroth, T, Rabus, H, Baek, W.Y, Brown, H, Alshammari, H, Brownstein, J, Giantsoudi, D, Wang, C.C, Grassberger, C, Chen, C, Chan, M.F, Mah, D, Hojo, Y, Xu, C, Elia, A, Fung, A, Nguyen, B.N, Oyervides, M, Koska, B, Kamal Sayed, H, Kim, C, Kim, Y.J, Lee, S.B, Goh, Y, Cho, S, Jeong, J.H, Kim, H, Lim, Y.K, Koh, W.Y.C, Lew, W.S, Lee, C.L.J, Kollitz, E, Han, H, Kim, C.H, Kroll, C, Riboldi, M, Newhauser, W, Dedes, G, Fuglsang Jensen, M, Nyström, U.H, Skyt, P.S, Hoffmann, L, Sloth Møller, D, Dokic, I, Kuo, S.H, Tai, P.L, Cheng, S.W, Chong, N.S, Yeom, Y.S, Kuzmin, G, Griffin, K, Langner, U, Jung, J.W, Lee, C, Lee, C.C, Hsu, W, Chao, T.C, Liamsuwan, T, Pischom, N, Tangboonduangjit, P, Suchada, T, Zheng, D, Rutenberg, M, Dhabaan, A, Harrabi, S, MARAFINI, M, Gioscio, E, Yunsheng, D, Alphonse, G, Rodriguez Lafrasse, C, Testa, É, Morris, B, Asavaphatiboon, S, DeBlois, D, Yam, M, Sękowski, P, Skwira-Chalot, I, Matulewicz, T, Flynn, R, Verbeek, N, Smyczek, S, Brualla, L, Lei, Y, Ghavidel, B, Curran, W, Beitler, J, Yu, H.W, Jeng, S.C, Tsai, Y.C, Chiou, J.F, Yusa, K, Dai, T, Yuan, P, Shafai-Erfani, G, Shu, H.K, Pepin, M, Tryggestad, E.J, Abdel Rehim, A, Johnson, J.E, Herman, M.G, Lee, S.C, Sheu, R.J, Ödén, J, Ramos-Mendez, J, Perl, J, Faddegon, B, Alaka, B.G, Bentefour, E.H, Samuel, D, Biradar, B, Frusti, P, Den Otter, L.A, Kurz, C, Stanislawski, M, Landry, G, Meijers, A, Knopf, A.C, Dickmann, J, Wesp, P, Rit, S, Johnson, R.P, Bashkirov, V, Schulte, R.W, Hoyle, B, Johnson, R, Schulte, R, Weller, J, Cotterill, J.V, Waltham, C, Allport, P.P, Taylor, M, Rogers, J, Evans, P.M, Allinson, N.M, Henry, T, Ardenfors, O, Gudowska, I, Poludniowski, G, Dasu, A, Lai, Y, Yuncheng, Z, Yiping, S, Mingwu, J, Xun, J, Yujie, C, Meric, I, Mattingly, J, Moustafa, A, Skjerdal, K, Moteabbed, M, Harisinghani, M, Efstathiou, J.A, Lu, H.M, Kabuki, S, Mizowaki, T, Ofierzynski, R, Paysan, P, Strzelecki, A, Lucca, R, Patch, S, Mustapha, B, Santiago-Gonzalez, D, Pettersen, H.E.S, Sølie, J, Levegrün, S, Pöttgen, C, Meyer, E, Collins-Fekete, C.A, Bashkirov, V.A, Wang, Y.M, Sung, K.C, Wang, C.J, Wu, H.Y, Winter, M, Bauer, U, Hansmann, T, Naumann, J, Peters, A, Pilz, K, Troost, E, Yan, S, Greenhalgh, J, Li, S, Bortfeld, T, Flanz, J, Ytre-Hauge, K, Zhang, L, Sharp, G.C, Cascio, E.W, Flanz, J.B, Tang, J, Zhu, J, Zhang, J, Uh, J, Sarosiek, C, Ricci, J, Coutrakon, G, Ozoemelam, I, van der Graaf, E.R, Maciej, K, Zhang, N, Brandenburg, S, Dendooven, P, Niepel, K, Yohannes, I, Dietrich, O, Ertl-Wagner, B, Pappas, E, Sølie, J.R, Odland, O.H, Ghesquiere-Dierickx, L.M.H, Felix Bautista, R, Gehrke, T, Jakubek, J, Turecek, D, Martisikova, M, Malekzadeh, E, Rajabi, H, Kalantari Mahmoudabadi, F, Meschini, G, d’Arenzo, D, Comini, D, Huynh, M.T, Paganelli, C, Fontana, G, Mancin, A, Preda, L, Su, Z, Henderson, R, Nichols, C, Bryant, C, Mendenhall, W, Boyer, B, Geerebaert, Y, Gevin, O, Koumeir, C, Magniette, F, Manigot, P, Poirier, F, Servagent, N, Thiebaux, C, Verderi, M, Chen, Y.R, Anderle, K, Jeraj, R, Chuter, R, Allan, I, Patel, I, MacKay, R, Harrison, K, Hoole, A, Thomas, S, Jena, R, Liao, Z, Zhu, R.X, Freeman, M, Espy, M, Aulwes, E, Magnelind, P, Merrill, F, Neukirch, L, Sidebottom, R, Tang, Z, Tupa, D, Wilde, C, Shusharina, N, Fullerton, B, Adams, J, Sharp, G, Chan, A, Dolde, K, Naumann, P, Dávid, C, Kachelrieß, M, Saito, N, Pfaffenberger, A, Wolf, M, Lis, M, Moreau, J, Buttion, M, Molitoris, J.K, Simone-, C.B, Regele, H, Bula, C, Danuser, S, Kang, M, Lin, H, Ribeiro, C. O, Dumont, D, Terpstra, J, Knopf, A, Wagenaar, D, Kierkels, R, van der Schaaf, A, Scandurra, D, Sijtsema, M, Korevaar, E, van den Hoek, A, O’Neil, M, Chung, H, Sala, I, Ramirez, H, Guerrero, T, Mondlane, G, Butkus, M.B, Stewart, R.D, Carlson, D.J, Ingram, S, Ytre-Hauge, K. Smeland, Rørvik, E, Perales, A, Carabe, A, Baratto-Roldan, A, Kimstrand, P, Cortes-Giraldo, M, Bertolet, A, Barato-Roldan, A, Baiocco, G, Barbieri, S, Mei, Z, Fan, K, Tang, K, Wang, J, Zhu, H, Sung, W, McNamara, A, Tran, L.T, Qi, Y, Xu, X, Pei, X, Chiang, Y, Chien-Hau, C, Chung-Chi, L, Chuan-Jong, T, Tsi-Chian, C, Wang, L, Cao, J, Wang, X, Lin, E, Minami, K, Kondo, R, Khoei, S, Shirvalilou, S, Khoee, S, Jamali Raoufi, N, Karimi, M.R, Shakeri-Zadeh, A, Patera, V, Rinaldi, I, Sas-Korczynska, B, Deng, W, Karagounis, I, Huynh, K, Maity, A, Abel, E, Santa Cruz, G, Monti Hughes, A, Herrera, M, Trivillin, V, Portu, A, Garabalino, M, Schwint, A, Gonzalez, S, Saint Martin, G, Santa Cruz, I, Tamari, Y, Watanabe, T, Masunaga, S.I, Wittig, A, Nigg, D, Stecher-Rasmussen, F, Moss, R, Igawa, K, Akita, K, Akabori, K, Hattori, K.J, Arima, H, Motoyama, K, Higashi, T, Trivillin, V.A, Pozzi, E.C.C, Thorp1, S.I, Curotto1, P, Garabalino1, M.A, Itoiz, M.E, Santa Cruz, I.S, Ramos, P.S, Palmieri, M.A, Schwint, A.E, Gadan, M.A, Thorp, S.I, Curotto, P, Portu, A.M, Thorp, S, Trivillin, V. A, Schwint, A. E, Fukuo, Y, Kanemitsu, T, Fukumura, M, Kosaka, T, Hiramatsu, R, Kuroiwa, T, Miyatake, S, Kawabata, S, Kirihata, M, Goldfinger, J.A, Garabalino, M.A, Pozzi, E.C, Ramos, P, De Leo, L.N, Yu, Q, Engelbrecht, M, Sioen, S, Miles, X, Nair, S, Ndimba, R, Baeyens, A, Vandevoorde, C, Buizza, G, Meng, J, Takai, N, Ogami, M, Nakamura, S, Ohba, Y, Liu, R.F, Zhang, Q.N, Wang, X.H, Luo, H.T, Kong, Y.R, Jansen, J, Tirinato, L, Marafioti, M.G, Hanley, R, Yao, X.Q, Pagliari, F, Huang, C.Y, Wong, W.K.R, Ho, Y.W, Nam, P.H, Koryakin, S.N, Troshina, M.V, Koryakina, E.V, Potetnya, V.I, Baykuzina, R.M, Lychagin, A.A, Ulyanenko, S.E, Molinelli, S, Giuseppe, M, Tran, L, Bolst, D, James, B, Steinsberger, T, Alliger, C, Dahle, T.J, Rusten, E, Wright, P, Forsback, S, Silvoniemi, A, Minn, H, Andersson, S, Buti, G, Barragán Montero, A.M, Vasquez-Osario, E, Sabouri, P, Nkenge, K, Yi, B, Burigo, L, Greilich, S, Thomas, R, Clark, C, Lourenco, A, Oancea, C, Granja, C, Kodaira, S, Coplan, M, Graybill, J, Lutz, L, Shahi, C, Su, J.J, Thompson, A, Romano, F, Shipley, D, Hong, T.S, Labarbe, R, Wolfgang, J.A, Meyer, S, Bortfeldt, J, Lämmer, P, Schnürle, K, Peters, N, Möhler, C, Hofmann, C, Koschik, A, Bryce-Atkinson, A, Van Nugteren, J, De Rijk, G, Kirby, G, Dutoit, B, Vignati, A, Ahmadi Ganjeh, Z, Fausti, F, Giordanengo, S, Hammad Ali, O, Sacchi, R, Shakarami, Z, Cirio, R, Inoue, J, Tachibana, M, Shimizu, Y, Ochi, T, Amano, D, Miyashita, T, Cooley, J, Nyamane, S, Zwart, T, Wagner, M, Lu, M, Rosenthal, S, Hashimoto, T, Katoh, N, Tamura, H, Emert, F, Missimer, J, Eichenberger, P, Gmuer, C, Spengler, C, Kamp, F, Hofmaier, J, Reiner, M, Belka, C, Van Ooteghem, G, Dasnoy-Sumell, D, Geets, X, Chen, C.C, Galbreath, G, Shmulenson, R, Pinheiro de Almeida, I, van Elmpt, W, Vilches Freixas, G, Unipan, M, Verhaegen, F, Bosmans, G, Garcia, G, Cevallos Robalino, L, Guzman-Garcia, K, Vega-Carrillo, H.R, Gomez-Ros, J.M, Gallego, E, Hintenlang, K, Martin, M, Gupta, N, Meissner, J, Smathers, J, Ainsley, C, Yin, L, Jagt, T, Breedveld, S, van Haveren, R, Nout, R, Astreinidou, E, Staring, M, Heijmen, B, Hoogeman, M, Stokes, W, Matter, M, Nenoff, L, Toramatsu, C, Wakizaka, H, Nitta, M, Nishikido, F, Hirano, Y, Yoshida, E, Miller, J, Maris, A, Kalle, R, Franco, G, Kierkels, R.G.J, van den Hoek, J.G.M, Bijl, H.P, Dieters, M, Steenbakkers, R.J.H.M, Dejongh, F, DeJongh, E, Rykalin, V, Karonis, N, Ordonez, C, Duffin, K, Winans, J, Neph, R, Sanchez-Parcerisa, D, Lopez-Aguirre, M, Dolcet Llerena, A, Udias, J, Oxley, D, Besson, R, Meier, G, Nanz, A, Schorta, M, Fleury, E, Trnková, P, Erdal, E, Hassan, K, Beenakker, J.W, Pignol, J.P, Matysiak, W, Tian, L, Zepter, S, Winterhalter, C, Shim, S, Gouldstone, C, Trnkova, P, Vatnitsky, S, Liu, K, Li, E, Zhuangming, S, Lowenstein, J, De Wilde, O, Bossier, V, Lerot, X, Pouppez, A, Xx, X, Verburg, J, Hueso-Gonzalez, F, Ruggieri, T, Amato, C, Ghesquiere-Dierickx, L, Felix-Bautista, R, Deville, C, Barsky, A, Vapiwala, N, Mohamad, O, Tabuchi, T, Nitta, Y, Nomoto, A, Kasuya, G, Choy, H, Miyashiro, I, Bush, D, Chuong, M, Kozarek, J, Rubens, M, Larson, G, Vargas, C, Hung, S.P, Hsieh, C.E, Huang, B.S, Tsang, N.M, Smith, N, Viehman, J, Harmsen, W, Elswick, S, Boughey, J, Harless, C, Jimenez, R, Hickey, S, DePauw, N, Ho, A, Taghian, A, MacDonald, S, Meek, A, Hedrick, S, Baliga, S, Gallotto, S, Lewy, J, Patteson, B, Speroni, S, Omsberg, A, Tarbell, N, Musolino, P, Yock, T, Indelicato, D, Rotondo, R, Mailhot, R, Uezono, H, Bradfield, S, Agarwal, V, Gillies, C, Gosling, A, Casares-Magaz, O, Eskildsen, S.F, Lassen, Y, Hasle, H, Tofting-Olesen, K, Alapetite, C, Puget, S, Nauraye, C, Beccaria, K, Bolle, S, Doz, F, Sainte-Rose, C, Bouffet, E, Zerah, M, Wu, J, Qiu, X, Hua, W, Mao, Y, Frakulli, R, Kramer, P.H, Glas, M, Blase, C, Tippelt, S, Konrath, L, Gruber, N, Schallerbauer-Peter, A, Mock, U, Niyazi, M, Niemierko, A, Schapira, E, Kim, V, Oh, K.S, Hwang, W.L, Busse, P.M, Loeffler, J.S, Shih, H.A, Appel, H, Tseng, Y.D, Tsai, H, Sinesi, C, Rossi, C, Badiyan, S, Kotecha, R, Pike, L, Horick, N, Yeap, B, Franck, K, Wang, I, Loeffler, J, McKenna, M, Shih, H, Kountouri, M, Kole, A.J, Murray, F.R, Kliebsch, U, Combescure, C, iannalfi, A, Riva, G, Dougherty, J, Kruse, J, Iott, M, Brown, P, Olivier, K, Brodin, P, Kabarriti, R, Schechter, C, Kalnicki, S, Garg, M, Tomé, W, Lu, J.J, Chen, P.J, Dhanireddy, B, Severo, C, Lee, C.H, Lin, C.R, Rosier, L, Mathis, T, DeLaney, T, Lin, S, O’Meara, E, Powell, T, Hong, T, Hall, D, Liu, A, Ntentas, G, Dedeckova, K, Darby, S, Cutter, D, Zapletalova, S, Chen, Y.L, Miao, R, Lee, H, Hsiao-Ming, L, Choy, E, Cote, G, Eulitz, J, Lutz, B, Enghardt, W, Lühr, A, Mcmahon, S, Prise, K, Sung Hyun, L, Tansho, R, Mizushima, K, Warmenhoven, J.W, Hufnagl, A, Friedrich, T, Deycmar, S, Gruber, S, Dörr, W, Pruschy, M, Waissi, W, Burckel, H, Nicol, A, Noel, G, Yousef, I, Koizumi, M, Santa Cruz, G.A, González, S.J, Longhino, J, Provenzano, L, Oña, P, Rao, M, Cantarelli, M.D.L.Á, Leiras, A, Olivera, M.S, Alessandrini, P, Brollo, F, Boggio, E, Costa, H, Ventimiglia, R, Binia, S, Nievas, S.I, Langle, Y, Eijan, A.M, Colombo, L.L, Kawai, K, Nakamura, H, Natsuko, K, Masaki, H, Nakada, M, Furuse, M, Miyatake, S.I, Koivunoro, H, Kankaanranta, L, González, S, Joensuu, H, Sokol, O, Hild, S, Wiedemann, J, Köthe, A, Perry, D, Batie, M, Mascia, A, Sertorio, M, Luhr, A, Suckert, T, Müller, J, Beyreuther, E, Gotz, M, Haase, R, Schürer, M, Tillner, F, von Neubeck, C, Davis, A, Sishc, B, Saha, J, Ding, L, Story, M, Wagner, S, Kim, S.Y, Geary, S, Woodruff, T, Xu, T, Meng, Q, Gilchrist, S, Perentesis, J.P, Zheng, Y, Wells, S.I, Kong, Y, Liu, Y, Geng, Y, Knoll, M, Schwager, C, Schlegel, J, Schnölzer, M, Ding, L.H, Aroumougame, A, Chen, B, Saha, D, Pompos, A, Carter, R, Nickson, C, Thomson, J, Hill, M, Rodrigues, D, Snider, J, Sharma, A, Zakhary, M, Kara, L, Vujaskovic, Z, Dykstra, M, Best, T, Keane, F, Khandekar, M, Fintelmann, F, Willers, H, Singh, P, Eley, J, Malyapa, R, Mahmood, J, Hårdemark, B, Sandison, G.A, Wootton, L.S, Miyoaka, R.S, Laramore, G.E, Yang, P, van der Weide, H, Maduro, J, Heesters, M, Gawryszuk, A, Davila-Fajardo, R, Langendijk, H, Eckhard, M, Maxwell, A, VanNamen, K, Cashin, M, Jacovic, A, Dunn, M, kim, T, Jung, J, Kim, J, Swerdloff, S, Saunders, A, Thomas, J, Kidani, T, Okada, A, Tomida, K, Pennington, H, Xiaoqiang, L, Weigang, H, An, Q, Di, Y, Craig, S, Inga, G, Peyman, K, Xuanfeng, D, Cunningham, C, de Kock, M, Slabbert, J, Panaino, C.M, Phoenix, B, Regan, P.H, Shearman, R, Collins, S.M, Taylor, M.J, Grayson, M, Kato, K, Choi, H, Jang, J.W, Shin, W.G, Min, C.H, McMahon, S, Padilla Cabal, F, Fragoso, J.A, Resch, A.F, Katsis, A, Girdhani, S, Marshall, A, Jackson, I, Bentzen, S, Parry, R, Gantz, S, Schellhammer, S, Hoffmann, A, Delorme, R, Dos Santos, M, Salmon, R, Öden, J, Bullivant, K, Rucksdashal, R, Ferret, E, Covington, F, Rice, S, Decesaris, C, Siddiqui, O, Kowalski, E, Samanta, S, and Rothwell, B
- Subjects
Biology: Biological Differences between Carbon, Proton and Photons Poster Discussion SessionsPTC58-0642 ,Physics: Absolute and Relative DosimetryPTC58-0180 ,Biology: Biology and Clinical InterfacePTC58-0685 ,Physics: Commissioning New FacilitiesPTC58-0385 ,Physics: 4D Treatment and DeliveryPTC58-0546 ,Clinics: EyePTC58-0714 ,Biology: Biological Differences between Carbon, Proton and Photons Poster Discussion SessionsPTC58-0528 ,Physics: Quality Assurance and VerificationPTC58-0507 ,Oral AbstractsPhysics: Dose Calculation and OptimisationPTC58-0661 ,Biology: Translational and Biomarkers Poster Discussion SessionsPTC58-0221 ,Oral AbstractsPhysics: Dose Calculation and OptimisationPTC58-0531 ,Oral AbstractsPhysics: Dose Calculation and OptimisationPTC58-0653 ,Biology: Drug and Immunotherapy CombinationsPTC58-0163 ,Clinics: Sarcoma - LymphomaPTC58-0055 ,Biology: Drug and Immunotherapy CombinationsPTC58-0166 ,Clinics: CNS / Skull BasePTC58-0198 ,Physics: Treatment PlanningPTC58-0421 ,Clinics: PediatricsPTC58-0560 ,General: New HorizonsPTC58-0709 ,Physics: Treatment PlanningPTC58-0664 ,Clinics: Eye / Breast / Pelvis Poster Discussion SessionsPTC58-0286 ,Physics: Treatment PlanningPTC58-0666 ,Biology: Translational and Biomarkers Poster Discussion SessionsPTC58-0346 ,Physics: Treatment PlanningPTC58-0547 ,Physics: Treatment PlanningPTC58-0308 ,Physics: Treatment PlanningPTC58-0549 ,Physics: Beam Delivery and Nozzle Design Poster Discussion SessionsPTC58-0111 ,Physics: Absolute and Relative DosimetryPTC58-0050 ,Biology: Enhanced Biology in Treatment Planning Poster Discussion SessionsPTC58-0587 ,Biology: Biology and Clinical InterfacePTC58-0454 ,Physics: Absolute and Relative DosimetryPTC58-0052 ,Physics: Commissioning New FacilitiesPTC58-0395 ,Physics: 4D Treatment and DeliveryPTC58-0534 ,Physics: Dose Calculation and OptimisationPTC58-0072 ,Physics: 4D Treatment and DeliveryPTC58-0533 ,Physics: 4D Treatment and DeliveryPTC58-0538 ,Physics: Commissioning New Facilities Poster Discussion SessionsPTC58-0113 ,Physics: Quality Assurance and VerificationPTC58-0633 ,Physics: Treatment PlanningPTC58-0431 ,Physics: Beam Delivery and Nozzle DesignPTC58-0230 ,Biology: Mathematical Modelling SimulationPTC58-0179 ,Clinics: Head and Neck / EyePTC58-0365 ,Physics: Treatment PlanningPTC58-0319 ,Biology: Translational and Biomarkers Poster Discussion SessionsPTC58-0697 ,Biology: Biology and Clinical InterfacePTC58-0663 ,Physics: Commissioning New FacilitiesPTC58-0240 ,Physics: Adaptive TherapyPTC58-0177 ,Physics: Commissioning New FacilitiesPTC58-0363 ,Physics: Commissioning New FacilitiesPTC58-0487 ,Physics: 4D Treatment and DeliveryPTC58-0209 ,Physics: 4D Treatment and DeliveryPTC58-0206 ,Clinics: CNS / Skull BasePTC58-0294 ,Physics: Commissioning New FacilitiesPTC58-0127 ,Biology: Mathematical Modelling SimulationPTC58-0068 ,Physics: Treatment Planning Poster Discussion SessionsPTC58-0062 ,Physics: 4D Treatment and DeliveryPTC58-0692 ,Physics: Quality Assurance and VerificationPTC58-0723 ,Physics: Commissioning New Facilities Poster Discussion SessionsPTC58-0494 ,Physics: Treatment PlanningPTC58-0643 ,Physics: Treatment PlanningPTC58-0521 ,Physics: Treatment PlanningPTC58-0402 ,Physics: Treatment PlanningPTC58-0405 ,Clinics: Head and Neck / EyePTC58-0273 ,Clinics: GIPTC58-0397 ,Physics: Treatment PlanningPTC58-0648 ,Biology: Enhanced Biology in Treatment Planning Poster Discussion SessionsPTC58-0489 ,Physics: Quality Assurance and VerificationPTC58-0617 ,Physics: Quality Assurance and VerificationPTC58-0616 ,Physics: Dose Calculation and Optimisation Poster Discussion SessionsPTC58-0668 ,Clinics: CNS / Skull BasePTC58-0188 ,Oral AbstractsPhysics: Dose Calculation and OptimisationPTC58-0625 ,Physics: Treatment PlanningPTC58-0654 ,Physics: Treatment PlanningPTC58-0655 ,Biology: Drug and Immunotherapy Combinations Poster Discussion SessionsPTC58-0133 ,Clinics: PediatricsPTC58-0313 ,Physics: Treatment PlanningPTC58-0659 ,Poster AbstractsClinics: CNSPTC58-0290 ,Physics: Commissioning New FacilitiesPTC58-0064 ,Physics: Adaptive TherapyPTC58-0396 ,Physics: Dose Calculation and OptimisationPTC58-0281 ,Physics: Quality Assurance and VerificationPTC58-0427 ,Physics: Quality Assurance and VerificationPTC58-0669 ,General: New Horizons SessionPTC58-0191 ,Physics: Dose Calculation and Optimisation Poster Discussion SessionsPTC58-0217 ,Physics: Quality Assurance and VerificationPTC58-0303 ,Physics: Quality Assurance and VerificationPTC58-0665 ,Clinics: Sarcoma - LymphomaPTC58-0495 ,Physics: Dose Calculation and OptimisationPTC58-0398 ,Physics: Quality Assurance and VerificationPTC58-0667 ,Physics: Quality Assurance and VerificationPTC58-0425 ,Physics: Quality Assurance and VerificationPTC58-0541 ,Physics: Treatment PlanningPTC58-0584 ,Physics: Quality Assurance and VerificationPTC58-0540 ,Biology: Drug and Immunotherapy Combinations Poster Discussion SessionsPTC58-0163 ,Physics: Treatment PlanningPTC58-0224 ,Physics: Treatment PlanningPTC58-0229 ,Clinics: PediatricsPTC58-0249 ,Physics: Beam Delivery and Nozzle Design Poster Discussion SessionsPTC58-0555 ,Clinics: PediatricPTC58-0463 ,Physics: Commissioning New Facilities Poster Discussion SessionsPTC58-0556 ,Physics: Absolute and Relative DosimetryPTC58-0498 ,Physics: Commissioning New FacilitiesPTC58-0078 ,Physics: Dose Calculation and OptimisationPTC58-0270 ,Physics: Dose Calculation and OptimisationPTC58-0032 ,Physics: Dose Calculation and OptimisationPTC58-0274 ,Physics: 4D Treatment and DeliveryPTC58-0614 ,Physics: Dose Calculation and OptimisationPTC58-0026 ,Clinics: Head and Neck / EyePTC58-0280 ,Clinics: Eye / Breast / Pelvis Poster Discussion SessionsPTC58-0091 ,Physics: Treatment PlanningPTC58-0593 ,Biology: Drug and Immunotherapy CombinationsPTC58-0012 ,Physics: Dose Calculation and OptimisationPTC58-0025 ,Physics: Dose Calculation and OptimisationPTC58-0146 ,Clinics: Sarcoma - LymphomaPTC58-0261 ,Physics: Treatment PlanningPTC58-0110 ,Clinics: Lung / Sarcoma / LymphomaPTC58-0733 ,Physics: Quality Assurance and VerificationPTC58-0554 ,Physics: Treatment PlanningPTC58-0597 ,Physics: Dose Calculation and Optimisation Poster Discussion SessionsPTC58-0330 ,Physics: Treatment PlanningPTC58-0115 ,Physics: Treatment PlanningPTC58-0598 ,Physics: Absolute and Relative DosimetryPTC58-0040 ,Physics: Absolute and Relative DosimetryPTC58-0282 ,Biology: Enhanced Biology in Treatment Planning Poster Discussion SessionsPTC58-0399 ,Physics: Absolute and Relative DosimetryPTC58-0283 ,Physics: Commissioning New Facilities Poster Discussion SessionsPTC58-0569 ,Clinics: GUPTC58-0647 ,Biology: Biological Differences between Carbon, Proton and Photons Poster Discussion SessionsPTC58-0506 ,Physics: Commissioning New FacilitiesPTC58-0047 ,Physics: Dose Calculation and OptimisationPTC58-0067 ,Clinics: GUPTC58-0409 ,Physics: Dose Calculation and OptimisationPTC58-0065 ,Biology: BNCT Poster Discussion SessionsPTC58-0586 ,Physics: Absolute and Relative Dosimetry PTC58-0393 ,Physics: Image GuidancePTC58-0712 ,Physics: Quality Assurance and VerificationPTC58-0645 ,Physics: Treatment PlanningPTC58-0683 ,Biology: BNCT Poster Discussion SessionsPTC58-0107 ,Physics: Treatment Planning Poster Discussion SessionsPTC58-0266 ,Physics: Monitoring and Modelling MotionPTC58-0530 ,Biology: BNCT Poster Discussion SessionsPTC58-0341 ,Physics: Commissioning New FacilitiesPTC58-0172 ,Physics: Commissioning New Facilities Poster Discussion SessionsPTC58-0456 ,Physics: Dose Calculation and OptimisationPTC58-0170 ,Physics: Commissioning New Facilities Poster Discussion SessionsPTC58-0458 ,Physics: Absolute and Relative DosimetryPTC58-0034 ,Physics: Quality Assurance and VerificationPTC58-0417 ,Physics: Quality Assurance and VerificationPTC58-0413 ,Physics: Treatment Planning Poster Discussion SessionsPTC58-0492 ,Physics: Dose Calculation and OptimisationPTC58-0168 ,Clinics: GI / Sarcoma Poster Discussion SessionsPTC58-0724 ,Physics: Treatment PlanningPTC58-0694 ,Physics: Adaptive TherapyPTC58-0005 ,Physics: Treatment PlanningPTC58-0696 ,Physics: Treatment PlanningPTC58-0453 ,Physics: Adaptive TherapyPTC58-0366 ,Clinics: BreastPTC58-0197 ,Physics: Beam Delivery and Nozzle DesignPTC58-0652 ,Physics: Treatment Planning Poster Discussion SessionsPTC58-0017 ,Physics: Treatment PlanningPTC58-0338 ,Clinics: Head and Neck / EyePTC58-0539 ,General: New Horizons SessionPTC58-0390 ,Physics: Image Guidance Poster Discussion SessionsPTC58-0651 ,General: New HorizonsPTC58-0660 ,Physics: Dose Calculation and OptimisationPTC58-0360 ,Physics: Image GuidancePTC58-0297 ,Physics: 4D Treatment and DeliveryPTC58-0147 ,Scientific: RTTPTC58-0388 ,Physics: Dose Calculation and OptimisationPTC58-0484 ,General: New HorizonsPTC58-0301 ,Physics: Dose Calculation and OptimisationPTC58-0485 ,General: New HorizonsPTC58-0304 ,Physics: 4D Treatment and Delivery Poster Discussion SessionsPTC58-0532 ,Clinics: GIPTC58-0575 ,General: New HorizonsPTC58-0306 ,Physics: Quality Assurance and VerificationPTC58-0589 ,Clinics: CNS / Pediatrics / Lung Poster Discussion SessionsPTC58-0344 ,Physics: Quality Assurance and VerificationPTC58-0225 ,Physics: Treatment PlanningPTC58-0381 ,Physics: Quality Assurance and VerificationPTC58-0467 ,Clinics: CNS / Pediatrics / Lung Poster Discussion SessionsPTC58-0585 ,Physics: Commissioning New FacilitiesPTC58-0416 ,Physics: Quality Assurance and VerificationPTC58-0228 ,Physics: Quality Assurance and VerificationPTC58-0348 ,Physics: Dose Calculation and OptimisationPTC58-0234 ,Physics: Quality Assurance and VerificationPTC58-0101 ,Physics: Treatment PlanningPTC58-0386 ,Physics: Dose Calculation and OptimisationPTC58-0118 ,Physics: Treatment PlanningPTC58-0265 ,Physics: Dose Calculation and OptimisationPTC58-0119 ,Clinics: GIPTC58-0218 ,Physics: Treatment PlanningPTC58-0267 ,Physics: Treatment PlanningPTC58-0387 ,Clinics: BreastPTC58-0142 ,Physics: Treatment PlanningPTC58-0269 ,Physics: Beam Delivery and Nozzle DesignPTC58-0620 ,Clinics: PediatricsPTC58-0048 ,Physics: Quality Assurance and VerificationPTC58-0220 ,Physics: Quality Assurance and VerificationPTC58-0461 ,Physics: Treatment PlanningPTC58-0029 ,Physics: Absolute and Relative DosimetryPTC58-0571 ,Physics: Image GuidancePTC58-0046 ,Clinics: GUPTC58-0557 ,Physics: Absolute and Relative DosimetryPTC58-0211 ,Oral AbstractsPhysics: Dose Calculation and OptimisationPTC58-0131 ,Oral AbstractsPhysics: Dose Calculation and OptimisationPTC58-0373 ,General: New HorizonsPTC58-0411 ,Physics: Dose Calculation and OptimisationPTC58-0595 ,Clinics: CNS / Skull BasePTC58-0361 ,General: New HorizonsPTC58-0414 ,General: New HorizonsPTC58-0537 ,Clinics: GI / Sarcoma Poster Discussion SessionsPTC58-0628 ,Physics: Treatment PlanningPTC58-0271 ,Physics: Commissioning New FacilitiesPTC58-0307 ,Physics: Quality Assurance and VerificationPTC58-0359 ,Physics: Quality Assurance and VerificationPTC58-0354 ,General: New HorizonsPTC58-0419 ,Physics: Treatment PlanningPTC58-0035 ,Biology: BNCTPTC58-0474 ,Clinics: GIPTC58-0460 ,Biology: BNCTPTC58-0596 ,Clinics: GIPTC58-0222 ,Physics: Image GuidancePTC58-0193 ,Clinics: PediatricPTC58-0312 ,Clinics: GUPTC58-0441 ,Clinics: LungPTC58-0701 ,Clinics: EyePTC58-0536 ,Clinics: GUPTC58-0205 ,Physics: Dose Calculation and OptimisationPTC58-0140 ,Clinics: GUPTC58-0208 ,Physics: Dose Calculation and OptimisationPTC58-0020 ,Physics: Image GuidancePTC58-0195 ,Poster AbstractsClinics: CNSPTC58-0717 ,Physics: Quality Assurance and VerificationPTC58-0325 ,Physics: Dose Calculation and OptimisationPTC58-0015 ,Physics: Commissioning New FacilitiesPTC58-0634 ,General: New HorizonsPTC58-0646 ,Physics: Quality Assurance and VerificationPTC58-0566 ,Physics: Dose Calculation and OptimisationPTC58-0134 ,Physics: Dose Calculation and OptimisationPTC58-0376 ,Biology: Mathematical Modelling SimulationPTC58-0462 ,Biology: BNCTPTC58-0567 ,General: New HorizonsPTC58-0527 ,Physics: Treatment PlanningPTC58-0482 ,Clinics: GI, GU, BreastPTC58-0693 ,Physics: Commissioning New FacilitiesPTC58-0518 ,Physics: Quality Assurance and VerificationPTC58-0686 ,Physics: Quality Assurance and VerificationPTC58-0202 ,Physics: Quality Assurance and VerificationPTC58-0322 ,Physics: Quality Assurance and VerificationPTC58-0564 ,Physics: Quality Assurance and VerificationPTC58-0680 ,Physics: Treatment PlanningPTC58-0247 ,Physics: Quality Assurance and VerificationPTC58-0682 ,Physics: Quality Assurance and VerificationPTC58-0440 ,Biology: Translational and BiomarkersPTC58-0514 ,Physics: Beam Delivery and Nozzle Design Poster Discussion SessionsPTC58-0178 ,Clinics: EyePTC58-0520 ,Physics: Absolute and Relative DosimetryPTC58-0231 ,Clinics: Head and Neck / EyePTC58-0424 ,Physics: Absolute and Relative DosimetryPTC58-0471 ,Physics: Absolute and Relative DosimetryPTC58-0356 ,Physics: Dose Calculation and OptimisationPTC58-0491 ,Physics: Dose Calculation and OptimisationPTC58-0250 ,Physics: Commissioning New FacilitiesPTC58-0650 ,Biology: Biology and Clinical InterfacePTC58-0719 ,Physics: Absolute and Relative DosimetryPTC58-0232 ,Physics: Absolute and Relative DosimetryPTC58-0353 ,General: New HorizonsPTC58-0511 ,Physics: Quality Assurance and VerificationPTC58-0219 ,Physics: Absolute and Relative DosimetryPTC58-0238 ,General: New HorizonsPTC58-0512 ,Physics: 4D Treatment and Delivery Poster Discussion SessionsPTC58-0401 ,Clinics: PediatricPTC58-0688 ,Physics: Quality Assurance and VerificationPTC58-0457 ,Physics: Quality Assurance and VerificationPTC58-0214 ,Physics: Quality Assurance and VerificationPTC58-0459 ,General: New HorizonsPTC58-0516 ,Physics: Treatment PlanningPTC58-0372 ,Physics: Treatment PlanningPTC58-0011 ,Physics: Treatment PlanningPTC58-0254 ,Physics: Quality Assurance and VerificationPTC58-0332 ,Clinics: CNS / Skull BasePTC58-0468 ,Biology: Mathematical Modelling SimulationPTC58-0357 ,Clinics: GI / Sarcoma Poster Discussion SessionsPTC58-0649 ,Physics: Dose Calculation and OptimisationPTC58-0006 ,Physics: Quality Assurance and VerificationPTC58-0212 ,Physics: Image Guidance Poster Discussion SessionsPTC58-0565 ,Physics: Treatment PlanningPTC58-0018 ,Physics: Treatment PlanningPTC58-0019 ,Clinics: BreastPTC58-0576 ,Clinics: Head and Neck / EyePTC58-0335 ,Clinics: Head and Neck / EyePTC58-0577 ,General: New HorizonsPTC58-0621 ,Physics: Absolute and Relative DosimetryPTC58-0426 ,Physics: Commissioning New Facilities Poster Discussion SessionsPTC58-0268 ,Physics: Absolute and Relative DosimetryPTC58-0423 ,Physics: Treatment PlanningPTC58-0184 ,Physics: Quality Assurance and VerificationPTC58-0149 ,Clinics: GIPTC58-0378 ,Clinics: GIPTC58-0257 ,Clinics: CNS / Pediatrics / Lung Poster Discussion SessionsPTC58-0662 ,General: New HorizonsPTC58-0627 ,Physics: Treatment PlanningPTC58-0186 ,Physics: Treatment PlanningPTC58-0185 ,Physics: Quality Assurance and VerificationPTC58-0144 ,Biology: BNCT Poster Discussion SessionsPTC58-0602 ,Physics: Treatment PlanningPTC58-0189 ,Physics: Dose Calculation and OptimisationPTC58-0315 ,Clinics: Head and neckPTC58-0300 ,General: New Horizons SessionPTC58-0347 ,Physics: Image GuidancePTC58-0082 ,Clinics: BreastPTC58-0443 ,Physics: 4D Treatment and Delivery Poster Discussion SessionsPTC58-0629 ,Physics: Adaptive Therapy Poster Discussion SessionsPTC58-0007 ,Physics: Commissioning New FacilitiesPTC58-0472 ,Clinics: GI, GU, BreastPTC58-0515 ,Physics: Dose Calculation and Optimisation Poster Discussion SessionsPTC58-0606 ,Oral AbstractsPhysics: Dose Calculation and OptimisationPTC58-0450 ,Physics: Absolute and Relative DosimetryPTC58-0657 ,Physics: Dose Calculation and OptimisationPTC58-0551 ,Physics: Treatment PlanningPTC58-0192 ,Clinics: CNS / Pediatrics / Lung Poster Discussion SessionsPTC58-0675 ,Physics: Treatment PlanningPTC58-0194 ,Physics: Dose Calculation and OptimisationPTC58-0544 ,Physics: Treatment PlanningPTC58-0199 ,Physics: Quality Assurance and VerificationPTC58-0037 ,Oral AbstractsPhysics: Dose Calculation and OptimisationPTC58-0207 ,Clinics: CNS / Pediatrics / Lung Poster Discussion SessionsPTC58-0434 ,Physics: Quality Assurance and VerificationPTC58-0036 ,Physics: Quality Assurance and VerificationPTC58-0278 ,Physics: Quality Assurance and VerificationPTC58-0394 ,Physics: Quality Assurance and VerificationPTC58-0151 ,Physics: Quality Assurance and VerificationPTC58-0154 ,Physics: Dose Calculation and OptimisationPTC58-0428 ,Clinics: BreastPTC58-0116 ,Biology: Enhanced Biology in Treatment Planning Poster Discussion SessionsPTC58-0435 ,Physics: Commissioning New FacilitiesPTC58-0681 ,Physics: Absolute and Relative DosimetryPTC58-0323 ,Physics: Dose Calculation and OptimisationPTC58-0583 ,Physics: Absolute and Relative DosimetryPTC58-0448 ,Clinics: CNS / Skull BasePTC58-0251 ,General: New HorizonsPTC58-0721 ,Physics: Absolute and Relative DosimetryPTC58-0203 ,Physics: Dose Calculation and OptimisationPTC58-0455 ,Physics: 4D Treatment and DeliveryPTC58-0130 ,Physics: Commissioning New FacilitiesPTC58-0679 ,Physics: Absolute and Relative DosimetryPTC58-0329 ,General: New HorizonsPTC58-0604 ,Physics: Absolute and Relative DosimetryPTC58-0449 ,Clinics: CNS / Skull BasePTC58-0132 ,General: New HorizonsPTC58-0607 ,Physics: Quality Assurance and VerificationPTC58-0122 ,Physics: Quality Assurance and VerificationPTC58-0243 ,Physics: Treatment PlanningPTC58-0165 ,Oral AbstractsPhysics: Dose Calculation and OptimisationPTC58-0437 ,Physics: 4D Treatment and DeliveryPTC58-0377 ,Physics: Quality Assurance and VerificationPTC58-0125 ,Physics: Quality Assurance and VerificationPTC58-0245 ,Physics: Dose Calculation and OptimisationPTC58-0337 ,Clinics: GI / Sarcoma Poster Discussion SessionsPTC58-0334 ,Physics: Quality Assurance and VerificationPTC58-0121 ,General: New Horizons SessionPTC58-0563 ,General: New Horizons SessionPTC58-0321 ,Clinics: Head and Neck / EyePTC58-0477 ,Physics: Quality Assurance and VerificationPTC58-0480 ,Clinics: GUPTC58-0010 ,Clinics: EyePTC58-0684 ,Clinics: GUPTC58-0496 ,Clinics: Head and neckPTC58-0676 ,Clinics: GUPTC58-0137 ,Physics: Beam Delivery and Nozzle Design Poster Discussion SessionsPTC58-0256 ,Physics: 4D Treatment and DeliveryPTC58-0117 ,Physics: Absolute and Relative DosimetryPTC58-0552 ,Physics: Absolute and Relative DosimetryPTC58-0310 ,Physics: Absolute and Relative DosimetryPTC58-0672 ,Physics: Absolute and Relative DosimetryPTC58-0436 ,Physics: Dose Calculation and OptimisationPTC58-0452 ,Physics: Dose Calculation and OptimisationPTC58-0331 ,Physics: Commissioning New FacilitiesPTC58-0213 ,Biology: Mathematical Modelling SimulationPTC58-0272 ,Clinics: EyePTC58-0326 ,Physics: Commissioning New FacilitiesPTC58-0568 ,Physics: Dose Calculation and OptimisationPTC58-0444 ,Physics: Quality Assurance and VerificationPTC58-0379 ,Physics: Treatment Planning Poster Discussion SessionsPTC58-0095 ,Physics: Treatment PlanningPTC58-0053 ,Physics: Absolute and Relative DosimetryPTC58-0438 ,Physics: Absolute and Relative DosimetryPTC58-0317 ,Physics: Quality Assurance and VerificationPTC58-0497 ,Physics: Quality Assurance and VerificationPTC58-0375 ,Physics: Treatment PlanningPTC58-0056 ,Physics: 4D Treatment and DeliveryPTC58-0124 ,Clinics: GIPTC58-0009 ,Physics: Quality Assurance and VerificationPTC58-0014 ,Physics: Quality Assurance and VerificationPTC58-0374 ,Clinics: LungPTC58-0727 ,General: New Horizons SessionPTC58-0578 ,Clinics: GI / Sarcoma Poster Discussion SessionsPTC58-0470 ,Clinics: LungPTC58-0204 ,Clinics: Head and neckPTC58-0227 ,Clinics: LungPTC58-0446 ,Physics: Quality Assurance and VerificationPTC58-0190 ,Clinics: Eye / Breast / Pelvis Poster Discussion SessionsPTC58-0609 ,Clinics: LungPTC58-0689 ,General: New HorizonsPTC58-0021 ,General: New HorizonsPTC58-0262 ,Biology: BNCT Poster Discussion SessionsPTC58-0081 ,Clinics: GIPTC58-0726 ,General: New HorizonsPTC58-0145 ,Physics: Image GuidancePTC58-0573 ,General: New HorizonsPTC58-0027 ,General: New HorizonsPTC58-0028 ,Biology: Mathematical Modelling and SimulationPTC58-0148 ,Physics: Dose Calculation and OptimisationPTC58-0635 ,Physics: Image GuidancePTC58-0215 ,Physics: Image GuidancePTC58-0336 ,Poster AbstractsClinics: CNSPTC58-0535 ,Physics: Quality Assurance and VerificationPTC58-0187 ,Biology: BNCT Poster Discussion SessionsPTC58-0084 ,General: New Investigator SessionPTC58-0339 ,General: New Horizons SessionPTC58-0420 ,Physics: Treatment Planning Poster Discussion SessionsPTC58-0523 ,Biology: BNCT Poster Discussion SessionsPTC58-0088 ,Clinics: GI / Sarcoma Poster Discussion SessionsPTC58-0112 ,Physics: Quality Assurance and VerificationPTC58-0182 ,Clinics: Eye / Breast / Pelvis Poster Discussion SessionsPTC58-0615 ,Physics: Quality Assurance and VerificationPTC58-0080 ,Biology: BNCTPTC58-0085 ,Physics: Adaptive Therapy Poster Discussion SessionsPTC58-0722 ,General: New HorizonsPTC58-0253 ,General: New HorizonsPTC58-0255 ,Clinics: PediatricPTC58-0703 ,General: New HorizonsPTC58-0499 ,Physics: Image Guidance Poster Discussion SessionsPTC58-0380 ,General: New HorizonsPTC58-0259 ,Clinics: GI, GU, BreastPTC58-0288 ,Clinics: GI, GU, BreastPTC58-0045 ,Physics: Absolute and Relative DosimetryPTC58-0619 ,Clinics: PediatricPTC58-0707 ,Physics: Quality Assurance and VerificationPTC58-0196 ,Physics: Quality Assurance and VerificationPTC58-0074 ,Physics: Quality Assurance and VerificationPTC58-0077 ,Biology: BNCT Poster Discussion SessionsPTC58-0073 ,Biology: BNCTPTC58-0075 ,Biology: Biological Differences between Carbon, Proton and Photons Poster Discussion SessionsPTC58-0093 ,Clinics: GUPTC58-0161 ,Clinics: GI / Sarcoma Poster Discussion SessionsPTC58-0371 ,Physics: Monitoring and Modelling MotionPTC58-0181 ,General: New HorizonsPTC58-0120 ,General: New HorizonsPTC58-0362 ,General: New HorizonsPTC58-0364 ,Physics: Image GuidancePTC58-0473 ,Scientific: RTTPTC58-0641 ,Clinics: CNS / Pediatrics / Lung Poster Discussion SessionsPTC58-0296 ,General: New HorizonsPTC58-0004 ,General: New HorizonsPTC58-0128 ,Clinics: BreastPTC58-0316 ,Physics: 4D Treatment and Delivery Poster Discussion SessionsPTC58-0236 ,General: New HorizonsPTC58-0008 ,General: New Investigator SessionPTC58-0673 ,Physics: Quality Assurance and VerificationPTC58-0167 ,Physics: Quality Assurance and VerificationPTC58-0289 ,Physics: Quality Assurance and VerificationPTC58-0284 ,General: New Horizons SessionPTC58-0522 ,Physics: Quality Assurance and VerificationPTC58-0164 ,Physics: Quality Assurance and VerificationPTC58-0285 ,Clinics: Eye / Breast / Pelvis Poster Discussion SessionsPTC58-0623 ,Clinics: Eye / Breast / Pelvis Poster Discussion SessionsPTC58-0502 ,Clinics: GUPTC58-0293 ,Biology: Translational and BiomarkersPTC58-0599 ,Biology: BNCTPTC58-0063 ,Clinics: LungPTC58-0656 ,General: New HorizonsPTC58-0592 ,Biology: BNCT Poster Discussion SessionsPTC58-0092 ,Poster AbstractsClinics: CNSPTC58-0302 ,Physics: Image GuidancePTC58-0464 ,General: New HorizonsPTC58-0352 ,Physics: Image GuidancePTC58-0465 ,General: New HorizonsPTC58-0476 ,Physics: Image GuidancePTC58-0100 ,General: New HorizonsPTC58-0235 ,Biology: Mathematical Modelling and SimulationPTC58-0349 ,Physics: Treatment PlanningPTC58-0094 ,Physics: 4D Treatment and Delivery Poster Discussion SessionsPTC58-0367 ,Physics: Dose Calculation and OptimisationPTC58-0400 ,Biology: Translational and BiomarkersPTC58-0244 ,Physics: Dose Calculation and OptimisationPTC58-0640 ,Biology: Mathematical Modelling and SimulationPTC58-0355 ,General: New Investigator SessionPTC58-0320 ,Physics: Quality Assurance and VerificationPTC58-0057 ,Physics: Quality Assurance and VerificationPTC58-0174 ,Physics: Quality Assurance and VerificationPTC58-0295 ,Physics: Dose Calculation and OptimisationPTC58-0529 ,Clinics: GI / Sarcoma Poster Discussion SessionsPTC58-0123 ,Physics: Quality Assurance and VerificationPTC58-0171 ,Biology: Biological Differences between Carbon, Proton and Photons Poster Discussion SessionsPTC58-0049 ,Clinics: BreastPTC58-0731 ,General: New HorizonsPTC58-0223 ,General: New HorizonsPTC58-0102 ,General: New HorizonsPTC58-0466 ,Scientific: RTTPTC58-0503 ,Clinics: CNS / Pediatrics / Lung Poster Discussion SessionsPTC58-0389 ,General: New HorizonsPTC58-0108 ,General: New HorizonsPTC58-0109 ,Physics: Commissioning New FacilitiesPTC58-0736 ,Biology: Mathematical Modelling and SimulationPTC58-0343 ,Biology: Mathematical Modelling and SimulationPTC58-0342 ,Clinics: GI, GU, BreastPTC58-0237 ,Physics: Dose Calculation and OptimisationPTC58-0711 ,Biology: Mathematical Modelling and SimulationPTC58-0581 ,Clinics: GI, GU, BreastPTC58-0114 ,Clinics: Base of SkullPTC58-0730 ,Clinics: Head and neckPTC58-0383 ,Clinics: CNS / Skull BasePTC58-0559 ,Clinics: Base of SkullPTC58-0613 ,General: New HorizonsPTC58-0691 ,Biology: Biological Differences between Carbon, Proton and Photons Poster Discussion SessionsPTC58-0054 ,General: New HorizonsPTC58-0210 ,Clinics: BreastPTC58-0729 ,General: New HorizonsPTC58-0574 ,Clinics: GI, GU, BreastPTC58-0239 ,Scientific: RTTPTC58-0637 ,General: New HorizonsPTC58-0579 ,Clinics: Lung / Sarcoma / LymphomaPTC58-0176 ,General: New HorizonsPTC58-0699 ,Clinics: CNS / Pediatrics / Lung Poster Discussion SessionsPTC58-0156 ,Biology: Mathematical Modelling and SimulationPTC58-0333 ,Biology: Translational and BiomarkersPTC58-0345 ,Physics: Image GuidancePTC58-0369 ,Physics: Commissioning New FacilitiesPTC58-0509 ,Biology: Mathematical Modelling SimulationPTC58-0658 ,Biology: Biological Differences between Carbon, Proton and Photons Poster Discussion SessionsPTC58-0051 ,General: New Investigator SessionPTC58-0548 ,Clinics: GI, GU, BreastPTC58-0241 ,Clinics: Eye / Breast / Pelvis Poster Discussion SessionsPTC58-0412 ,Clinics: GI / Sarcoma Poster Discussion SessionsPTC58-0024 ,Clinics: LungPTC58-0226 ,Biology: Biological Differences between Carbon, Proton and Photons Poster Discussion SessionsPTC58-0069 ,General: New HorizonsPTC58-0562 ,General: New HorizonsPTC58-0561 ,General: New HorizonsPTC58-0201 ,Biology: Mathematical Modelling and SimulationPTC58-0439 ,General: New HorizonsPTC58-0445 ,General: New HorizonsPTC58-0324 ,Physics: Image GuidancePTC58-0031 ,Biology: Mathematical Modelling and SimulationPTC58-0558 ,Physics: Image GuidancePTC58-0392 ,Biology: Mathematical Modelling and SimulationPTC58-0678 ,Physics: Beam Delivery and Nozzle DesignPTC58-0090 ,General: New Investigator SessionPTC58-0630 ,Biology: Biological Differences between Carbon / Proton and Photons Carbons / Proton and PhotonPTC58-0524 ,Physics: Commissioning New FacilitiesPTC58-0713 ,Clinics: GI, GU, BreastPTC58-0139 ,Clinics: CNS / Pediatrics / Lung Poster Discussion SessionsPTC58-0248 ,Clinics: CNS / Pediatrics / Lung Poster Discussion SessionsPTC58-0368 ,Biology: Enhanced Biology in Treatment PlanningPTC58-0519 ,General: New Horizons SessionPTC58-0720 ,Physics: Quality Assurance and VerificationPTC58-0083 ,General: New HorizonsPTC58-0311 ,General: New HorizonsPTC58-0674 ,General: New HorizonsPTC58-0553 ,Physics: Image GuidancePTC58-0023 ,Scientific: RTTPTC58-0612 ,General: New HorizonsPTC58-0677 ,Biology: Mathematical Modelling and SimulationPTC58-0545 ,Physics: Dose Calculation and OptimisationPTC58-0601 ,Physics: Dose Calculation and OptimisationPTC58-0725 ,Physics: Quality Assurance and VerificationPTC58-0098 ,Physics: Dose Calculation and OptimisationPTC58-0605 ,Biology: Biological Differences between Carbon / Proton and Photons Carbons / Proton and PhotonPTC58-0517 ,Biology: Translational and Biomarkers Poster Discussion SessionsPTC58-0618 ,Physics: Monitoring and Modelling MotionPTC58-0481 ,Clinics: GI / Sarcoma Poster Discussion SessionsPTC58-0071 ,Physics: Adaptive TherapyPTC58-0351 ,Physics: 4D Treatment and DeliveryPTC58-0702 ,Physics: Image GuidancePTC58-0734 ,Physics: Image GuidancePTC58-0611 ,Physics: Treatment Planning Poster Discussion SessionsPTC58-0486 ,Physics: Absolute and Relative Dosimetry Poster Discussion SessionsPTC58-0442 ,Biology: Drug and Immunotherapy CombinationsPTC58-0327 ,Clinics: Head and Neck / EyePTC58-0096 ,Clinics: LungPTC58-0159 ,Physics: Treatment PlanningPTC58-0708 ,General: New HorizonsPTC58-0097 ,Physics: Treatment Planning Poster Discussion SessionsPTC58-0350 ,Biology: Biological Differences between Carbon / Proton and Photons Carbons / Proton and PhotonPTC58-0016 ,Physics: Adaptive TherapyPTC58-0104 ,Physics: Absolute and Relative Dosimetry Poster Discussion SessionsPTC58-0433 ,Physics: Image GuidancePTC58-0608 ,Biology: Translational and Biomarkers Poster Discussion SessionsPTC58-0610 ,Clinics: Head and neckPTC58-0058 ,Physics: Treatment PlanningPTC58-0715 ,Clinics: Head and neckPTC58-0298 ,Clinics: EyePTC58-0099 ,General: New HorizonsPTC58-0086 ,General: New HorizonsPTC58-0089 ,Clinics: Lung / Sarcoma / LymphomaPTC58-0200 ,Poster AbstractsClinics: CNSPTC58-0157 ,Clinics: LungPTC58-0141 ,Clinics: LungPTC58-0260 ,Clinics: LungPTC58-0264 ,Physics: Image GuidancePTC58-0513 ,Physics: Image GuidancePTC58-0631 ,Clinics: Eye / Breast / Pelvis Poster Discussion SessionsPTC58-0469 ,Biology: BNCT Poster Discussion SessionsPTC58-0384 ,Physics: Image GuidancePTC58-0639 ,Clinics: PediatricsPTC58-0700 ,Clinics: LungPTC58-0136 ,Clinics: BreastPTC58-0706 ,General: New HorizonsPTC58-0079 ,Biology: Drug and Immunotherapy Combinations Poster Discussion SessionsPTC58-0406 ,Clinics: Base of SkullPTC58-0382 ,Physics: Image GuidancePTC58-0624 ,Physics: Beam Delivery and Nozzle DesignPTC58-0173 ,Biology: Drug and Immunotherapy CombinationsPTC58-0358 ,Poster AbstractsClinics: CNSPTC58-0690 ,General: New HorizonsPTC58-0061 ,Clinics: Lung / Sarcoma / LymphomaPTC58-0580 ,Physics: Monitoring and Modelling MotionPTC58-0162 ,Physics: Adaptive TherapyPTC58-0550 ,Physics: Adaptive TherapyPTC58-0430 ,Clinics: Lung / Sarcoma / LymphomaPTC58-0103 ,General: New Investigator SessionPTC58-0252 ,Physics: Quality Assurance and VerificationPTC58-0704 ,Physics: Image GuidancePTC58-0418 ,Clinics: Base of SkullPTC58-0572 ,Clinics: Lung / Sarcoma / LymphomaPTC58-0106 ,Physics: Beam Delivery and Nozzle DesignPTC58-0022 ,Physics: Monitoring and Modelling MotionPTC58-0279 ,Physics: Treatment Planning Poster Discussion SessionsPTC58-0447 ,Physics: Treatment PlanningPTC58-0622 ,Clinics: PediatricsPTC58-0644 ,Biology: Biology and Clinical InterfacePTC58-0490 ,Clinics: CNS / Skull BasePTC58-0716 ,General: New HorizonsPTC58-0292 ,Biology: Biological Differences between Carbon / Proton and Photons Carbons / Proton and PhotonPTC58-0570 ,General: New HorizonsPTC58-0059 ,Physics: Quality Assurance and VerificationPTC58-0710 ,Biology: Biological Differences between Carbon / Proton and Photons Carbons / Proton and PhotonPTC58-0216 ,Physics: Image GuidancePTC58-0404 ,Physics: Image GuidancePTC58-0525 ,Physics: Image GuidancePTC58-0526 ,Poster AbstractsClinics: CNSPTC58-0328 ,Clinics: LungPTC58-0070 ,Clinics: Eye / Breast / Pelvis Poster Discussion SessionsPTC58-0135 ,Biology: BNCT Poster Discussion SessionsPTC58-0391 ,Physics: Treatment PlanningPTC58-0510 ,Physics: Treatment PlanningPTC58-0636 ,Physics: Treatment PlanningPTC58-0638 ,Physics: Image GuidancePTC58-0408 ,Physics: Absolute and Relative Dosimetry Poster Discussion SessionsPTC58-0632 ,Physics: Treatment Planning Poster Discussion SessionsPTC58-0318 ,Biology: Enhanced Biology in Treatment PlanningPTC58-0246 ,Clinics: PediatricsPTC58-0504 ,General: New HorizonsPTC58-0160 ,Physics: Image Guidance Poster Discussion SessionsPTC58-0076 ,Physics: Monitoring and Modelling MotionPTC58-0143 ,Biology: Mathematical Modelling and SimulationPTC58-0718 ,Physics: Image GuidancePTC58-0671 ,Clinics: LungPTC58-0183 ,Physics: Image GuidancePTC58-0670 ,Report ,Physics: Treatment Planning Poster Discussion SessionsPTC58-0422 ,Biology: Biological Differences between Carbon / Proton and Photons Carbons / Proton and PhotonPTC58-0129 ,Physics: Adaptive Therapy Poster Discussion SessionsPTC58-0705 ,Biology: Enhanced Biology in Treatment PlanningPTC58-0258 ,General: New HorizonsPTC58-0030 ,General: New HorizonsPTC58-0150 ,Biology: Biology and Clinical InterfacePTC58-0479 ,General: New HorizonsPTC58-0153 ,Clinics: PediatricPTC58-0087 ,General: New HorizonsPTC58-0152 ,General: New HorizonsPTC58-0155 ,General: New HorizonsPTC58-0033 ,General: New HorizonsPTC58-0158 ,Physics: Image GuidancePTC58-0429 ,Biology: Translational and BiomarkersPTC58-0287 ,Physics: Adaptive TherapyPTC58-0403 ,Physics: Image GuidancePTC58-0309 - Published
