1. Analysis of Thermophysical Properties of Electro Slag Remelting and Evaluation of Metallographic Cleanliness of Steel.
- Author
-
Walek, Josef, Odehnalová, Adéla, and Kocich, Radim
- Subjects
- *
THERMOPHYSICAL properties , *SLAG , *HYGIENE , *STEEL , *VISCOSITY - Abstract
Improving the competitiveness of steel companies is linked to sustainable, quality-compliant steel production. Therefore, new steel production technologies contributing to increased cleanliness of steel are continuously being developed and optimized. One way to achieve a high steel quality is to use electro slag remelting (ESR) technology. In this paper, the principle of ESR technology and the importance of fused slags for optimizing the process are outlined. The aim of this work was to analyze the main thermophysical properties of steel and fused slags used in the ESR process. Determination of the properties of steel and slags was performed using the FactSage calculation software, which involved the calculation of the liquid and solid temperature of steel and slags, the calculation and construction of quaternary diagrams, and the calculation of viscosity. The resulting quaternary diagrams revealed the substantial influence of chemical composition on melting temperatures of slags. In order to validate the acquired results, a CrNiMoV-type steel was subjected to investigation of its metallographic cleanliness and evaluation of its mechanical properties; the ESR process was shown to significantly improve the cleanliness of the steel and improve the mechanical properties of the steel compared to its cleanliness and quality when produced via vacuum degassing (VD) technology. During the ESR process, the average size of non-metallic inclusions was reduced from 20 μm to 10 μm, and the maximum size of non-metallic inclusions was reduced from 50 μm to 28 μm. The mechanical properties of the steel produced using ESR technology were impacted as follows: the ductility increased by 10%, contraction increased by 18%, notched toughness at 20 °C increased by 46%, and at −40 °C (respectively −50 °C) it increased by 30%. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF