83 results on '"Nischang, I."'
Search Results
2. Catalysis Science and Technology / Miniaturized catalysis: monolithic, highly porous, large surface area capillary flow reactors constructed in situ from polyhedral oligomeric silsesquioxanes (POSS)
- Author
-
Scholder, P. and Nischang, I.
- Abstract
A single-step molding process utilizing free-radical cross-linking reaction of vinyl POSS in microliter-sized dimensions leads to hierarchically-structured, mechanically robust, porous hybrid structures. Functional variants show excellent performance in Suzuki-type coupling reactions. Due to their small volume, long-term operational robustness, and potential chemical diversity, these materials are promising candidates for catalyst screening applications. Fonds zur Förderung der Wissenschaftlichen Forschung P24557-N19 Version of record
- Published
- 2015
- Full Text
- View/download PDF
3. Polymer Chemistry / A simple approach to hybrid inorganic–organic step-growth hydrogels with scalable control of physicochemical properties and biodegradability
- Author
-
Alves, F. and Nischang, I.
- Abstract
We prepared new and scalable, hybrid inorganic–organic step-growth hydrogels with polyhedral oligomeric silsesquioxane (POSS) network knot construction elements and hydrolytically degradable poly(ethylene glycol) (PEG) di-ester macromonomers by in situ radical-mediated thiol–ene photopolymerization. The physicochemical properties of the gels are fine-tailored over orders of magnitude including functionalization of their interior, a hierarchical gel structure, and biodegradability. Fonds zur Förderung der Wissenschaftlichen Forschung P24557-N19 Version of record
- Published
- 2015
- Full Text
- View/download PDF
4. A simple approach to hybrid inorganic–organic step-growth hydrogels with scalable control of physicochemical properties and biodegradability
- Author
-
Alves, F., primary and Nischang, I., additional
- Published
- 2015
- Full Text
- View/download PDF
5. Miniaturized catalysis: monolithic, highly porous, large surface area capillary flow reactors constructed in situ from polyhedral oligomeric silsesquioxanes (POSS)
- Author
-
Scholder, P., primary and Nischang, I., additional
- Published
- 2015
- Full Text
- View/download PDF
6. Flow and transport in electrochromatography
- Author
-
Nischang, I.
- Published
- 2007
7. The Use of Capillary Electrochromatography for Natural Product Analysis – Theoretical Background and Recent Applications
- Author
-
Ganzera, M., primary and Nischang, I., additional
- Published
- 2010
- Full Text
- View/download PDF
8. Deviceless decoupled electrochemical detection of catecholamines in capillary electrophoresis using gold microband array electrodes
- Author
-
Klett, O., Nischang, I., Nyholm, L., Klett, O., Nischang, I., and Nyholm, L.
- Published
- 2002
9. Miniaturized catalysis: monolithic, highly porous, large surface area capillary flow reactors constructed in situfrom polyhedral oligomeric silsesquioxanes (POSS)Electronic supplementary information (ESI) available. See DOI: 10.1039/c5cy00510h
- Author
-
Scholder, P. and Nischang, I.
- Abstract
A single-step molding process utilizing free-radical cross-linking reaction of vinyl POSS in microliter-sized dimensions leads to hierarchically-structured, mechanically robust, porous hybrid structures. Functional variants show excellent performance in Suzuki-type coupling reactions. Due to their small volume, long-term operational robustness, and potential chemical diversity, these materials are promising candidates for catalyst screening applications.
- Published
- 2015
- Full Text
- View/download PDF
10. The Use of Capillary Electrochromatography for Natural Product Analysis Theoretical Background and Recent Applications
- Author
-
Ganzera, M. and Nischang, I.
- Abstract
This review focuses on the application and implication of CEC for natural product analysis, with special emphasis on reports published after 2005. The basic concepts and principles of CEC are outlined, and the techniques advantages and disadvantages are discussed in context with the available stationary phase format. Special attention is given to the application of packed beds and monolithic formats of CEC with both silica-based and in situ formed polymeric stationary phases. The most promising applicative platforms are presented and their potential for natural product analysis is discussed.
- Published
- 2010
11. Ethoxy acetalated dextran-based nanocarriers accomplish efficient inhibition of leukotriene formation by a novel FLAP antagonist in human leukocytes and blood
- Author
-
Christian Kretzer, Blerina Shkodra, Paul Klemm, Paul M. Jordan, Daniel Schröder, Gizem Cinar, Antje Vollrath, Stephanie Schubert, Ivo Nischang, Stephanie Hoeppener, Steffi Stumpf, Erden Banoglu, Frederike Gladigau, Rossella Bilancia, Antonietta Rossi, Christian Eggeling, Ute Neugebauer, Ulrich S. Schubert, Oliver Werz, Kretzer, C., Shkodra, B., Klemm, P., Jordan, P. M., Schroder, D., Cinar, G., Vollrath, A., Schubert, S., Nischang, I., Hoeppener, S., Stumpf, S., Banoglu, E., Gladigau, F., Bilancia, R., Rossi, A., Eggeling, C., Neugebauer, U., Schubert, U. S., and Werz, O.
- Subjects
Pharmacology ,Male ,Leukotrienes ,Animal ,Leukotriene Antagonist ,Cell Biology ,Healthy Volunteer ,Healthy Volunteers ,Anti-inflammatory therapy ,Cellular and Molecular Neuroscience ,Mice ,Nanoparticle ,Drug delivery ,Polymer nanoparticles (NPs) ,Molecular Medicine ,Animals ,Humans ,Leukotriene Antagonists ,Nanoparticles ,Female ,5-Lipoxygenase-activating protein ,Poly(lactide-co-glycolide) (PLGA) ,Acetalated dextran ,Molecular Biology ,Human - Abstract
Leukotrienes are pro-inflammatory lipid mediators generated by 5-lipoxygenase aided by the 5-lipoxygenase-activating protein (FLAP). BRP-201, a novel benzimidazole-based FLAP antagonist, inhibits leukotriene biosynthesis in isolated leukocytes. However, like other FLAP antagonists, BRP-201 fails to effectively suppress leukotriene formation in blood, which limits its therapeutic value. Here, we describe the encapsulation of BRP-201 into poly(lactide-co-glycolide) (PLGA) and ethoxy acetalated dextran (Ace-DEX) nanoparticles (NPs), aiming to overcome these detrimental pharmacokinetic limitations and to enhance the bioactivity of BRP-201. NPs loaded with BRP-201 were produced via nanoprecipitation and the physicochemical properties of the NPs were analyzed in-depth using dynamic light scattering (size, dispersity, degradation), electrophoretic light scattering (effective charge), NP tracking analysis (size, dispersity), scanning electron microscopy (size and morphology), UV–VIS spectroscopy (drug loading), an analytical ultracentrifuge (drug release, degradation kinetics), and Raman spectroscopy (chemical attributes). Biological assays were performed to study cytotoxicity, cellular uptake, and efficiency of BRP-201-loaded NPs versus free BRP-201 to suppress leukotriene formation in primary human leukocytes and whole blood. Both PLGA- and Ace-DEX-based NPs were significantly more efficient to inhibit leukotriene formation in neutrophils versus free drug. Whole blood experiments revealed that encapsulation of BRP-201 into Ace-DEX NPs strongly increases its potency, especially upon pro-longed (≥ 5 h) incubations and upon lipopolysaccharide-challenge of blood. Finally, intravenous injection of BRP-201-loaded NPs significantly suppressed leukotriene levels in blood of mice in vivo. These results reveal the feasibility of our pharmacological approach using a novel FLAP antagonist encapsulated into Ace-DEX-based NPs with improved efficiency in blood to suppress leukotriene biosynthesis.
- Published
- 2021
12. Unveiling the power of liquid chromatography in examining a library of degradable poly(2-oxazoline)s in nanomedicine applications.
- Author
-
Tsarenko E, Göppert NE, Dahlke P, Behnke M, Gangapurwala G, Beringer-Siemers B, Jaepel L, Kellner C, Pretzel D, Czaplewska JA, Vollrath A, Jordan PM, Weber C, Werz O, Schubert US, and Nischang I
- Subjects
- Humans, Nanoparticles chemistry, Hydrophobic and Hydrophilic Interactions, Chromatography, Liquid methods, Particle Size, Oxazoles chemistry, Nanomedicine
- Abstract
A library of degradable poly(2-alkyl-2-oxazoline) analogues (dPOx) with different length of the alkyl substituents was characterized in detail by gradient elution liquid chromatography. The hydrophobicity increased with increased side chain length as confirmed by a hydrophobicity row, established by reversed-phase liquid chromatography. Those dPOx were cytocompatible and formed colloidally stable nanoparticle (NP) formulations with positive zeta potential. Dynamic light scattering (DLS) revealed that dPOx with increased hydrophobicity tended to form NPs with increased sizes. NPs created from the most hydrophobic polymer, degradable poly(2-nonyl-2-oxazoline) (dPNonOx), showed tendency for aggregation at pH 5.0, and in the presence of protease in solution, in particular for NPs formulated without surfactant. Liquid chromatography revealed enzymatic degradation of dPNonOx NPs, clearly demonstrating the disappearance of polymer signals and the appearance of hydrophilic degradation products eluting close to the chromatographic void time. The degradation process was confirmed by
1 H NMR spectroscopy. dPNonOx NPs containing the anti-inflammatory drug BRP-201 as payload reduced 5-lipoxygenase activity in human neutrophils. Thereby, composition analysis of the resultant NPs, including drug quantification, was also enabled by liquid chromatography. The results indicate the importance of a detailed analysis of the final polymer-based NP formulations by a multimethod approach, including, next to standard applied techniques such as DLS/ELS, the underexplored potential of liquid chromatography. The latter is demonstrated to resolve a fine structure of solution composition, together with an assessment of possible degradation pathways and is versatile in determining hydrophobicity/hydrophilicity of polymer materials. Our study underscores the power of liquid chromatography for characterization of soft matter drug carriers.- Published
- 2024
- Full Text
- View/download PDF
13. Hyperbranched TEMPO-based polymers as catholytes for redox flow battery applications.
- Author
-
Ehtiati K, Anufriev I, Friebe C, Volodin IA, Stolze C, Muench S, Festag G, Nischang I, Hager MD, and Schubert US
- Abstract
Application of redox-active polymers (RAPs) in redox flow batteries (RFBs) can potentially reduce the stack cost through substitution of costly ion-exchange membranes by cheap size-exclusion membranes. However, intermolecular interactions of polymer molecules, i.e. , entanglements, particularly in concentrated solutions, result in relatively high electrolyte viscosities. Furthermore, the large size and limited mobility of polymers lead to slow diffusion and more sluggish heterogeneous electron transfer rates compared to quickly diffusing small molecules. Although a number of RAPs with varying electrolyte viscosities have been reported in the literature, the relation between the RAP structure and the hydrodynamic properties has not been thoroughly investigated. Herein, hyperbranched 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO)-based polymers intended for application as low-viscosity catholytes for RFBs are presented and the influence of the structure and the molar mass distribution on the hydrodynamic properties is investigated. A new synthesis approach for TEMPO-based polymers is established based on step-growth polymerization of a TEMPO-containing monomer using an aza-Michael addition followed by a postpolymerization modification to improve solubility in aqueous solutions. The compact structure of hyperbranched polymers was demonstrated using size-exclusion chromatography (SEC) with viscometric detection and the optimum molar mass was found based on the results of viscometric and crossover investigations. The resulting RAP revealed a viscosity of around 21 mPas at a concentration corresponding to around 1 M TEMPO-containing units, according to the calculated mass of the repeating unit, showing potential for high capacity polymer-based catholytes for RFBs. Nevertheless, possible partial deactivation of TEMPO units lowered the active TEMPO concentration of the hyperbranched RAPs. A faster diffusion and higher charge transfer rate were observed for the hyperbranched polymer compared to the previously reported linear polymers. However, in RFB tests, a poor performance was observed, which is attributed to the side reactions of the oxidized TEMPO moieties. Finally, pathways for overcoming the main remaining challenges, i.e. , high loss of material during dialysis as an indication of being prone to crossover, the partial deactivation of TEMPO moieties, and the subsequent side reactions under battery conditions, are suggested., Competing Interests: There are no conflicts to declare., (This journal is © The Royal Society of Chemistry.)
- Published
- 2024
- Full Text
- View/download PDF
14. Tailor-made polymer tracers reveal the role of clay minerals on colloidal transport in carbonate media.
- Author
-
Kwarkye N, Lehmann E, Vitz J, Nischang I, Schubert US, Ritschel T, and Totsche KU
- Abstract
Hypothesis: Host rock weathering and incipient pedogenesis result in the exposition of minerals, e.g., clay minerals in sedimentary limestones. Once exposed, these minerals provide the surfaces for fluid-solid interactions that control the fate of dissolved or suspended compounds such as organic matter and colloids. However, the functional and compositional diversity of organic matter and colloids limits the assessment of reactivity and availability of clay mineral interfaces. Such assessment demands a mobile compound with strong affinity to clay surfaces that is alien to the subsurface., Experiment: We approached this challenge by using poly(ethylene glycol) (PEG) as interfacial tracer in limestone weathering experiments., Findings: PEG adsorption and transport was dependent on the availability of clay mineral surfaces and carbonate dissolution dynamics. In addition, PEG adsorption featured adsorption-desorption hysteresis which retained PEG mass on clay mineral surfaces. This resulted in different PEG transport for experiments conducted consecutively in the same porous medium. As such, PEG transport was reconstructed with a continuum-scale model parametrized by a Langmuir-type isotherm including hysteresis. Thus, we quantified the influence of exposed clay mineral surfaces on the transport of organic colloids in carbonate media. This renders PEG a suitable model colloid tracer for the assessment of clay surface exposition in porous media., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2025
- Full Text
- View/download PDF
15. Determination of ω -end functionalities in tailored poly(2-alkyl-2-oxazoline)s by liquid chromatography and mass spectrometry.
- Author
-
Engel N, Dirauf M, Czaplewska JA, Nischang I, Gottschaldt M, and Schubert US
- Abstract
The in-depth analytical characterization of polymers, in particular regarding intended biomedical applications, is becoming increasingly important to elucidate their structure-property relationships. Specifically, end group analysis of e.g. polymers featuring a 'stealth effect' towards the immune system is of particular importance because of their use in coupling reactions to bioactive compounds. Herein, we established a liquid chromatography (LC) protocol to analyse bicyclo[6.1.0]nonyne-functionalized poly(2-alkyl-2-oxazoline)s (POx)s as promising functional polymers that can be applied in strain-promoted click reactions. This work involved the synthesis of poly(2-methyl-2-oxazoline) (PMeOx) and poly(2-ethyl-2-oxazoline) (PEtOx) by living cationic ring-opening polymerization (CROP) with different molar masses ranging from 2 up to 17.5 kDa and, to our knowledge, the first liquid chromatographic analysis of PMeOx. The developed analytical protocol enables the quantitative determination of post-polymerization reaction sequences with respect to the conversion of the ω -end groups. All synthesized polymers were straightforwardly analysed on a C18-derivatized silica monolithic column under reversed-phase chromatographic conditions with a binary mobile phase gradient comprising a mixture of acetonitrile and water. Subsequent mass spectrometry of collected elution fractions enabled the confirmation of the desired ω -end group functionalities and the identification of synthetic by-products., Competing Interests: We declare we have no competing interests., (© 2024 The Authors.)
