15 results on '"Nordenfelt S"'
Search Results
2. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations
- Author
-
Mallick, S, Li, H, Lipson, M, Mathieson, I, Gymrek, M, Racimo, F, Zhao, M, Chennagiri, N, Nordenfelt, S, Tandon, A, Skoglund, P, Lazaridis, I, Sankararaman, S, Fu, Q, Rohland, N, Renaud, G, Erlich, Y, Willems, T, Gallo, C, Spence, JP, Song, YS, Poletti, G, Balloux, F, van Driem, G, de Knijff, P, Romero, IG, Jha, AR, Behar, DM, Bravi, CM, Capelli, C, Hervig, T, Moreno-Estrada, A, Posukh, OL, Balanovska, E, Balanovsky, O, Karachanak-Yankova, S, Sahakyan, H, Toncheva, D, Yepiskoposyan, L, Tyler-Smith, C, Xue, Y, Abdullah, MS, Ruiz-Linares, A, Beall, CM, Di Rienzo, A, Jeong, C, Starikovskaya, EB, Metspalu, E, Parik, J, Villems, R, Henn, BM, Hodoglugil, U, Mahley, R, Sajantila, A, Stamatoyannopoulos, G, Wee, JTS, Khusainova, R, Khusnutdinova, E, Litvinov, S, Ayodo, G, Comas, D, Hammer, MF, Kivisild, T, Klitz, W, Winkler, CA, Labuda, D, Bamshad, M, Jorde, LB, Tishkoff, SA, Watkins, WS, Metspalu, M, Dryomov, S, Sukernik, R, Singh, L, Thangaraj, K, Paeaebo, S, Kelso, J, Patterson, N, Reich, D, Mallick, S, Li, H, Lipson, M, Mathieson, I, Gymrek, M, Racimo, F, Zhao, M, Chennagiri, N, Nordenfelt, S, Tandon, A, Skoglund, P, Lazaridis, I, Sankararaman, S, Fu, Q, Rohland, N, Renaud, G, Erlich, Y, Willems, T, Gallo, C, Spence, JP, Song, YS, Poletti, G, Balloux, F, van Driem, G, de Knijff, P, Romero, IG, Jha, AR, Behar, DM, Bravi, CM, Capelli, C, Hervig, T, Moreno-Estrada, A, Posukh, OL, Balanovska, E, Balanovsky, O, Karachanak-Yankova, S, Sahakyan, H, Toncheva, D, Yepiskoposyan, L, Tyler-Smith, C, Xue, Y, Abdullah, MS, Ruiz-Linares, A, Beall, CM, Di Rienzo, A, Jeong, C, Starikovskaya, EB, Metspalu, E, Parik, J, Villems, R, Henn, BM, Hodoglugil, U, Mahley, R, Sajantila, A, Stamatoyannopoulos, G, Wee, JTS, Khusainova, R, Khusnutdinova, E, Litvinov, S, Ayodo, G, Comas, D, Hammer, MF, Kivisild, T, Klitz, W, Winkler, CA, Labuda, D, Bamshad, M, Jorde, LB, Tishkoff, SA, Watkins, WS, Metspalu, M, Dryomov, S, Sukernik, R, Singh, L, Thangaraj, K, Paeaebo, S, Kelso, J, Patterson, N, and Reich, D
- Abstract
Here we report the Simons Genome Diversity Project data set: high quality genomes from 300 individuals from 142 diverse populations. These genomes include at least 5.8 million base pairs that are not present in the human reference genome. Our analysis reveals key features of the landscape of human genome variation, including that the rate of accumulation of mutations has accelerated by about 5% in non-Africans compared to Africans since divergence. We show that the ancestors of some pairs of present-day human populations were substantially separated by 100,000 years ago, well before the archaeologically attested onset of behavioural modernity. We also demonstrate that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans; instead, their modern human ancestry is consistent with coming from the same source as that of other non-Africans.
