1. Nitrogen-Doped Porous Carbon Nanosheets Strongly Coupled with Mo2C Nanoparticles for Efficient Electrocatalytic Hydrogen Evolution
- Author
-
Ying Lei, Yong Yang, Yudong Liu, Yaxing Zhu, Mengmeng Jia, Yang Zhang, Ke Zhang, Aifang Yu, Juan Liu, and Junyi Zhai
- Subjects
Nitrogen-doped porous carbon nanosheet ,β-Mo2C ,Electrocatalyst ,Hydrogen evolution reaction ,Materials of engineering and construction. Mechanics of materials ,TA401-492 - Abstract
Abstract Exploring earth-abundant and noble metal-free catalysts for water electrolysis is pivotal in renewable hydrogen production. Herein, a highly active electrocatalyst of nitrogen-doped porous carbon nanosheets coupled with Mo2C nanoparticles (Mo2C/NPC) was synthesized by a novel method with high BET surface area of 1380 m2 g−1 using KOH to activate carbon composite materials. The KOH plays a key role in etching out MoS2 to produce Mo precursor; simultaneously, it corrodes carbon to form porous structure and produce reducing gas such as H2 and CO. The resulting Mo2C/NPC hybrid demonstrated superior HER activity in acid solution, with the overpotential of 166 mV at current density of 10 mA cm−2, onset overpotential of 93 mV, Tafel slope of 68 mV dec−1, and remarkable long-term cycling stability. The present strategy may provide a promising strategy to fabricate other metal carbide/carbon hybrids for energy conversion and storage.
- Published
- 2019
- Full Text
- View/download PDF