- Published
- 2024
- Full Text
- View/download PDF
16. PEG-Lipid-PLGA Hybrid Particles for Targeted Delivery of Anti-Inflammatory Drugs.
- Author
-
Ismail J, Klepsch LC, Dahlke P, Tsarenko E, Vollrath A, Pretzel D, Jordan PM, Rezaei K, Czaplewska JA, Stumpf S, Beringer-Siemers B, Nischang I, Hoeppener S, Werz O, and Schubert US
- Abstract
Hybrid nanoparticles (HNPs) were designed by combining a PLGA core with a lipid shell that incorporated PEG-Lipid conjugates with various functionalities (-RGD, -cRGD, -NH
2 , and -COOH) to create targeted drug delivery systems. Loaded with a neutral lipid orange dye, the HNPs were extensively characterized using various techniques and investigated for their uptake in human monocyte-derived macrophages (MDMs) using FC and CLSM. Moreover, the best-performing HNPs (i.e., HNP-COOH and HNP-RGD as well as HNP-RGD/COOH mixed) were loaded with the anti-inflammatory drug BRP-201 and prepared in two size ranges (dH ~140 nm and dH ~250 nm). The HNPs were examined further for their stability, degradation, MDM uptake, and drug delivery efficiency by studying the inhibition of 5-lipoxygenase (5-LOX) product formation, whereby HNP-COOH and HNP-RGD both exhibited superior uptake, and the HNP-COOH/RGD (2:1) displayed the highest inhibition.- Published
- 2024
- Full Text
- View/download PDF
17. PEG-Lipids: Quantitative Study of Unimers and Aggregates Thereof by the Methods of Molecular Hydrodynamics.
- Author
-
Anufriev I, Hoeppener S, and Nischang I
- Subjects
- Humans, Hydrodynamics, SARS-CoV-2, Polyethylene Glycols chemistry, Solvents, Polymers, Water chemistry, Lipids chemistry, Ethanol, Micelles, COVID-19
- Abstract
Understanding the polymorphism of lipids in solution is the key to the development of intracellular delivery systems. Here, we study the dynamics of poly(ethylene glycol)-lipid (PEG-Lipid) conjugates aiming at a better understanding of their molecular properties and aggregation behavior in solution. Those PEG-Lipids are used as components of lipid nanoparticles (LNPs). LNPs are gaining increased popularity, e.g., by their utilization in modern vaccination strategies against SARS-CoV-2. Characterization of the systems is conducted by the classical methods of hydrodynamics in different solvents, such as ethanol and water, which are also commonly used for LNP formulation. We were able to elucidate the structurally associated hydrodynamic properties of isolated PEG-Lipids in ethanol, revealing the typically expected values of the hydrodynamic invariant for random coil polymers. By virtue of the same experimental setting, the PEG-Lipids' behavior in water was as well studied, which is a less good solvent than ethanol for the PEG-Lipids. Our experiments demonstrate that PEG-Lipids dissolved in water form well-defined micelles that can quantitatively be characterized in terms of their degree of aggregation of PEG-Lipid polymer unimers, their hydrodynamic size, and solvation, i.e., the quantitative determination of water contained or associated to the identified micelles. Quantitative results obtained from classical hydrodynamic analyses are fully supported by studies with standard dynamic light scattering (DLS). The obtained diffusion coefficients and hydrodynamic sizes are in excellent agreement with numerical results derived from analytical ultracentrifugation (AUC) data. Cryo-transmission electron microscopy (cryo-TEM) supports the structural insight from hydrodynamic studies, particularly, in terms of the observed spherical structure of the formed micelles. We demonstrate experimentally that the micelle systems can be considered as solvent-permeable, hydrated spheres.