- Published
- 2016
3. Ancient human genomes suggest three ancestral populations for present-day Europeans
- Author
-
Lazaridis, I, Patterson, N, Mittnik, A, Renaud, G, Mallick, S, Kirsanow, K, Sudmant, Ph, Schraiber, Jg, Castellano, S, Lipson, M, Berger, B, Economou, C, Bollongino, R, Fu, Q, Bos, Ki, Nordenfelt, S, Li, H, De Filippo, C, Prüfer, K, Sawyer, S, Posth, C, Haak, W, Hallgren, F, Fornander, E, Rohland, N, Delsate, D, Francken, M, Guinet, Jm, Wahl, J, Ayodo, G, Babiker, Ha, Bailliet, G, Balanovska, E, Balanovsky, O, Bedoya, G, Ben Ami, H, Bene, J, Berrada, F, Bravi, Cm, Brisighelli, Francesca, Busby, Gb, Cali, F, Churnosov, M, Cole, De, Corach, D, Damba, L, Van Driem, G, Dryomov, S, Fedorova, Sa, Gallego Romero, I, Gubina, M, Hammer, M, Henn, Bm, Hervig, T, Hodoglugil, U, Jha, Ar, Karachanak Yankova, S, Khusainova, R, Khusnutdinova, E, Kittles, R, Kivisild, T, Kučinskas, V, Kushniarevich, A, Laredj, L, Litvinov, S, Loukidis, T, Mahley, Rw, Melegh, B, Metspalu, E, Molina, J, Mountain, J, Näkkäläjärvi, K, Nesheva, D, Nyambo, T, Osipova, L, Platonov, F, Posukh, O, Romano, V, Rothhammer, F, Rudan, I, Ruizbakiev, R, Sahakyan, H, Sajantila, A, Salas, A, Starikovskaya, Eb, Tarekegn, A, Toncheva, D, Turdikulova, S, Utevska, O, Vasquez, R, Villena, M, Voevoda, M, Winkler, Ca, Yepiskoposyan, L, Zalloua, P, Zemunik, T, Cooper, A, Capelli, C, Ruiz Linares, A, Tishkoff, Sa Et Al, Brisighelli, Francesca (ORCID:0000-0001-5469-4413), Lazaridis, I, Patterson, N, Mittnik, A, Renaud, G, Mallick, S, Kirsanow, K, Sudmant, Ph, Schraiber, Jg, Castellano, S, Lipson, M, Berger, B, Economou, C, Bollongino, R, Fu, Q, Bos, Ki, Nordenfelt, S, Li, H, De Filippo, C, Prüfer, K, Sawyer, S, Posth, C, Haak, W, Hallgren, F, Fornander, E, Rohland, N, Delsate, D, Francken, M, Guinet, Jm, Wahl, J, Ayodo, G, Babiker, Ha, Bailliet, G, Balanovska, E, Balanovsky, O, Bedoya, G, Ben Ami, H, Bene, J, Berrada, F, Bravi, Cm, Brisighelli, Francesca, Busby, Gb, Cali, F, Churnosov, M, Cole, De, Corach, D, Damba, L, Van Driem, G, Dryomov, S, Fedorova, Sa, Gallego Romero, I, Gubina, M, Hammer, M, Henn, Bm, Hervig, T, Hodoglugil, U, Jha, Ar, Karachanak Yankova, S, Khusainova, R, Khusnutdinova, E, Kittles, R, Kivisild, T, Kučinskas, V, Kushniarevich, A, Laredj, L, Litvinov, S, Loukidis, T, Mahley, Rw, Melegh, B, Metspalu, E, Molina, J, Mountain, J, Näkkäläjärvi, K, Nesheva, D, Nyambo, T, Osipova, L, Platonov, F, Posukh, O, Romano, V, Rothhammer, F, Rudan, I, Ruizbakiev, R, Sahakyan, H, Sajantila, A, Salas, A, Starikovskaya, Eb, Tarekegn, A, Toncheva, D, Turdikulova, S, Utevska, O, Vasquez, R, Villena, M, Voevoda, M, Winkler, Ca, Yepiskoposyan, L, Zalloua, P, Zemunik, T, Cooper, A, Capelli, C, Ruiz Linares, A, Tishkoff, Sa Et Al, and Brisighelli, Francesca (ORCID:0000-0001-5469-4413)
- Abstract
We sequenced the genomes of a ∼7,000-year-old farmer from Germany and eight ∼8,000-year-old hunter-gatherers from Luxembourg and Sweden. We analysed these and other ancient genomes with 2,345 contemporary humans to show that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, who contributed ancestry to all Europeans but not to Near Easterners; ancient north Eurasians related to Upper Palaeolithic Siberians, who contributed to both Europeans and Near Easterners; and early European farmers, who were mainly of Near Eastern origin but also harboured west European hunter-gatherer related ancestry. We model these populations' deep relationships and show that early European farmers had ∼44% ancestry from a 'basal Eurasian' population that split before the diversification of other non-African lineages.
- Published
- 2014
4. Ancient human genomes suggest three ancestral populations for present-day Europeans
- Author
-
Joanna L. Mountain, Michael F. Hammer, Ruslan Ruizbakiev, Cesare de Filippo, Kumarasamy Thangaraj, David E. C. Cole, Haim Ben-Ami, Leila Laredj, Mark Lipson, Jüri Parik, Valentino Romano, Andres Ruiz-Linares, Fouad Berrada, Dominique Delsate, Ugur Hodoglugil, Antti Sajantila, Olga Utevska, Shahlo Turdikulova, Tor Hervig, Ludmila P. Osipova, Hovhannes Sahakyan, Robert W. Mahley, Ramiro Barrantes, Kirsten I. Bos, Stanislav Dryomov, Peter H. Sudmant, Nadin Rohland, Heng Li, Gabriel Renaud, Mikhail Voevoda, Claudio M. Bravi, Jean-Michel Guinet, Rem I. Sukernik, Joachim Wahl, Matthias Meyer, Christos Economou, Kay Prüfer, Graciela Bailliet, Mait Metspalu, Mikhail Churnosov, Iosif Lazaridis, Johannes Krause, Bonnie Berger, Levon Yepiskoposyan, Francesca Brisighelli, Francesco Calì, Irene Gallego Romero, Oleg Balanovsky, George Ayodo, Alan Cooper, Alissa Mittnik, Julio Molina, George van Driem, Jean-Michel Dugoujon, Larissa Damba, Fedor Platonov, Nick Patterson, David Reich, Thomas B. Nyambo, David Comas, Olga L. Posukh, Béla Melegh, Draga Toncheva, Alena Kushniarevich, Brenna M. Henn, Montgomery Slatkin, René Vasquez, Elena B. Starikovskaya, Joachim Burger, Ayele Tarekegn, Tatijana Zemunik, Ene Metspalu, Sena Karachanak-Yankova, Lalji Singh, Wolfgang Haak, Susanna Sawyer, Rick A. Kittles, Cheryl A. Winkler, Svante Pääbo, Francisco Rothhammer, Marina Gubina, Pierre Zalloua, Aashish R. Jha, Swapan Mallick, Sergi Castellano, Qiaomei Fu, Desislava Nesheva, Sergey Litvinov, Ingrida Uktveryte, Michael Francken, Cosimo Posth, Theologos Loukidis, Cristian Capelli, Janet Kelso, Sarah A. Tishkoff, Toomas Kivisild, Mark G. Thomas, Elin Fornander, Mercedes Villena, Fredrik Hallgren, Vaidutis Kučinskas, Daniel Corach, George B.J. Busby, Judit Bene, William Klitz, Hamza A. Babiker, Karola Kirsanow, Ruth Bollongino, Rita Khusainova, Evan E. Eichler, Sardana A. Fedorova, Klemetti Näkkäläjärvi, Igor Rudan, Susanne Nordenfelt, Joshua G. Schraiber, Elena Balanovska, Antonio Salas, Richard Villems, Gabriel Bedoya, Elza Khusnutdinova, Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology. Department of Mathematics, Lipson, Mark, Berger Leighton, Bonnie, Lazaridis,I, Patterson,P, Mittnik,A, Renaud,G, Mallick,S, Kirsanow,K, Sudmant,PH, Schraiber,JG, Castellano,S, Lipson,M, Berger,B, Economou,C, Bollongino,R, Fu,Q, Bos,KI, Nordenfelt,S, Li,H, De Filippo,C, Pruefer,K, Sawyer, Posth,C, Haak1,H, Hallgren,F, Fornander,E, Rohland,N, Delsate,D, Francken,M, Guinet,JM, Wah,J, Ayodo,G, Babiker,HA, Bailliet,G, Balanovska,E, Balanovsky,O, Barrantes,R, Bedoya,G, Ben-Ami,H, Bene,J, Berrada,F, Bravi,CM, Brisighelli,F, Busby,GBJ, Cali,F, Churnosov,M, Cole,DEC, Corach,D, Damba,L, van Driem,G, Dryomov,S, Dugoujon,JM, Fedorova,SA, Gallego Romero,I, Gubina,M, Hammer,M, Henn,BM, Hervig,T, Hodoglugi,U, Jha,AR, Karachanak-Yankova,S, Khusainova,R, Khusnutdinova,E, Kittles,R:Kivisild,T, Klitz,W, Kucˇinskas,V, Kushniarevich,A, Laredj,L, Litvinov,S, Loukidis,T, Mahley,RW, Melegh,B, Metspalu,E, Molina,J, Mountain,J, Na¨kka¨la¨ja¨rvi,K, Nesheva,D, Nyambo,T, Osipova,L, Parik,J, Platonov,F, Posukh,O, Romano,V, Rothhammer,F, Rudan,I, Ruizbakiev,R, Sahakyan,H, Sajantila,A, Salas,A, Starikovskaya,EB, Tarekegn,A, Toncheva,D, Turdikulova,S, Uktveryte,I, Utevska,O, Vasquez,R, Villena,M, Voevoda,M, Winkler,CA, Yepiskoposyan,L, Zalloua,P, Zemunik,T, Cooper, Capelli,C, Thomas,MG, Ruiz-inares,A, Tishkoff,SA, Singh,L, Thangaraj,K, Villems,R, Comas,D, Sukernik,R, Metspalu,M, Meyer,M, Eichler,EE, Burger,J, Slatkin,M, Pa¨a¨bo,S, Kelso,J, Reich,D, and Krause,J
- Subjects
History ,Neanderthal ,Biología ,Population Dynamics ,Present day ,Genoma humà ,Genome ,purl.org/becyt/ford/1 [https] ,Basal (phylogenetics) ,Settore BIO/13 - Biologia Applicata ,History, Ancient ,Genetics ,Principal Component Analysis ,education.field_of_study ,0303 health sciences ,Multidisciplinary ,Ancient DNA ,030305 genetics & heredity ,food and beverages ,Agriculture ,Genomics ,3. Good health ,Europe ,Workforce ,CIENCIAS NATURALES Y EXACTAS ,Human ,Archaeogenetics ,Asia ,Lineage (genetic) ,EUROPE ,Otras Ciencias Biológicas ,European Continental Ancestry Group ,Population ,Settore BIO/08 - ANTROPOLOGIA ,evolution ,Europeans ,Biology ,Article ,White People ,Ancient ,Genètica de poblacions humanes ,Human origins ,Ciencias Biológicas ,03 medical and health sciences ,HUMAN ORIGINS ,biology.animal ,Humans ,ANCIENT DNA ,purl.org/becyt/ford/1.6 [https] ,education ,Quantitative Biology - Populations and Evolution ,Denisovan ,030304 developmental biology ,Genetic diversity ,ancient DNA, modern DNA, Europeans, prehistory ,Genome, Human ,Populations and Evolution (q-bio.PE) ,biology.organism_classification ,Evolutionary biology ,FOS: Biological sciences ,Upper Paleolithic ,Human genome ,GENOMICS - Abstract