- 2020
11. Detection of Early Cardiotoxicity after Anthracyclines and Mediastinal Radiotherapy Using Cardiac PET/MRI.
- Author
-
Ntentas, G., Nazir, M.S., Reyes, E., Owczarczyk, K., Crawley, R., Smith, D., Ahmad, S., Qureshi, A., Brady, J.L., Reading, I., Marber, M., Barrington, S., and Mikhaeel, G.
- Subjects
- *
MAGNETIC resonance imaging , *CARDIOTOXICITY , *LUNG cancer , *ESOPHAGEAL cancer , *DIAGNOSTIC imaging - Abstract
Anthracyclines (AC) or mediastinal radiotherapy (RT) are associated with cardiotoxicity. However, limited imaging studies examine early changes (<1yr) or their relative contribution to cardiotoxicity. We sought to address this by simultaneous cardiac 18F-FDG PET/MRI. In a prospective study, patients (pts) with mediastinal lymphoma had cardiac 18F-FDG PET/MRI at 4 timepoints: Baseline, 2 weeks post AC, 2 weeks post RT, 6 months (m) post RT. Esophageal & lung cancer pts had concurrent platinum-based chemoradiotherapy and had 3 scans: Baseline, post RT, 6m post RT. MRI assessed biventricular ejection fractions (EF%) and volumes (V), myocardial T1, T2 maps and late gadolinium enhancement (LGE). 18F-FDG PET was used to assess cardiac inflammation and to obtain segmental standardized mean and max uptake values (SUV) in the myocardium. Paired t-tests or Wilcoxon signed-rank were used to assess significance. Patient advocates contributed to the design and evaluation of the study. 24 pts were recruited between Nov 21 – Jun 23, (8 lymphoma, 11 esophageal, 5 lung) mean age 57y (23-80). The mean AC dose for lymphoma pts was 244 mg/m2 and mean heart dose (MHD) was 2.3 Gy, 15.3 Gy for esophageal and 11.0 Gy for lung. We observed significant reductions in both ventricular EF% and V in the post RT scans. On average the left ventricle (LV) recovered by 6m, however, the right ventricle (RV) EF% and stroke V remained reduced, Table 1. Notably, the RVEF% remained reduced by >10% for 8 pts, 6 of whom were esophageal with MHD >15 Gy, in these pts there was also abnormal focal 18F-FDG uptake in the basal myocardial segments in the 6m post RT scans which was not present on earlier scans. When analyzing only the lymphoma pts, all the above parameters decreased after AC but not after RT and all recovered by 6m apart from RVEF% which remained reduced (-6% ± 6 p=0.08). LGE, T1 and T2 did not change significantly from baseline. To our knowledge, this is the first study to report that RV myocardial function is significantly reduced following AC and RT, it persisted at 6m post RT and was >10% in 38% of pts. Most of these patients received MHD >15Gy and had abnormal myocardial 18F-FDG PET uptake in the basal region which received the highest RT doses suggesting an inflammatory component to the process of cardiotoxicity. A reduction in RVEF% and focal myocardial 18F-FDG PET uptake may be useful biomarkers of early cardiotoxicity and initiation of cardio-oncology follow up. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
12. Developing Blood Sparing Radiotherapy Following CAR T for Lymphoma.
- Author
-
Ntentas, G., Beekman, C., Paganetti, H., Sivabalasingham, S., Brady, J.L., Keshwani, K., Woodward, J., Sanderson, R., Roddie, C., Grassberger, C., Begum, R., Patel, M., Kuhnl, A., and Mikhaeel, G.
- Subjects
- *
CHIMERIC antigen receptors , *CD19 antigen , *BLOOD volume , *BLOOD flow , *CANCER treatment - Abstract
Radiotherapy (RT) is an effective treatment for residual lymphoma early after CD19 chimeric antigen receptor T cell therapy (CAR T). However, there are concerns regarding the effect of RT on CAR T. We investigated the effect of different RT planning techniques on the dose to circulating blood to develop CAR T sparing RT using a published computational framework to compute hematological doses (HEDOS) We analyzed 33 RT treatment plans for 11 lesions. Each lesion was planned with 3 RT techniques. Technique A: a conventional VMAT plan, B: a blood sparing technique with lower number of arcs and dose optimization for blood vessels (BV) and blood rich organs (BRO) and C: the same as B but delivered with Flattening Filter Free (FFF) beams to increase dose rate (DR) and reduce beam on time (BOT). Fractional blood doses were calculated using HEDOS, which simulates individual blood particles as they travel through the body, dictated by intra- and inter-organ blood flow. The % of blood volume that received 0, 0.05 and 0.5 Gy was estimated for each RT technique. Wilcoxon test was used to test for significance. BV dose was reduced by B & C, with wide variation between different cases. However, the differences between the mean BV dose of the whole group did not reach statistical significance. Techniques B & C reduced BOT, especially C due to its higher DR (1400 vs 600 MU/min). BOT reduction had the largest influence on the volume of irradiated blood and thus C significantly reduced the blood dose compared to A & B (Table 1). The % blood volume receiving 0 Gy was highest for C. C also reduced the blood volume that received > 0.05 Gy / fraction, a dose level that can induce cell death/inactivation due to the highly radiosensitive nature of lymphocytes. This is the first study to develop a blood sparing (and potentially CAR T sparing) RT by modifying treatment parameters to account for the circulating nature of the blood. Using a dynamic dose calculation method, BOT has a large effect compared to other modifications. Reducing BOT to < 60 seconds had the greatest blood dose-sparing effect. This blood sparing RT could have other potential applications such as reducing risk for lymphopenia after RT. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
13. PO-1128 Oesophagus exposure in breast cancer radiotherapy: systematic review of oesophageal doses 2010-2020
- Author
-
Duane, F., primary, Kerr, A., additional, Aznar, M., additional, Wang, Z., additional, Ntentas, G., additional, Darby, S., additional, and Taylor, C., additional
- Published
- 2021
- Full Text
- View/download PDF
14. PO-1972 DIBH for mediastinal lymphoma: Implementation and evaluation of a 5-year service
- Author
-
Jones, K., primary, Webster, A., additional, Ntentas, G., additional, Brady, J., additional, and Mikhaeel, N.G., additional
- Published
- 2021
- Full Text
- View/download PDF
15. PO-1082 Predicted cardiac and second cancer risks following treatment for Hodgkin lymphoma in Ireland
- Author
-
Houlihan, O., primary, Ntentas, G., additional, Cutter, D.J., additional, Daly, P., additional, Gillham, C., additional, McArdle, O., additional, and Duane, F.K., additional
- Published
- 2021
- Full Text
- View/download PDF
16. SP-0681 Justification and dose optimisation in IGRT practices
- Author
-
Ntentas, G.
- Published
- 2023
- Full Text
- View/download PDF
17. An Excess Mortality Risk Analysis of Proton Beam versus Optimal Photon Radiotherapy for Mediastinal Hodgkin Lymphoma: Who May Benefit Most?
- Author
-
Ntentas, G., primary, Dedeckova, K., additional, Andrilik, M., additional, Shakir, R., additional, Aznar, M.C., additional, Ramroth, J., additional, Begum, R., additional, Darby, S., additional, Mikhaeel, G., additional, and Cutter, D., additional
- Published
- 2020
- Full Text
- View/download PDF
18. Clinical Intensity Modulated Proton Therapy for Hodgkin Lymphoma: Which Patients Benefit the Most?
- Author
-
Ntentas, G, Dedeckova, K, Andrlik, M, Aznar, M, George, B, Kubeš, J, Darby, S, and Cutter, D
- Subjects
Adult ,Male ,Organs at Risk ,Manchester Cancer Research Centre ,Adolescent ,ResearchInstitutes_Networks_Beacons/mcrc ,Radiotherapy Planning, Computer-Assisted ,Radiotherapy Dosage ,Middle Aged ,Hodgkin Disease ,Article ,Treatment Outcome ,Antineoplastic Combined Chemotherapy Protocols ,Proton Therapy ,Humans ,Female ,Radiotherapy, Intensity-Modulated ,Radiotherapy, Conformal ,Radiation Injuries - Abstract
Purpose Radiation therapy (RT) improves control of Hodgkin lymphoma (HL), but patients who undergo RT are at risk for late effects, including cardiovascular disease and second cancers, because of radiation doses to organs at risk (OARs). Proton therapy (PT) can reduce OAR doses compared with conventional photon RT. However, access to PT is currently limited, so referrals must be appropriately selective. We aimed to identify subgroups of patients with HL who could benefit the most dosimetrically from RT with PT based on the prechemotherapy disease characteristics. Methods and materials Normal tissue radiation doses were calculated for 21 patients with HL who were treated with deep-inspiration breath-hold pencil-beam scanning (PBS) PT and compared with doses from 3-dimensional conformal (3D-CRT) and partial arc volumetric modulated (PartArc) photon RT. Prechemotherapy disease characteristics associated with significant dosimetric benefits from PBS compared with photon RT were identified. Results Treatment with PBS was well tolerated and provided with good local control. PBS provided dosimetric advantages for patients whose clinical treatment volume extended below the seventh thoracic level and for female patients with axillary disease. In addition, an increasing dosimetric benefit for some OARs was observed for increasing target volume. PBS significantly reduced the mean dose to the heart, breast, lungs, spinal cord, and esophagus. Dose homogeneity and conformity within the target volume were also superior with PBS, but some high-dose measures and hot spots were increased with PBS compared with partial arc volumetric modulated photon RT. Conclusions PBS gives good target coverage and local control while providing reductions in radiation dose to OARs for individuals who receive RT for HL compared with advanced photon RT. Our findings highlight groups of patients who would be expected to gain more dosimetric benefit from PBS. These findings facilitate the selection of patients who should be considered a priority for PT.
- Published
- 2019
- Full Text
- View/download PDF
19. 146 (PB-059) Poster - Proton beam therapy for early breast cancer: a systematic review and quantitative synthesis of adverse clinical outcomes
- Author
-
Holt, F., Probert, J., Liu, Z., Duane, F., Ntentas, G., Darby, S., Dodwell, D., Coles, C., Haviland, J., Kirby, A., and Taylor, C.
- Published
- 2022
- Full Text
- View/download PDF
20. Radiation dosimetry for studying the late effects of radiotherapy
- Author
-
Ntentas, G, Darby, S, Cutter, D, Van Den Heuvel, F, and Aznar, M
- Subjects
Cardiac radiation dose reconstruction ,Radiation-related cardiac toxicity ,Proton therapy for Hodgkin lymphoma - Abstract
Evidence that radiation-related cardiovascular disease and second primary cancers can occur in cancer survivors following radiation therapy (RT) has emerged from several independent sources. Cardiotoxicity and second cancers are of particular concern for patients with good prognosis, such as those with Hodgkin lymphoma (HL). HL patients are among the youngest to receive RT, which means that those who are cured of their cancer have decades-long natural life-expectancies during which treatment-related long-term toxicities may cause years of excess morbidity or premature mortality. A considerable amount of research has been conducted to investigate the risk of radiation-related cardiotoxicity and second cancers. However, there are still substantial gaps in knowledge. It is therefore important to improve our understanding regarding these risks and develop treatment approaches and survivorship care to minimise their impact on patients’ quality of life. In this thesis, I have investigated the risk of congestive heart failure (CHF) in a cohort of 2619 HL survivors and presented, for the first time, dose-response relationships for risk of CHF versus cardiac radiation doses. I also validated the radiation dosimetry method used to estimate the cardiac doses in this study as well as for other reconstruction methods, versus a gold standard based on the patients’ own computed tomography scans. Additionally, I investigated what effect the dose reconstruction errors had on the dose-response relationships. I then focused on modern RT methods and specifically on proton RT. Based on published dose-response relationships (including that developed in this thesis) I predicted cardiovascular and second cancer risks for patients treated with advanced RT. This thesis has provided new knowledge in the study of late effects in HL patients who were treated decades ago as well as for patients treated more recently with advanced RT methods. The results here can be used to facilitate progress towards personalised RT in terms of choosing the appropriate RT method by integrating individualised risk prediction in advanced RT treatment planning. The research here provides the basis for further work towards evidence-based case selection for HL patients for the first NHS proton therapy centres in the UK, opening in 2018-2021.