- Published
- 2023
- Full Text
- View/download PDF
18. Nanoparticle Formulation Composition Analysis by Liquid Chromatography on Reversed-Phase Monolithic Silica.
- Author
-
Tsarenko E, Schubert US, and Nischang I
- Subjects
- Humans, Polylactic Acid-Polyglycolic Acid Copolymer, Polyglycolic Acid chemistry, Lactic Acid chemistry, SARS-CoV-2, Chromatography, Liquid, Particle Size, Drug Carriers chemistry, COVID-19, Nanoparticles chemistry
- Abstract
Multifunctional nanoparticle (NP) formulations for medical purposes have already found their way toward envisaged translation. A persistent challenge of those systems is, next to NP size analysis, the compositional analysis of the NPs with the polymer as the matrix component and the encapsulated drug, particularly in a quantitative manner. Herein, we report the formulation of poly(lactic- co -glycolic acid) (PLGA) NPs by nanoprecipitation and the analysis of their integrity and size by dynamic light scattering (DLS) and scanning electron microscopy (SEM). Those NPs feature a variety of encapsulated drugs including the well-known ibuprofen (Ibu) as well as dexamethasone (Dex) and dexamethasone acetate (DexAce), with the latter being of potential interest for clinical treatment of SARS-CoV-2 patients. All those dissolved formulation compositions have been subjected to liquid chromatography on reversed-phase silica monolithic columns, allowing to quantitatively assess amounts of small molecule drug and NP constituting PLGA polymer in a single run. The chromatographically resolved hydrophobicity differences of the drugs correlated with their formulation loading and were clearly separated from the PLGA matrix polymer with high resolution. Our study identifies the viability of reversed-phase monolithic silica in the chromatography of both small drug molecules and particularly pharmapolymers in a repeatable and simultaneous fashion, and can provide a valuable strategy for analysis of diverse precursor polymer systems and drug components in multifunctional drug formulations.
- Published
- 2023
- Full Text
- View/download PDF
19. All-Aqueous, Surfactant-Free, and pH-Driven Nanoformulation Methods of Dual-Responsive Polymer Nanoparticles and their Potential use as Nanocarriers of pH-Sensitive Drugs.
- Author
-
Lechuga-Islas VD, Trejo-Maldonado M, Anufriev I, Nischang I, Terzioğlu İ, Ulbrich J, Guerrero-Santos R, Elizalde-Herrera LE, Schubert US, and Guerrero-Sánchez C
- Subjects
- Surface-Active Agents, Delayed-Action Preparations chemistry, Polymethyl Methacrylate, Hydrogen-Ion Concentration, Polymers chemistry, Nanoparticles chemistry
- Abstract
All-aqueous, surfactant-free, and pH-driven nanoformulation methods to generate pH- and temperature-responsive polymer nanoparticles (NPs) are described. Copolymers comprising a poly(methyl methacrylate) (PMMA) backbone with a few units of 2-(dimethylamino)ethyl methacrylate (DMAEMA) are solubilized in acidic buffer (pH 2.0) to produce pH-sensitive NPs. Copolymers of different molar mass (2.3-11.5 kg mol
-1 ) and DMAEMA composition (7.3-14.2 mol%) are evaluated using a "conventional" pH-driven nanoformulation method (i.e., adding an aqueous polymer solution (acidic buffer) into an aqueous non-solvent (basic buffer)) and a robotized method for pH adjustment of polymer dispersions. Dynamic light scattering, zeta-potential (ζ), and sedimentation-diffusion analyses suggest the formation of dual-responsive NPs of tunable size (from 20 to 110 nm) being stable for at least 28 days in the pH and temperature intervals from 2.0 to 6.0 and 25 to 50 °C, respectively. Ultraviolet-visible spectroscopic experiments show that these NPs can act as nanocarriers for the pH-sensitive dipyridamole drug, expanding its bioavailability and potential controlled release as a function of pH and temperature. These approaches offer alternative strategies to prepare stimuli-responsive NPs, avoiding the use of harmful solvents and complex purification steps, and improving the availability of biocompatible polymer nanoformulations for specific controlled release of pH-sensitive cargos., (© 2022 The Authors. Macromolecular Bioscience published by Wiley-VCH GmbH.)- Published