We sequenced the genomes of a ∼7,000-year-old farmer from Germany and eight ∼8,000-year-old hunter-gatherers from Luxembourg and Sweden. We analysed these and other ancient genomes1,2,3,4 with 2,345 contemporary humans to show that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, who contributed ancestry to all Europeans but not to Near Easterners; ancient north Eurasians related to Upper Palaeolithic Siberians3, who contributed to both Europeans and Near Easterners; and early European farmers, who were mainly of Near Eastern origin but also harboured west European hunter-gatherer related ancestry. We model these populations’ deep relationships and show that early European farmers had ∼44% ancestry from a ‘basal Eurasian’ population that split before the diversification of other non-African lineages., Instituto Multidisciplinario de Biología Celular
- Published
- 2014
5. Risk Factors for Primary Bone Cancer After Childhood Cancer: A PanCare Childhood and Adolescent Cancer Survivor Care and Follow-Up Studies Nested Case-Control Study.
- Author
-
Reulen RC, Winter DL, Diallo I, Veres C, Llanas D, Allodji RS, Bagnasco F, Bárdi E, Feijen EAM, Alessi D, Fidler-Benaoudia MM, Høgsholt S, Teepen JC, Linge H, Haddy N, Byrne J, Debiche G, Grabow D, Gudmundsdottir T, Fauchery R, Zrafi W, Michel G, Øfstaas H, Kaatsch P, Vu-Bezin G, Jenkinson H, Kaiser M, Skinner R, Cole T, Waespe N, Sommer G, Nordenfelt S, Jankovic M, Lähteenmäki Taalas T, Maule MM, van der Pal HJH, Ronckers CM, van Leeuwen FE, Kok JL, Terenziani M, Winther Gunnes M, Wiebe T, Sacerdote C, Jakab Z, Haupt R, Lähteenmäki PM, Zadravec Zaletel L, Kuehni CE, Winther JF, Kremer LCM, Hjorth L, de Vathaire F, and Hawkins MM
- Subjects
- Child, Humans, Adolescent, Follow-Up Studies, Ifosfamide, Case-Control Studies, Procarbazine, Risk Factors, Cyclophosphamide, Alkylating Agents, Dose-Response Relationship, Radiation, Cancer Survivors, Bone Neoplasms, Osteosarcoma epidemiology, Neoplasms, Second Primary chemically induced, Neoplasms, Second Primary epidemiology
- Abstract
Purpose: Radiation to the bone and exposure to alkylating agents increases the risk of bone cancer among survivors of childhood cancer, but there is uncertainty regarding the risks of bone tissue radiation doses below 10 Gy and the dose-response relationship for specific types of chemotherapy., Methods: Twelve European countries contributed 228 cases and 228 matched controls to a nested case-control study within a cohort of 69,460 5-year survivors of childhood cancer. Odds ratios (ORs) of developing bone cancer for different levels of cumulative radiation exposure and cumulative doses of specific types of chemotherapy were calculated. Excess ORs were calculated to investigate the shape and extent of any dose-response relationship., Results: The OR associated with bone tissue exposed to 1-4 Gy was 4.8-fold (95% CI, 1.2 to 19.6) and to 5-9 Gy was 9.6-fold (95% CI, 2.4 to 37.4) compared with unexposed bone tissue. The OR increased linearly with increasing dose of radiation ( P
trend < .001) up to 78-fold (95% CI, 9.2 to 669.9) for doses of ≥40 Gy. For cumulative alkylating agent doses of 10,000-19,999 and ≥20,000 mg/m2 , the radiation-adjusted ORs were 7.1 (95% CI, 2.2 to 22.8) and 8.3 (95% CI, 2.8 to 24.4), respectively, with independent contributions from each of procarbazine, ifosfamide, and cyclophosphamide. Other cytotoxics were not associated with bone cancer., Conclusion: To our knowledge, we demonstrate-for the first time-that the risk of bone cancer is increased 5- to 10-fold after exposure of bone tissue to cumulative radiation doses of 1-9 Gy. Alkylating agents exceeding 10,000 mg/m2 increase the risk 7- to 8-fold, particularly following procarbazine, ifosfamide, and cyclophosphamide. These substantially elevated risks should be used to develop/update clinical follow-up guidelines and survivorship care plans.- Published
- 2023
- Full Text
- View/download PDF
6. Publisher Correction: Ancient DNA from Chalcolithic Israel reveals the role of population mixture in cultural transformation.