- Published
- 2018
21. EP-2004: Cardiac Radiation Dose Reconstruction in the Study of Late Effects:A Comparison of Different Methods
- Author
-
Ntentas, G., primary, Aznar, M.C., additional, Hodgson, D.C., additional, Howell, R.M., additional, Maraldo, M.V., additional, Ahmed, S., additional, Ng, A., additional, Darby, S.C., additional, and Cutter, D.J., additional
- Published
- 2018
- Full Text
- View/download PDF
22. Predicted Cardiac and Second Cancer Risks in Hodgkin Lymphoma Patients Treated With Advanced Proton Beam Therapy Compared to Photon Radiation Therapy
- Author
-
Ntentas, G., primary, Dedeckova, K., additional, Andrilik, M., additional, Aznar, M.C., additional, George, B., additional, Darby, S.C., additional, and Cutter, D., additional
- Published
- 2017
- Full Text
- View/download PDF
23. Cardiac Radiation Dose Reconstruction in the Study of Late Effects: A Comparison of Different Methods
- Author
-
Ntentas, G., primary, Aznar, M.C., additional, Hodgson, D., additional, Darby, S.C., additional, Ahmed, S., additional, Ng, A., additional, and Cutter, D., additional
- Published
- 2017
- Full Text
- View/download PDF
24. PREDICTED CARDIAC AND SECOND CANCER RISKS IN HODGKIN LYMPHOMA PATIENTS TREATED WITH ADVANCED PROTON BEAM THERAPY COMPARED TO PHOTON RADIOTHERAPY
- Author
-
Ntentas, G., primary, Dedeckova, K., additional, Andrilik, M., additional, Aznar, M.C., additional, George, B., additional, Darby, S., additional, and Cutter, D., additional
- Published
- 2017
- Full Text
- View/download PDF
25. Risk of heart failure in survivors of Hodgkin lymphoma: Effects of cardiac exposure to radiation and anthracyclines
- Author
-
Van Nimwegen, F.A. (Frederika A.), Ntentas, G. (Georgios), Darby, S.C. (Sarah), Schaapveld, M. (Michael), Hauptmann, M. (Michael), Lugtenburg, P.J. (Pieternella), Janus, C.P.M. (Cécile), Daniels, L. (Laurien), Leeuwen, F.E. (Flora) van, Cutter, D.J. (David J.), Aleman, B.M.P. (Berthe), Van Nimwegen, F.A. (Frederika A.), Ntentas, G. (Georgios), Darby, S.C. (Sarah), Schaapveld, M. (Michael), Hauptmann, M. (Michael), Lugtenburg, P.J. (Pieternella), Janus, C.P.M. (Cécile), Daniels, L. (Laurien), Leeuwen, F.E. (Flora) van, Cutter, D.J. (David J.), and Aleman, B.M.P. (Berthe)
- Abstract
Hodgkin lymphoma (HL) survivors treated with radiotherapy and/or chemotherapy are known to have increased risks of heart failure (HF), but a radiation dose-response relationship has not previously been derived. A case-control study, nested in a cohort of 2617 five-year survivors of HL diagnosed before age 51 years during 1965 to 1995, was conducted. Cases (n 5 91) had moderate or severe HF as their first cardiovascular diagnosis. Controls (n 5 278) were matched to cases on age, sex, and HL diagnosis date. Treatment and follow-up information were abstracted from medical records. Mean heart doses and mean left ventricular doses (MLVD) were estimated by reconstruction of individual treatments on representative computed tomography datasets. Average MLVD was 16.7 Gy for cases and 13.8 Gy for controls (Pdifference 5 .003). HF rate increased with MLVD: relative to 0 Gy, HF rates following MVLD of 1-15, 16-20, 21-25, and ≥26 Gy were 1.27, 1.65, 3.84, and 4.39, respectively (Ptrend < .001). Anthracycline-containing chemotherapy increased HF rate by a factor of 2.83 (95% CI: 1.43-5.59), and there was no significant interaction with MLVD (Pinteraction 5 .09). Twenty-five–year cumulative risks of HF following MLVDs of 0-15 Gy, 16-20 Gy, and ≥21 Gy were 4.4%, 6.2%, and 13.3%, respectively, in patients treated without anthracycline-containing chemotherapy, and 11.2%, 15.9%, and 32.9%, respectively, in patients treated with anthracyclines. We have derived quantitative estimates of HF risk in patients treated for HL following radiotherapy with or without anthracycline-containing chemotherapy. Our results enable estimation of HF risk for patients before treatment, during radiotherapy planning, and during follow-up.
- Published
- 2017
- Full Text
- View/download PDF
26. Risk of heart failure in survivors of Hodgkin lymphoma: effects of cardiac exposure to radiation and anthracyclines
- Author
-
van Nimwegen, FA, Ntentas, G, Darby, SC, Schaapveld, M, Hauptmann, M, Lugtenburg, Elly, Janus, Cecile, Daniels, L, van Leeuwen, FE, Cutter, DJ, Aleman, BMP, van Nimwegen, FA, Ntentas, G, Darby, SC, Schaapveld, M, Hauptmann, M, Lugtenburg, Elly, Janus, Cecile, Daniels, L, van Leeuwen, FE, Cutter, DJ, and Aleman, BMP
- Published
- 2017
27. OC-0059: A radiation dose-response relationship for risk of heart failure in survivors of Hodgkin lymphoma
- Author
-
Aleman, B.M.P., primary, Van Nimwegen, F.A., additional, Ntentas, G., additional, Darby, S.C., additional, Schaapveld, M., additional, Hauptmann, M., additional, Lugtenburg, P.J., additional, Janus, C.P.M., additional, Krol, A.D.G., additional, Van Leeuwen, F.E., additional, and Cutter, D.J., additional
- Published
- 2016
- Full Text
- View/download PDF
28. Developing CAR‐T‐sparing Radiotherapy ‐ early dosimetric results.
- Author
-
Mikhaeel, N. G., Ntentas, G., Sivabalasingham, S., Brady, J. L., Tait, J., De Farias, M. Correia, Roddie, C., Sanderson, R., and Kuhnl, A.
- Subjects
MEDICAL dosimetry ,RADIOTHERAPY ,VOLUMETRIC-modulated arc therapy - Published
- 2023
- Full Text
- View/download PDF
29. EP-1735: Hounsfield unit variation with changing acquisition parameters for Elekta cone-beam computed tomography
- Author
-
Thomas, C., primary, Ntentas, G., additional, and Greener, A., additional
- Published
- 2014
- Full Text
- View/download PDF
30. PO-0829: Calculating dose distributions in cone beam CT for head and neck adaptive radiotherapy
- Author
-
Ntentas, G., primary, Thomas, C., additional, and Greener, T., additional
- Published
- 2014
- Full Text
- View/download PDF
31. Results of a Comprehensive Prospective Protocol of Radiotherapy Bridging and Consolidation for CAR T in Large B Cell Lymphoma (RESTART).
- Author
-
Mikhaeel, G., Bourlon, C., Springell, D., Roddie, C., Brady, J.L., De Farias, M. Correia, Sanderson, R., Benjamin, R., Hwang, A., Kamat, S., Courtney, K., Patten, P., Kumar, E., Hardefeldt, P., Yallop, D., Ntentas, G., Keshwani, K., Sivabalasingham, S., and Kuhnl, A.
- Subjects
- *
PATIENT selection , *B cell lymphoma , *USED cars , *OVERALL survival , *PROGRESSION-free survival - Abstract
Radiotherapy is an accepted bridging prior to CD19 CAR T in large B cell lymphoma (LBCL) and is sometimes used post CAR T for residual disease. However, consolidation (cRT) is not well established and there is no agreed standard for patient selection, timing, doses or techniques. Concern also exists regarding effect on circulating CAR T in responding patients. We initiated a prospective protocol for the use of RT with CAR T to: (1) standardize the selection of patients, (2) promote the use of RT consolidation post CAR T according to pre defined criteria, and (3) optimize the use of CAR T sparing RT in the consolidation setting. The eligibility criteria included LBCL patients approved for CD19 CAR T and no contraindication for RT. Patients were selected for pathway A (Bridging RT alone) if most sites of disease can be covered with RT. Pathway B (bridging systemic therapy ± cRT) was selected for rapidly progressing disease, wide-spread extranodal disease (e.g. liver, lung, bone, peritoneum) or LDH >2xULN. Baseline PET CT was reviewed and sites at high risk for local recurrence (≥5cm or SUVmax ≥15) were recorded. cRT post CAR T was given to high-risk lesions which on D28 PET CT showed a Deauville score (DS) 3-4 or 5 (but partial response). RT was planned 6-8 weeks post CAR T, with CAR T sparing technique. 28 patients were entered between Nov 2021 – Oct 2023, 10 in pathway A & 18 in pathway B. Median age was 55 years. 51.7% had stage 4 (20% vs. 68.4% in A vs. B). 44.8% had bulky disease, 24.1% ≥2 extranodal sites, and 48.2% high LDH. 1 patient in pathway A did not receive CAR T due to PD. RT dose was 20-36Gy (10-12#) in pathway A, all delivered with VMAT and with no gaps. Pathway B doses were 25-37.5Gy / 5-15# (23/26 sites treated with VMAT) and with no gaps. Planning modifications for early cRT post CAR T included: (1) contouring and dose-optimisation of blood vessels (BV) and blood-rich OARs (BR-OAR) to reduce doses to blood, and (2) measures to reduce beam-on time to account for the circulating nature of blood; hypofractionation (2.5 – 5 Gy/#, median = 3), limited beam angles (e.g. partial single arcs) avoiding BV and BR-OAR, and flattening filter free (FFF) beams. Overall response rate at 1 month was 86.2% (41.4% DS 1-3) and 48.2% at 6 months. With a median follow-up of 180 days, 9 patients progressed (4 in pathway A and 5 in pathway B) and 5 died, all due to disease progression. Data on local disease control, progression-free and overall survival will be provided at the meeting. Significant toxicity included 2 G3 ICANS but no CRS G≥ 3. No G≥3 toxicity reported after cRT. Implementing a comprehensive protocol of RT bridging and post CAR T RT consolidation with selection of patients based on pre-defined criteria was feasible. All patients but one completed treatment according to protocol. The disease control outcomes and the toxicity are promising, particularly in the RT consolidation setting. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
32. Individualising the use of radiotherapy for the treatment of people with Hodgkin lymphoma
- Author
-
Shakir, R, Shaw, S, Mikhaeel, G, Cutter, D, Peters, M, Ntentas, G, and Ramroth, J
- Subjects
Radiotherapy ,Oncology ,Medicine ,Hematology ,Decision making - Abstract
Hodgkin lymphoma is a cancer of the lymphatic system that typically affects young adults. Chemotherapy and radiotherapy are both highly effective treatments, and 80-90% of patients now become long-term survivors, living long enough to experience late toxicities. Radiotherapy in particular has been shown to increase the long-term risk of cardiovascular disease and second malignancies, and recent trials have attempted to identify patients in whom radiotherapy can be omitted. Omission of radiotherapy has, however, been shown to substantially increase the chance of Hodgkin lymphoma recurrence. The decision about whether or not to use radiotherapy for an individual patient therefore involves weighing up the proven benefit against the potential risks of late toxicity. The aim of this thesis is to understand the decision-making process about radiotherapy, and provide data that can be used to inform patients and clinicians at various steps. I explore patients’ and clinicians’ experience of radiotherapy decision-making, and propose a new decision-making model that fits this context. I present a comprehensive summary of the late toxicities of radiotherapy, including the dose-response relationships that can be used to estimate risks from modern radiotherapy. I report the radiation dose received by abdominopelvic organs in a historic cohort of Hodgkin lymphoma survivors, and show how the data has been used to estimate the dose-response relationship for the risk of colorectal cancer. Finally, I present a multivariable linear regression model that estimates the dose a patient’s heart would receive from radiotherapy using measures available at the time of their diagnosis. I use the model to estimate individual patient’s risk of ischaemic heart disease, and show its accuracy is greatest in the medium heart dose range, where the balance of the benefits and risks of radiotherapy are most uncertain. Overall, this thesis helps inform individualised decision-making about radiotherapy by highlighting how clinicians can support patient involvement in decisions and providing methods to help individualise risk estimates of radiotherapy late toxicity.