- Author
-
Harney É, May H, Shalem D, Rohland N, Mallick S, Lazaridis I, Sarig R, Stewardson K, Nordenfelt S, Patterson N, Hershkovitz I, and Reich D
- Abstract
In the original version of this Article, references in the format 'First author et al.' were inappropriately deleted. These errors have been corrected in the PDF and HTML versions of the Article.
- Published
- 2018
- Full Text
- View/download PDF
7. Ancient DNA from Chalcolithic Israel reveals the role of population mixture in cultural transformation.
- Author
-
Harney É, May H, Shalem D, Rohland N, Mallick S, Lazaridis I, Sarig R, Stewardson K, Nordenfelt S, Patterson N, Hershkovitz I, and Reich D
- Subjects
- Caves, Genetic Heterogeneity, Genetic Variation, Humans, Israel, Mutation genetics, Culture, DNA, Ancient analysis, Genetics, Population, Geologic Sediments
- Abstract
The material culture of the Late Chalcolithic period in the southern Levant (4500-3900/3800 BCE) is qualitatively distinct from previous and subsequent periods. Here, to test the hypothesis that the advent and decline of this culture was influenced by movements of people, we generated genome-wide ancient DNA from 22 individuals from Peqi'in Cave, Israel. These individuals were part of a homogeneous population that can be modeled as deriving ~57% of its ancestry from groups related to those of the local Levant Neolithic, ~17% from groups related to those of the Iran Chalcolithic, and ~26% from groups related to those of the Anatolian Neolithic. The Peqi'in population also appears to have contributed differently to later Bronze Age groups, one of which we show cannot plausibly have descended from the same population as that of Peqi'in Cave. These results provide an example of how population movements propelled cultural changes in the deep past.
- Published
- 2018
- Full Text
- View/download PDF
8. Parallel palaeogenomic transects reveal complex genetic history of early European farmers.
- Author
-
Lipson M, Szécsényi-Nagy A, Mallick S, Pósa A, Stégmár B, Keerl V, Rohland N, Stewardson K, Ferry M, Michel M, Oppenheimer J, Broomandkhoshbacht N, Harney E, Nordenfelt S, Llamas B, Gusztáv Mende B, Köhler K, Oross K, Bondár M, Marton T, Osztás A, Jakucs J, Paluch T, Horváth F, Csengeri P, Koós J, Sebők K, Anders A, Raczky P, Regenye J, Barna JP, Fábián S, Serlegi G, Toldi Z, Gyöngyvér Nagy E, Dani J, Molnár E, Pálfi G, Márk L, Melegh B, Bánfai Z, Domboróczki L, Fernández-Eraso J, Antonio Mujika-Alustiza J, Alonso Fernández C, Jiménez Echevarría J, Bollongino R, Orschiedt J, Schierhold K, Meller H, Cooper A, Burger J, Bánffy E, Alt KW, Lalueza-Fox C, Haak W, and Reich D
- Subjects
- DNA, Ancient analysis, Datasets as Topic, Female, Germany, History, Ancient, Humans, Hungary, Male, Population Dynamics, Spain, Spatio-Temporal Analysis, Farmers history, Gene Flow genetics, Genetic Variation, Human Migration history
- Abstract
Ancient DNA studies have established that Neolithic European populations were descended from Anatolian migrants who received a limited amount of admixture from resident hunter-gatherers. Many open questions remain, however, about the spatial and temporal dynamics of population interactions and admixture during the Neolithic period. Here we investigate the population dynamics of Neolithization across Europe using a high-resolution genome-wide ancient DNA dataset with a total of 180 samples, of which 130 are newly reported here, from the Neolithic and Chalcolithic periods of Hungary (6000-2900 bc, n = 100), Germany (5500-3000 bc, n = 42) and Spain (5500-2200 bc, n = 38). We find that genetic diversity was shaped predominantly by local processes, with varied sources and proportions of hunter-gatherer ancestry among the three regions and through time. Admixture between groups with different ancestry profiles was pervasive and resulted in observable population transformation across almost all cultural transitions. Our results shed new light on the ways in which gene flow reshaped European populations throughout the Neolithic period and demonstrate the potential of time-series-based sampling and modelling approaches to elucidate multiple dimensions of historical population interactions.
- Published
- 2017
- Full Text
- View/download PDF
9. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations.
- Author
-
Mallick S, Li H, Lipson M, Mathieson I, Gymrek M, Racimo F, Zhao M, Chennagiri N, Nordenfelt S, Tandon A, Skoglund P, Lazaridis I, Sankararaman S, Fu Q, Rohland N, Renaud G, Erlich Y, Willems T, Gallo C, Spence JP, Song YS, Poletti G, Balloux F, van Driem G, de Knijff P, Romero IG, Jha AR, Behar DM, Bravi CM, Capelli C, Hervig T, Moreno-Estrada A, Posukh OL, Balanovska E, Balanovsky O, Karachanak-Yankova S, Sahakyan H, Toncheva D, Yepiskoposyan L, Tyler-Smith C, Xue Y, Abdullah MS, Ruiz-Linares A, Beall CM, Di Rienzo A, Jeong C, Starikovskaya EB, Metspalu E, Parik J, Villems R, Henn BM, Hodoglugil U, Mahley R, Sajantila A, Stamatoyannopoulos G, Wee JT, Khusainova R, Khusnutdinova E, Litvinov S, Ayodo G, Comas D, Hammer MF, Kivisild T, Klitz W, Winkler CA, Labuda D, Bamshad M, Jorde LB, Tishkoff SA, Watkins WS, Metspalu M, Dryomov S, Sukernik R, Singh L, Thangaraj K, Pääbo S, Kelso J, Patterson N, and Reich D
- Subjects
- Animals, Australia, Black People genetics, Datasets as Topic, Genetics, Population, History, Ancient, Human Migration history, Humans, Neanderthals genetics, New Guinea, Sequence Analysis, DNA, Species Specificity, Time Factors, Genetic Variation genetics, Genome, Human genetics, Genomics, Mutation Rate, Phylogeny, Racial Groups genetics
- Abstract
Here we report the Simons Genome Diversity Project data set: high quality genomes from 300 individuals from 142 diverse populations. These genomes include at least 5.8 million base pairs that are not present in the human reference genome. Our analysis reveals key features of the landscape of human genome variation, including that the rate of accumulation of mutations has accelerated by about 5% in non-Africans compared to Africans since divergence. We show that the ancestors of some pairs of present-day human populations were substantially separated by 100,000 years ago, well before the archaeologically attested onset of behavioural modernity. We also demonstrate that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans; instead, their modern human ancestry is consistent with coming from the same source as that of other non-Africans.
- Published
- 2016
- Full Text
- View/download PDF
10. Ancient mitochondrial DNA provides high-resolution time scale of the peopling of the Americas.
- Author
-
Llamas B, Fehren-Schmitz L, Valverde G, Soubrier J, Mallick S, Rohland N, Nordenfelt S, Valdiosera C, Richards SM, Rohrlach A, Romero MI, Espinoza IF, Cagigao ET, Jiménez LW, Makowski K, Reyna IS, Lory JM, Torrez JA, Rivera MA, Burger RL, Ceruti MC, Reinhard J, Wells RS, Politis G, Santoro CM, Standen VG, Smith C, Reich D, Ho SY, Cooper A, and Haak W
- Subjects
- Americas, Archaeology, Bayes Theorem, Chile, DNA, Ancient, Emigration and Immigration, Genome, Mitochondrial genetics, Haplotypes genetics, Humans, Indians, North American genetics, South America, DNA, Mitochondrial genetics, Genetic Variation, Genetics, Population, Phylogeny
- Abstract
The exact timing, route, and process of the initial peopling of the Americas remains uncertain despite much research. Archaeological evidence indicates the presence of humans as far as southern Chile by 14.6 thousand years ago (ka), shortly after the Pleistocene ice sheets blocking access from eastern Beringia began to retreat. Genetic estimates of the timing and route of entry have been constrained by the lack of suitable calibration points and low genetic diversity of Native Americans. We sequenced 92 whole mitochondrial genomes from pre-Columbian South American skeletons dating from 8.6 to 0.5 ka, allowing a detailed, temporally calibrated reconstruction of the peopling of the Americas in a Bayesian coalescent analysis. The data suggest that a small population entered the Americas via a coastal route around 16.0 ka, following previous isolation in eastern Beringia for ~2.4 to 9 thousand years after separation from eastern Siberian populations. Following a rapid movement throughout the Americas, limited gene flow in South America resulted in a marked phylogeographic structure of populations, which persisted through time. All of the ancient mitochondrial lineages detected in this study were absent from modern data sets, suggesting a high extinction rate. To investigate this further, we applied a novel principal components multiple logistic regression test to Bayesian serial coalescent simulations. The analysis supported a scenario in which European colonization caused a substantial loss of pre-Columbian lineages.
- Published
- 2016
- Full Text
- View/download PDF
11. Global diversity, population stratification, and selection of human copy-number variation.
- Author
-
Sudmant PH, Mallick S, Nelson BJ, Hormozdiari F, Krumm N, Huddleston J, Coe BP, Baker C, Nordenfelt S, Bamshad M, Jorde LB, Posukh OL, Sahakyan H, Watkins WS, Yepiskoposyan L, Abdullah MS, Bravi CM, Capelli C, Hervig T, Wee JT, Tyler-Smith C, van Driem G, Romero IG, Jha AR, Karachanak-Yankova S, Toncheva D, Comas D, Henn B, Kivisild T, Ruiz-Linares A, Sajantila A, Metspalu E, Parik J, Villems R, Starikovskaya EB, Ayodo G, Beall CM, Di Rienzo A, Hammer MF, Khusainova R, Khusnutdinova E, Klitz W, Winkler C, Labuda D, Metspalu M, Tishkoff SA, Dryomov S, Sukernik R, Patterson N, Reich D, and Eichler EE
- Subjects
- Animals, Black People classification, Black People genetics, Hominidae genetics, Humans, Native Hawaiian or Pacific Islander classification, Native Hawaiian or Pacific Islander genetics, Phylogeny, Polymorphism, Single Nucleotide, Selection, Genetic, DNA Copy Number Variations, Evolution, Molecular, Gene Duplication, Genome, Human genetics, Population genetics, Sequence Deletion
- Abstract
In order to explore the diversity and selective signatures of duplication and deletion human copy-number variants (CNVs), we sequenced 236 individuals from 125 distinct human populations. We observed that duplications exhibit fundamentally different population genetic and selective signatures than deletions and are more likely to be stratified between human populations. Through reconstruction of the ancestral human genome, we identify megabases of DNA lost in different human lineages and pinpoint large duplications that introgressed from the extinct Denisova lineage now found at high frequency exclusively in Oceanic populations. We find that the proportion of CNV base pairs to single-nucleotide-variant base pairs is greater among non-Africans than it is among African populations, but we conclude that this difference is likely due to unique aspects of non-African population history as opposed to differences in CNV load., (Copyright © 2015, American Association for the Advancement of Science.)
- Published
- 2015
- Full Text
- View/download PDF
12. Massive migration from the steppe was a source for Indo-European languages in Europe.
- Author
-
Haak W, Lazaridis I, Patterson N, Rohland N, Mallick S, Llamas B, Brandt G, Nordenfelt S, Harney E, Stewardson K, Fu Q, Mittnik A, Bánffy E, Economou C, Francken M, Friederich S, Pena RG, Hallgren F, Khartanovich V, Khokhlov A, Kunst M, Kuznetsov P, Meller H, Mochalov O, Moiseyev V, Nicklisch N, Pichler SL, Risch R, Rojo Guerra MA, Roth C, Szécsényi-Nagy A, Wahl J, Meyer M, Krause J, Brown D, Anthony D, Cooper A, Alt KW, and Reich D
- Subjects
- Europe ethnology, Genome, Human genetics, History, Ancient, Humans, Male, Polymorphism, Genetic genetics, Population Dynamics, Russia, Cultural Evolution history, Grassland, Human Migration history, Language history
- Abstract
We generated genome-wide data from 69 Europeans who lived between 8,000-3,000 years ago by enriching ancient DNA libraries for a target set of almost 400,000 polymorphisms. Enrichment of these positions decreases the sequencing required for genome-wide ancient DNA analysis by a median of around 250-fold, allowing us to study an order of magnitude more individuals than previous studies and to obtain new insights about the past. We show that the populations of Western and Far Eastern Europe followed opposite trajectories between 8,000-5,000 years ago. At the beginning of the Neolithic period in Europe, ∼8,000-7,000 years ago, closely related groups of early farmers appeared in Germany, Hungary and Spain, different from indigenous hunter-gatherers, whereas Russia was inhabited by a distinctive population of hunter-gatherers with high affinity to a ∼24,000-year-old Siberian. By ∼6,000-5,000 years ago, farmers throughout much of Europe had more hunter-gatherer ancestry than their predecessors, but in Russia, the Yamnaya steppe herders of this time were descended not only from the preceding eastern European hunter-gatherers, but also from a population of Near Eastern ancestry. Western and Eastern Europe came into contact ∼4,500 years ago, as the Late Neolithic Corded Ware people from Germany traced ∼75% of their ancestry to the Yamnaya, documenting a massive migration into the heartland of Europe from its eastern periphery. This steppe ancestry persisted in all sampled central Europeans until at least ∼3,000 years ago, and is ubiquitous in present-day Europeans. These results provide support for a steppe origin of at least some of the Indo-European languages of Europe.
- Published
- 2015
- Full Text
- View/download PDF
13. A Re-Appraisal of the Early Andean Human Remains from Lauricocha in Peru.
- Author
-
Fehren-Schmitz L, Llamas B, Lindauer S, Tomasto-Cagigao E, Kuzminsky S, Rohland N, Santos FR, Kaulicke P, Valverde G, Richards SM, Nordenfelt S, Seidenberg V, Mallick S, Cooper A, Reich D, and Haak W
- Subjects
- Humans, Peru, Fossils
- Abstract
The discovery of human remains from the Lauricocha cave in the Central Andean highlands in the 1960's provided the first direct evidence for human presence in the high altitude Andes. The skeletons found at this site were ascribed to the Early to Middle Holocene and represented the oldest known population of Western South America, and thus were used in several studies addressing the early population history of the continent. However, later excavations at Lauricocha led to doubts regarding the antiquity of the site. Here, we provide new dating, craniometric, and genetic evidence for this iconic site. We obtained new radiocarbon dates, generated complete mitochondrial genomes and nuclear SNP data from five individuals, and re-analyzed the human remains of Lauricocha to revise the initial morphological and craniometric analysis conducted in the 1960's. We show that Lauricocha was indeed occupied in the Early to Middle Holocene but the temporal spread of dates we obtained from the human remains show that they do not qualify as a single contemporaneous population. However, the genetic results from five of the individuals fall within the spectrum of genetic diversity observed in pre-Columbian and modern Native Central American populations.