- Published
- 2022
- Full Text
- View/download PDF
33. Proton Beam Therapy for Early Breast Cancer: A Systematic Review and Meta-analysis of Clinical Outcomes.
- Author
-
Holt F, Probert J, Darby SC, Haviland JS, Coles CE, Kirby AM, Liu Z, Dodwell D, Ntentas G, Duane F, and Taylor C
- Subjects
- Humans, Female, Breast Neoplasms radiotherapy, Breast Neoplasms surgery, Breast Neoplasms etiology, Proton Therapy adverse effects, Proton Therapy methods
- Abstract
Purpose: Adjuvant proton beam therapy (PBT) is increasingly available to patients with breast cancer. It achieves better planned dose distributions than standard photon radiation therapy and therefore may reduce the risks. However, clinical evidence is lacking., Methods and Materials: A systematic review of clinical outcomes from studies of adjuvant PBT for early breast cancer published in 2000 to 2022 was undertaken. Early breast cancer was defined as when all detected invasive cancer cells are in the breast or nearby lymph nodes and can be removed surgically. Adverse outcomes were summarized quantitatively, and the prevalence of the most common ones were estimated using meta-analysis., Results: Thirty-two studies (1452 patients) reported clinical outcomes after adjuvant PBT for early breast cancer. Median follow-up ranged from 2 to 59 months. There were no published randomized trials comparing PBT with photon radiation therapy. Scattering PBT was delivered in 7 studies (258 patients) starting 2003 to 2015 and scanning PBT in 22 studies (1041 patients) starting 2000 to 2019. Two studies (123 patients) starting 2011 used both PBT types. For 1 study (30 patients), PBT type was unspecified. Adverse events were less severe after scanning than after scattering PBT. They also varied by clinical target. For partial breast PBT, 498 adverse events were reported (8 studies, 358 patients). None were categorized as severe after scanning PBT. For whole breast or chest wall ± regional lymph nodes PBT, 1344 adverse events were reported (19 studies, 933 patients). After scanning PBT, 4% (44/1026) of events were severe. The most prevalent severe outcome after scanning PBT was dermatitis, which occurred in 5.7% (95% confidence interval, 4.2-7.6) of patients. Other severe adverse outcomes included infection, pain, and pneumonitis (each ≤1%). Of the 141 reconstruction events reported (13 studies, 459 patients), the most prevalent after scanning PBT was prosthetic implant removal (34/181, 19%)., Conclusions: This is a quantitative summary of all published clinical outcomes after adjuvant PBT for early breast cancer. Ongoing randomized trials will provide information on its longer-term safety compared with standard photon radiation therapy., (Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
34. Predicted cardiac and second cancer risks for patients undergoing VMAT for mediastinal Hodgkin lymphoma.
- Author
-
Houlihan OA, Ntentas G, Cutter DJ, Daly P, Gillham C, McArdle O, and Duane FK
- Subjects
- Humans, Female, Adult, Antineoplastic Combined Chemotherapy Protocols therapeutic use, Breath Holding, Radiotherapy Dosage, Organs at Risk radiation effects, Bleomycin, Dacarbazine, Doxorubicin, Vinblastine, Heart radiation effects, Radiotherapy Planning, Computer-Assisted, Radiotherapy, Intensity-Modulated adverse effects, Hodgkin Disease drug therapy, Hodgkin Disease radiotherapy, Neoplasms, Second Primary epidemiology, Neoplasms, Second Primary etiology, Mediastinal Neoplasms etiology, Mediastinal Neoplasms radiotherapy, Lymphoma, Cardiovascular Diseases etiology
- Abstract
Background and Purpose: To predict treatment-related cardiovascular disease (CVD) and second cancer 30-year absolute mortality risks (AMR
30 ) for patients with mediastinal Hodgkin lymphoma in a large multicentre radiation oncology network in Ireland., Material and Methods: This study includes consecutive patients treated for mediastinal lymphoma using chemotherapy and involved site radiotherapy (RT) 2016-2019. Radiation doses to heart, left ventricle, cardiac valves, lungs, oesophagus, carotid arteries and female breasts were calculated. Individual CVD and second cancer AMR30 were predicted using Irish background population rates and dose-response relationships., Results: Forty-four patients with Hodgkin lymphoma were identified, 23 females, median age 28 years. Ninety-eight percent received anthracycline, 80% received 4-6 cycles ABVD. Volumetric modulated arc therapy (VMAT) ± deep inspiration breath hold (DIBH) was delivered, median total prescribed dose 30 Gy. Average mean heart dose 9.8 Gy (range 0.2-23.8 Gy). Excess treatment-related mean AMR30 from CVD was 2.18% (0.79, 0.90, 0.01, 0.13 and 0.35% for coronary disease, heart failure, valvular disease, stroke and other cardiac diseases), 1.07% due to chemotherapy and a further 1.11% from RT. Excess mean AMR30 for second cancers following RT were: lung cancer 2.20%, breast cancer in females 0.34%, and oesophageal cancer 0.28%., Conclusion: For patients with mediastinal lymphoma excess mortality risks from CVD and second cancers remain clinically significant despite contemporary chemotherapy and photon-RT. Efforts to reduce the toxicity of combined modality treatment, for example, using DIBH, reduced margins and advanced RT, e.g. proton beam therapy, should be continued to further reduce potentially fatal treatment effects., (© 2022. The Author(s).)- Published
- 2023
- Full Text
- View/download PDF
35. Association of Radiation and Procarbazine Dose With Risk of Colorectal Cancer Among Survivors of Hodgkin Lymphoma.
- Author
-
Geurts YM, Shakir R, Ntentas G, Roberti S, Aznar MC, John KM, Ramroth J, Janus CPM, Krol ADG, Roesink JM, van der Maazen RWM, Zijlstra JM, Darby SC, Aleman BMP, van Leeuwen FE, Cutter DJ, and Schaapveld M
- Subjects
- Male, Humans, Child, Female, Procarbazine adverse effects, Case-Control Studies, Survivors, Hodgkin Disease drug therapy, Hodgkin Disease epidemiology, Hodgkin Disease radiotherapy, Colorectal Neoplasms epidemiology, Colorectal Neoplasms diagnosis
- Abstract
Importance: Hodgkin lymphoma (HL) survivors have higher rates of colorectal cancer, which may be associated with subdiaphragmatic radiation therapy and/or alkylating chemotherapy. Although radiation dose-response associations with breast, lung, stomach, pancreatic, and esophageal cancer after HL have been demonstrated, the association of radiation therapy with colorectal cancer remains unclear., Objective: To quantify the rate of colorectal cancer according to radiation dose to the large bowel and procarbazine dose among HL survivors., Design, Setting, and Participants: A nested case-control study examined 5-year HL survivors at 5 hospital centers in the Netherlands. Participants had been diagnosed with HL in 1964 to 2000, when they were 15 to 50 years of age, and were followed for a median of approximately 26 years. Survivors of HL who developed colorectal cancer and survivors who were selected as controls were individually matched on sex, age at HL diagnosis, and date of HL diagnosis. Data were analyzed from July 2021 to October 2022., Exposures: Mean radiation doses to the large bowel were estimated by reconstructing individual radiation therapy treatments on representative computed tomography data sets., Main Outcomes and Measures: Excess rate ratios (ERRs) were modeled to evaluate the excess risk associated with each 1-gray increase in radiation dose, and potential effect modification by procarbazine was explored., Results: The study population included 316 participants (mean [SD] age at HL diagnosis, 33.0 [9.8] years; 221 [69.9%] men), 78 of whom were HL survivors who developed colorectal cancer (cases) and 238 who did not (controls). The median (IQR) interval between HL and colorectal cancer was 25.7 (18.2-31.6) years. Increased colorectal cancer rates were seen for patients who received subdiaphragmatic radiation therapy (rate ratio [RR], 2.4; 95% CI, 1.4-4.1) and those who received more than 8.4 g/m2 procarbazine (RR, 2.5; 95% CI, 1.3-5.0). Overall, colorectal cancer rate increased linearly with mean radiation dose to the whole large bowel and dose to the affected bowel segment. The association between radiation dose and colorectal cancer rate became stronger with increasing procarbazine dose: the ERR per gray to the whole bowel was 3.5% (95% CI, 0.4%-12.6%) for patients who did not receive procarbazine, and increased 1.2-fold (95% CI, 1.1-1.3) for each 1-g/m2 increase in procarbazine dose., Conclusions and Relevance: This nested case-control study of 5-year HL survivors found a dose-response association between radiation therapy and colorectal cancer risk, and modification of this association by procarbazine. These findings may enable individualized colorectal cancer risk estimations, identification of high-risk survivors for subsequent screening, and optimization of treatment strategies.
- Published
- 2023
- Full Text
- View/download PDF
36. Systematic review for deep inspiration breath hold in proton therapy for mediastinal lymphoma: A PTCOG Lymphoma Subcommittee report and recommendations.
- Author
-
Patel CG, Peterson J, Aznar M, Tseng YD, Lester S, Pafundi D, Flampouri S, Mohindra P, Parikh RR, Mailhot Vega R, Konig L, Plastaras JP, Bates JE, Loap P, Kirova YM, Orlandi E, Lütgendorf-Caucig C, Ntentas G, and Hoppe B
- Subjects
- Humans, Breath Holding, Organs at Risk, Radiotherapy Planning, Computer-Assisted, Protons, Heart, Radiotherapy Dosage, Proton Therapy, Mediastinal Neoplasms radiotherapy, Lymphoma, Unilateral Breast Neoplasms radiotherapy
- Abstract
Purpose: To systematically review all dosimetric studies investigating the impact of deep inspiration breath hold (DIBH) compared with free breathing (FB) in mediastinal lymphoma patients treated with proton therapy as compared to IMRT (intensity-modulated radiation therapy)-DIBH., Materials and Methods: We conducted a systematic review in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guideline using the PubMed database to identify studies of mediastinal lymphoma patients with dosimetric comparisons of proton-FB and/or proton-DIBH with IMRT-DIBH. Parameters included mean heart (MHD), lung (MLD), and breast (MBD) doses, among other parameters. Case reports were excluded. Absolute differences in mean doses > 1 Gy between comparators were considered to be clinically meaningful., Results: As of April 2021, eight studies fit these criteria (n = 8), with the following comparisons: proton-FB vs IMRT-DIBH (n = 5), proton-DIBH vs proton-FB (n = 5), and proton-DIBH vs IMRT-DIBH (n = 8). When comparing proton-FB with IMRT-DIBH in 5 studies, MHD was reduced with proton-FB in 2 studies, was similar (<1 Gy difference) in 2 studies, and increased in 1 study. On the other hand, MLD and MBD were reduced with proton-FB in 3 and 4 studies, respectively. When comparing proton-DIBH with proton-FB, MHD and MLD were reduced with proton DIBH in 4 and 3 studies, respectively, while MBD remained similar. Compared with IMRT-DIBH in 8 studies, proton-DIBH reduced the MHD in 7 studies and was similar in 1 study. Furthermore, MLD and MBD were reduced with proton-DIBH in 8 and 6 studies respectively. Integral dose was similar between proton-FB and proton-DIBH, and both were substantially lower than IMRT-DIBH., Conclusion: Accounting for heart, lung, breast, and integral dose, proton therapy (FB or DIBH) was superior to IMRT-DIBH. Proton-DIBH can lower dose to the lungs and heart even further compared with proton-FB, depending on disease location in the mediastinum, and organ-sparing and target coverage priorities., Competing Interests: Declaration of Competing Interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Laila Konig reports personal fees from Accuray Inc. and Novocure GmbH outside the submitted work., (Copyright © 2022 Elsevier B.V. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
37. Implementation of a comprehensive set of optimised CBCT protocols and validation through imaging quality and dose audit.
- Author
-
Khan M, Sandhu N, Naeem M, Ealden R, Pearson M, Ali A, Honey I, Webster A, Eaton D, and Ntentas G
- Subjects
- Humans, Phantoms, Imaging, Cone-Beam Computed Tomography methods, Pelvis, Head, Spiral Cone-Beam Computed Tomography
- Abstract
Objectives: Cone-beam computed tomography (CBCT) for radiotherapy treatment verification has increased in frequency; therefore, it is crucial to optimise image quality and radiation dose to patients. The aim of this study was to implement optimised CBCT protocols for the Varian TrueBeams for most tumour sites in adult patients., Methods: A combination of patient size-specific CBCT protocols from the literature and developed in-house was used. Scans taken before and after optimisation were compared by senior radiographers and physicists to evaluate how changes affected image quality and clinical usability for online image registration. The change in dose for each new CBCT protocol was compared to the Varian default. A clinical audit was performed following implementation to evaluate the changes in imaging dose for all patients receiving a CBCT during that period., Results: Ten CBCT protocols were introduced including head and neck and patient-size-specific thorax and pelvis/abdomen protocols. Scans from 102 patients with images before and after optimisation were assessed, none of the scans showed image quality changes compromising clinical usability and for some image quality was improved. Between November 2020 and June 2021, 1185 patients had CBCTs using the new protocols. The imaging dose was reduced for 52% of patients, remained the same for 37% and increased for 12%., Conclusions: This study showed that substantial dose reductions and image quality improvements can be achieved with simple changes in the default settings of the Varian TrueBeam CBCT without affecting the radiographers' confidence in online image registration., Advances in Knowledge: This study represents a comprehensive assessment and optimisation of CBCT protocols for most sites, validated on a large cohort of patients.
- Published
- 2022
- Full Text
- View/download PDF
38. Deep inspiration breath-hold for mediastinal lymphoma patients: Evaluation of a 5-year service.
- Author
-
Jones KS, Webster A, Ntentas G, Brady JL, and Mikhaeel NG
- Abstract
Deep inspiration breath-hold (DIBH) is an advanced radiotherapy technique that has been shown to have dosimetric benefits in the treatment of patients with mediastinal lymphoma. Whilst there is much published data on the use of DIBH in breast radiotherapy, reports on the use of the technique in mediastinal lymphoma patients remain limited. As the first NHS centre in the UK to implement DIBH in this pt group, we have evaluated our experience and success in using this technique over a 5 year period., Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Crown Copyright © 2022 Published by Elsevier B.V. on behalf of European Society for Radiotherapy & Oncology.)
- Published
- 2022
- Full Text
- View/download PDF
39. Introduction of deep inspirational breath-hold and Butterfly-VMAT techniques into clinical practice for the treatment of mediastinal lymphoma - Lessons learned from an experienced centre.
- Author
-
Jones KS, Webster A, Ntentas G, Brady JL, and Mikhaeel NG
- Abstract
Deep inspiration breath-hold, butterfly volumetric modulated arc therapy and daily imaging techniques for mediastinal lymphoma patients have been introduced in a single department. Whilst introducing these techniques, there were many practical lessons to be learned across the patient pathway, from pre-treatment through to treatment delivery.Therapeutic radiographers were key members of the multi-disciplinary team implementing these techniques. This work reflects on the experience of introducing these advanced techniques for mediastinal lymphoma patients and the lessons learnt., Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Crown Copyright © 2022 Published by Elsevier B.V. on behalf of European Society for Radiotherapy & Oncology.)
- Published
- 2022
- Full Text
- View/download PDF
40. Proton Therapy in Supradiaphragmatic Lymphoma: Predicting Treatment-Related Mortality to Help Optimize Patient Selection.
- Author
-
Ntentas G, Dedeckova K, Andrlik M, Aznar MC, Shakir R, Ramroth J, Begum R, Kubeš J, Darby SC, Mikhaeel NG, and Cutter DJ
- Subjects
- Humans, Patient Selection, Radiotherapy Dosage, Smoking, Hodgkin Disease drug therapy, Hodgkin Disease radiotherapy, Proton Therapy adverse effects, Proton Therapy methods
- Abstract
Purpose: In some patients with Hodgkin lymphoma (HL), proton beam therapy (PBT) may reduce the risk of radiation-related cardiovascular disease (CVD) and second cancers (SC) compared with photon radiation therapy (RT). Our aim was to identify patients who benefit the most from PBT in terms of predicted 30-year absolute mortality risks (AMR
30 ) from CVD and SC, taking into account individual background, chemotherapy, radiation, and smoking-related risks., Methods and Materials: Eighty patients with supradiaphragmatic HL treated with PBT between 2015 and 2019 were replanned using optimal photon RT. To identify patients predicted to derive the greatest benefit from PBT compared with photon RT, doses and AMR30 from CVD and SC of the lung, breast, and esophagus were compared for all patients and across patient subgroups., Results: For patients with mediastinal disease below the origin of the left main coronary artery (n = 66; 82%), PBT reduced the mean dose to the heart, left ventricle, and heart valves by 1.0, 2.7, and 3.6 Gy, respectively. Based on U.S. mortality rates, PBT reduced CVD AMR30 by 0.2%, from 5.9% to 5.7%. The benefit was larger if the mediastinal disease overlapped longitudinally with the heart by ≥40% (n = 23; 29%). PBT reduced the mean dose to the heart, left ventricle, and heart valves by 3.2, 5.6, and 5.1 Gy, respectively, and reduced CVD AMR30 by 0.8%, from 7.0% to 6.2%. For patients with axillary disease (n = 25; 31%), PBT reduced the mean lung dose by 2.8 Gy and lung cancer AMR30 by 0.6%, from 2.7% to 2.1%. Breast and esophageal doses were also lower with PBT, but the effects on AMR30 were negligible. The effect of smoking on CVD and lung cancer AMR30 was much larger than radiation and chemotherapy and the differences between radiation modalities., Conclusions: The predicted benefit of PBT is not universal and limited to certain categories of patients with lymphoma and lower mediastinal or axillary disease. Smoking cessation should be strongly encouraged in smokers who require thoracic RT., (Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.)- Published
- 2022
- Full Text
- View/download PDF
41. Predicted Risks of Cardiovascular Disease Following Chemotherapy and Radiotherapy in the UK NCRI RAPID Trial of Positron Emission Tomography-Directed Therapy for Early-Stage Hodgkin Lymphoma.
- Author
-
Cutter DJ, Ramroth J, Diez P, Buckle A, Ntentas G, Popova B, Clifton-Hadley L, Hoskin PJ, Darby SC, Radford J, and Illidge T
- Subjects
- Adolescent, Adult, Aged, Antineoplastic Combined Chemotherapy Protocols adverse effects, Bleomycin therapeutic use, Cardiovascular Diseases diagnostic imaging, Cardiovascular Diseases mortality, Clinical Decision-Making, Dacarbazine therapeutic use, Doxorubicin therapeutic use, Female, Heart Disease Risk Factors, Hodgkin Disease diagnostic imaging, Hodgkin Disease mortality, Hodgkin Disease pathology, Humans, Incidence, Male, Middle Aged, Neoplasm Staging, Predictive Value of Tests, Radiation Dosage, Radiation Injuries diagnostic imaging, Radiation Injuries mortality, Risk Assessment, Time Factors, Treatment Outcome, United Kingdom epidemiology, Vinblastine therapeutic use, Young Adult, Antineoplastic Combined Chemotherapy Protocols therapeutic use, Cardiovascular Diseases epidemiology, Chemoradiotherapy adverse effects, Chemoradiotherapy mortality, Hodgkin Disease therapy, Positron-Emission Tomography, Radiation Injuries epidemiology
- Abstract
Purpose: The contemporary management of early-stage Hodgkin lymphoma (ES-HL) involves balancing the risk of late adverse effects of radiotherapy against the increased risk of relapse if radiotherapy is omitted. This study provides information on the risk of radiation-related cardiovascular disease to help personalize the delivery of radiotherapy in ES-HL., Methods: We predicted 30-year absolute cardiovascular risk from chemotherapy and involved field radiotherapy in patients who were positron emission tomography (PET)-negative following three cycles of doxorubicin, bleomycin, vinblastine, and dacarbazine chemotherapy within a UK randomized trial of PET-directed therapy for ES-HL. Cardiac and carotid radiation doses and chemotherapy exposure were combined with established dose-response relationships and population-based mortality and incidence rates., Results: Average mean heart dose was 4.0 Gy (range 0.1-24.0 Gy) and average bilateral common carotid artery dose was 21.5 Gy (range 0.6-38.1 Gy), based on individualized cardiovascular dosimetry for 144 PET-negative patients receiving involved field radiotherapy. The average predicted 30-year radiation-related absolute excess overall cardiovascular mortality was 0.56% (range 0.01%-6.79%; < 0.5% in 67% of patients and > 1% in 15%), whereas average predicted 30-year excess incidence was 6.24% (range 0.31%-31.09%; < 5% in 58% of patients and > 10% in 24%). For cardiac disease, the average predicted 30-year radiation-related absolute excess mortality was 0.42% (0.79% with mediastinal involvement and 0.05% without) and for stroke, it was 0.14%., Conclusion: Predicted excess cardiovascular risk is small for most patients, so radiotherapy may provide net benefit. However, for a minority of patients receiving high doses of radiation to cardiovascular structures, it may be preferable to consider advanced radiotherapy techniques to reduce doses or to omit radiotherapy and accept the increased relapse risk. Individual assessment of cardiovascular and other risks before treatment would allow personalized decision making about radiotherapy in ES-HL., Competing Interests: Johanna RamrothEmployment: Gilead Sciences (I)Stock and Other Ownership Interests: Gilead Sciences Laura Clifton-HadleyResearch Funding: Various pharmaceutical companies Peter J. HoskinResearch Funding: Varian Medical Systems, Astellas Pharma, Bayer, Roche, Pfizer, Elekta John RadfordStock and Other Ownership Interests: AstraZeneca, ADC TherapeuticsHonoraria: Takeda, ADC TherapeuticsConsulting or Advisory Role: Takeda, Seattle Genetics, NovartisSpeakers' Bureau: Takeda, Seattle Genetics, NovartisResearch Funding: TakedaTravel, Accommodations, Expenses: Takeda, ADC Therapeutics Tim IllidgeConsulting or Advisory Role: Takeda, Nordic NanovectorSpeakers' Bureau: Takeda, Bristol Myers Squibb, RocheResearch Funding: AstraZeneca/MedImmune, MSD OncologyTravel, Accommodations, Expenses: RocheNo other potential conflicts of interest were reported.
- Published
- 2021
- Full Text
- View/download PDF
42. Exposure of the oesophagus in breast cancer radiotherapy: A systematic review of oesophagus doses published 2010-2020.
- Author
-
Duane FK, Kerr A, Wang Z, Darby SC, Ntentas G, Aznar MC, and Taylor CW
- Subjects
- Breast, Esophagus, Female, Humans, Radiotherapy Dosage, Radiotherapy Planning, Computer-Assisted, Breast Neoplasms radiotherapy, Radiotherapy, Intensity-Modulated, Thoracic Wall
- Abstract
Background and Purpose: Breast cancer radiotherapy can increase the risk of subsequent primary oesophageal cancer, with risk increasing according to oesophagus radiation dose. We describe oesophagus exposure from modern breast cancer regimens and discuss the risks of oesophageal cancer for women irradiated recently., Materials and Methods: A systematic review was undertaken of oesophagus doses from breast cancer radiotherapy regimens published during 2010-2020. Mean and maximum oesophagus doses were described for different target regions irradiated and different radiotherapy techniques., Results: In 112 published regimens from 18 countries, oesophagus doses varied with target region. For partial breast irradiation, average mean oesophagus dose was 0.2 Gy (range 0.1-0.4) in four regimens; maximum dose was not reported. For breast or chest wall radiotherapy, average oesophagus doses were mean 1.8 Gy (range 0.1-10.4) in 24 regimens and maximum 6.7 Gy (range 0.4-14.3) in seven regimens. For radiotherapy including a nodal region, average oesophagus doses were higher: mean 11.4 Gy (range <0.1-29.3) in 61 regimens and maximum 34.4 Gy (range 3.4-51.3) in 55 regimens. Average mean oesophagus doses were >10 Gy for intensity modulated nodal radiotherapy, but lower for other node techniques., Conclusions: Mean oesophagus doses from partial breast and breast/chest wall regimens were usually less than 2 Gy, hence radiation-risks will be very small. However, for radiotherapy including lymph nodes, average mean oesophagus dose of 11.4 Gy may nearly double oesophageal cancer risk. Consideration of oesophageal exposure during nodal radiotherapy planning may reduce the risks of radiation-related oesophageal cancer for women irradiated today., Competing Interests: Conflicts of interest None., (Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
43. The role of motion management and position verification in lymphoma radiotherapy.
- Author
-
Aznar M, Ntentas G, Enmark M, Flampouri S, Meidhal Petersen P, Ricardi U, and Levis M
- Subjects
- Breath Holding, Humans, Lymphoma diagnostic imaging, Motion, Lymphoma radiotherapy, Organs at Risk diagnostic imaging, Positron Emission Tomography Computed Tomography methods, Radiotherapy Planning, Computer-Assisted methods, Tomography, X-Ray Computed methods
- Abstract
In the last decades, the substantial technical progress in radiation oncology offered the opportunity for more accurate planning and delivery of treatment. At the same time, the evolution of systemic treatment and the advent of modern diagnostic tools allowed for more accurate staging and consequently a safe reduction of radiotherapy (RT) target volumes and RT doses in the treatment of lymphomas. As a result, incidental irradiation of organs at risk was reduced, with a consequent reduction of severe late toxicity in long-term lymphoma survivors. Nevertheless, these innovations warrant that professionals pay attention to concurrently ensure precise planning and dose delivery to the target volume and safe sparing of the organs at risk. In particular, target and organ motion should be carefully managed in order to prevent any compromise of treatment efficacy. Several aspects should be taken into account during the treatment pathway to minimise uncertainties and to apply a valuable motion management strategy, when needed. These include: reliable image registration between diagnostic and planning radiologic exams to facilitate the contouring process, image guidance to limit positioning uncertainties and to ensure the accuracy of dose delivery and management of lung motion through procedures of respiratory gating and breath control. In this review, we will cover the current clinical approaches to minimise these uncertainties in patients treated with modern RT techniques, with a particular focus on mediastinal lymphoma. In addition, since uncertainties have a different impact on the dose deposition of protons compared to conventional x-rays, the role of motion management and position verification in proton beam therapy (PBT) will be discussed in a separate section.
- Published
- 2021
- Full Text
- View/download PDF
44. Dose-response relationships for radiation-related heart disease: Impact of uncertainties in cardiac dose reconstruction.
- Author
-
Ntentas G, Darby SC, Aznar MC, Hodgson DC, Howell RM, Maraldo MV, Ahmed S, Ng A, Aleman BMP, and Cutter DJ
- Subjects
- Child, Dose-Response Relationship, Radiation, Heart, Humans, Uncertainty, Heart Diseases etiology, Radiation Injuries epidemiology, Radiation Injuries etiology
- Abstract
Background and Purpose: Radiation-related heart disease (RRHD) can occur many decades after thoracic radiotherapy for Hodgkin lymphoma (HL) or childhood cancer (CC). To quantify the likely risk of RRHD for patients treated today, dose-response relationships derived from patients treated in previous decades are used. Publications presenting these dose-response relationships usually include estimates of uncertainties in the risks but ignore the effect of uncertainties in the reconstructed cardiac doses., Materials/methods: We assessed the systematic and random uncertainties in the reconstructed doses for published dose-response relationships for RRHD risk in survivors of HL or CC. Using the same reconstruction methods as were used in the original publications, we reconstructed mean heart doses and, wherever possible, mean left-ventricular doses for an independent case-series of test patients. These patients had known, CT-based, cardiac doses which were compared with the reconstructed doses to estimate the magnitude of the uncertainties and their effect on the dose-response relationships., Results: For all five reconstruction methods the relationship between reconstructed and CT-based doses was linear. For all but the simplest reconstruction method, the dose uncertainties were moderate, the effect of the systematic uncertainty on the dose-response relationships was less than 10%, and the effects of random uncertainty were small except at the highest doses., Conclusions: These results increase confidence in the published dose-response relationships for the risk of RRHD in HL and CC survivors. This may encourage doctors to use these dose-response relationships when estimating individualised risks for patients-an important aspect of personalising radiotherapy treatments today., (Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
45. Risk of heart failure in survivors of Hodgkin lymphoma: effects of cardiac exposure to radiation and anthracyclines.
- Author
-
van Nimwegen FA, Ntentas G, Darby SC, Schaapveld M, Hauptmann M, Lugtenburg PJ, Janus CPM, Daniels L, van Leeuwen FE, Cutter DJ, and Aleman BMP
- Subjects
- Adolescent, Adult, Anthracyclines adverse effects, Case-Control Studies, Child, Child, Preschool, Dose-Response Relationship, Radiation, Female, Gamma Rays adverse effects, Heart Failure etiology, Heart Failure mortality, Hodgkin Disease drug therapy, Hodgkin Disease mortality, Hodgkin Disease radiotherapy, Humans, Male, Middle Aged, Prognosis, Prospective Studies, Risk Assessment, Risk Factors, Survival Analysis, Survivors, Anthracyclines administration & dosage, Gamma Rays therapeutic use, Heart Failure diagnosis, Hodgkin Disease diagnosis
- Abstract
Hodgkin lymphoma (HL) survivors treated with radiotherapy and/or chemotherapy are known to have increased risks of heart failure (HF), but a radiation dose-response relationship has not previously been derived. A case-control study, nested in a cohort of 2617 five-year survivors of HL diagnosed before age 51 years during 1965 to 1995, was conducted. Cases (n = 91) had moderate or severe HF as their first cardiovascular diagnosis. Controls (n = 278) were matched to cases on age, sex, and HL diagnosis date. Treatment and follow-up information were abstracted from medical records. Mean heart doses and mean left ventricular doses (MLVD) were estimated by reconstruction of individual treatments on representative computed tomography datasets. Average MLVD was 16.7 Gy for cases and 13.8 Gy for controls ( P
difference = .003). HF rate increased with MLVD: relative to 0 Gy, HF rates following MVLD of 1-15, 16-20, 21-25, and ≥26 Gy were 1.27, 1.65, 3.84, and 4.39, respectively ( Ptrend < .001). Anthracycline-containing chemotherapy increased HF rate by a factor of 2.83 (95% CI: 1.43-5.59), and there was no significant interaction with MLVD ( Pinteraction = .09). Twenty-five-year cumulative risks of HF following MLVDs of 0-15 Gy, 16-20 Gy, and ≥21 Gy were 4.4%, 6.2%, and 13.3%, respectively, in patients treated without anthracycline-containing chemotherapy, and 11.2%, 15.9%, and 32.9%, respectively, in patients treated with anthracyclines. We have derived quantitative estimates of HF risk in patients treated for HL following radiotherapy with or without anthracycline-containing chemotherapy. Our results enable estimation of HF risk for patients before treatment, during radiotherapy planning, and during follow-up., (© 2017 by The American Society of Hematology.)- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.