- Published
- 2015
- Full Text
- View/download PDF
14. Partial uracil-DNA-glycosylase treatment for screening of ancient DNA.
- Author
-
Rohland N, Harney E, Mallick S, Nordenfelt S, and Reich D
- Subjects
- Base Sequence, DNA history, DNA Barcoding, Taxonomic methods, Genetics, Population methods, History, Ancient, Humans, Molecular Sequence Data, DNA genetics, Fossils, Gene Library, Genetic Testing methods, Sequence Analysis, DNA methods, Uracil-DNA Glycosidase chemistry
- Abstract
The challenge of sequencing ancient DNA has led to the development of specialized laboratory protocols that have focused on reducing contamination and maximizing the number of molecules that are extracted from ancient remains. Despite the fact that success in ancient DNA studies is typically obtained by screening many samples to identify a promising subset, ancient DNA protocols have not, in general, focused on reducing the time required to screen samples. We present an adaptation of a popular ancient library preparation method that makes screening more efficient. First, the DNA extract is treated using a protocol that causes characteristic ancient DNA damage to be restricted to the terminal nucleotides, while nearly eliminating it in the interior of the DNA molecules, allowing a single library to be used both to test for ancient DNA authenticity and to carry out population genetic analysis. Second, the DNA molecules are ligated to a unique pair of barcodes, which eliminates undetected cross-contamination from this step onwards. Third, the barcoded library molecules include incomplete adapters of short length that can increase the specificity of hybridization-based genomic target enrichment. The adapters are completed just before sequencing, so the same DNA library can be used in multiple experiments, and the sequences distinguished. We demonstrate this protocol on 60 ancient human samples., (© 2014 The Author(s) Published by the Royal Society. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF
15. Ancient human genomes suggest three ancestral populations for present-day Europeans.
- Author
-
Lazaridis I, Patterson N, Mittnik A, Renaud G, Mallick S, Kirsanow K, Sudmant PH, Schraiber JG, Castellano S, Lipson M, Berger B, Economou C, Bollongino R, Fu Q, Bos KI, Nordenfelt S, Li H, de Filippo C, Prüfer K, Sawyer S, Posth C, Haak W, Hallgren F, Fornander E, Rohland N, Delsate D, Francken M, Guinet JM, Wahl J, Ayodo G, Babiker HA, Bailliet G, Balanovska E, Balanovsky O, Barrantes R, Bedoya G, Ben-Ami H, Bene J, Berrada F, Bravi CM, Brisighelli F, Busby GB, Cali F, Churnosov M, Cole DE, Corach D, Damba L, van Driem G, Dryomov S, Dugoujon JM, Fedorova SA, Gallego Romero I, Gubina M, Hammer M, Henn BM, Hervig T, Hodoglugil U, Jha AR, Karachanak-Yankova S, Khusainova R, Khusnutdinova E, Kittles R, Kivisild T, Klitz W, Kučinskas V, Kushniarevich A, Laredj L, Litvinov S, Loukidis T, Mahley RW, Melegh B, Metspalu E, Molina J, Mountain J, Näkkäläjärvi K, Nesheva D, Nyambo T, Osipova L, Parik J, Platonov F, Posukh O, Romano V, Rothhammer F, Rudan I, Ruizbakiev R, Sahakyan H, Sajantila A, Salas A, Starikovskaya EB, Tarekegn A, Toncheva D, Turdikulova S, Uktveryte I, Utevska O, Vasquez R, Villena M, Voevoda M, Winkler CA, Yepiskoposyan L, Zalloua P, Zemunik T, Cooper A, Capelli C, Thomas MG, Ruiz-Linares A, Tishkoff SA, Singh L, Thangaraj K, Villems R, Comas D, Sukernik R, Metspalu M, Meyer M, Eichler EE, Burger J, Slatkin M, Pääbo S, Kelso J, Reich D, and Krause J
- Subjects
- Agriculture history, Asia ethnology, Europe, History, Ancient, Humans, Population Dynamics, Principal Component Analysis, Workforce, Genome, Human genetics, White People classification, White People genetics
- Abstract
We sequenced the genomes of a ∼7,000-year-old farmer from Germany and eight ∼8,000-year-old hunter-gatherers from Luxembourg and Sweden. We analysed these and other ancient genomes with 2,345 contemporary humans to show that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, who contributed ancestry to all Europeans but not to Near Easterners; ancient north Eurasians related to Upper Palaeolithic Siberians, who contributed to both Europeans and Near Easterners; and early European farmers, who were mainly of Near Eastern origin but also harboured west European hunter-gatherer related ancestry. We model these populations' deep relationships and show that early European farmers had ∼44% ancestry from a 'basal Eurasian' population that split before the diversification of other non-African lineages.
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.