- 2023
- Full Text
- View/download PDF
20. PEtOxylated Interferon-α2a Bioconjugates Addressing H1N1 Influenza A Virus Infection.
- Author
-
Hauptstein N, Dirauf M, Wittwer K, Cinar G, Siering O, Raschig M, Lühmann T, Scherf-Clavel O, Sawatsky B, Nischang I, Schubert US, Pfaller CK, and Meinel L
- Subjects
- Animals, Antiviral Agents pharmacology, Ferrets, Humans, Mice, Oseltamivir pharmacology, Oseltamivir therapeutic use, Influenza A Virus, H1N1 Subtype genetics, Influenza A Virus, H5N1 Subtype genetics, Influenza A virus, Influenza, Human drug therapy
- Abstract
Influenza A viruses (IAV), including the pandemic 2009 (pdm09) H1N1 or avian influenza H5N1 virus, may advance into more pathogenic, potentially antiviral drug-resistant strains (including loss of susceptibility against oseltamivir). Such IAV strains fuel the risk of future global outbreaks, to which this study responds by re-engineering Interferon-α2a (IFN-α2a) bioconjugates into influenza therapeutics. Type-I interferons such as IFN-α2a play an essential role in influenza infection and may prevent serious disease courses. We site-specifically conjugated a genetically engineered IFN-α2a mutant to poly(2-ethyl-2-oxazoline)s (PEtOx) of different molecular weights by strain-promoted azide-alkyne cyclo-addition. The promising pharmacokinetic profile of the 25 kDa PEtOx bioconjugate in mice echoed an efficacy in IAV-infected ferrets. One intraperitoneal administration of this bioconjugate, but not the marketed IFN-α2a bioconjugate, changed the disease course similar to oseltamivir, given orally twice every study day. PEtOxylated IFN-α2a bioconjugates may expand our therapeutic arsenal against future influenza pandemics, particularly in light of rising first-line antiviral drug resistance to IAV.
- Published
- 2022
- Full Text
- View/download PDF
21. Polymer selection impacts the pharmaceutical profile of site-specifically conjugated Interferon-α2a.
- Author
-
Hauptstein N, Pouyan P, Wittwer K, Cinar G, Scherf-Clavel O, Raschig M, Licha K, Lühmann T, Nischang I, Schubert US, Pfaller CK, Haag R, and Meinel L
- Subjects
- Humans, Interferon alpha-2, Kinetics, Recombinant Proteins, Polyethylene Glycols pharmacokinetics, Polymers
- Abstract
Conjugation of poly(ethylene glycol) (PEG) to biologics is a successful strategy to favorably impact the pharmacokinetics and efficacy of the resulting bioconjugate. We compare bioconjugates synthesized by strain-promoted azide-alkyne cycloaddition (SPAAC) using PEG and linear polyglycerol (LPG) of about 20 kDa or 40 kDa, respectively, with an azido functionalized human Interferon-α2a (IFN-α2a) mutant. Site-specific PEGylation and LPGylation resulted in IFN-α2a bioconjugates with improved in vitro potency compared to commercial Pegasys. LPGylated bioconjugates had faster disposition kinetics despite comparable hydrodynamic radii to their PEGylated analogues. Overall exposure of the PEGylated IFN-α2a with a 40 kDa polymer exceeded Pegasys, which, in return, was similar to the 40 kDa LPGylated conjugates. The study points to an expanded polymer design space through which the selected polymer class may result in a different distribution of the studied bioconjugates., (Copyright © 2022. Published by Elsevier B.V.)
- Published
- 2022
- Full Text
- View/download PDF
22. Nanoparticle sizing in the field of nanomedicine: Power of an analytical ultracentrifuge.
- Author
-
Cinar G, Solomun JI, Mapfumo P, Traeger A, and Nischang I
- Subjects
- Dynamic Light Scattering, Nanomedicine, Particle Size, Fractionation, Field Flow methods, Nanoparticles
- Abstract
Hydrodynamic and light scattering methods are urgently required for accurate characterization of nanoparticles (NPs) in the field of nanomedicine to unveil their sizes and distributions. A fundamental characterization approach in the field of nanomedicines is, next to standard batch dynamic light scattering (DLS) and increasingly more applied (asymmetrical flow) field-flow fractionation (FFF) coupled to multi-angle laser light scattering (MALLS), the utilization of an analytical ultracentrifuge (AUC). Here, we demonstrate the power of an AUC in comparison to batch DLS and FFF-MALLS to decipher, in detail, the size and dispersity of pharma-relevant, commercial and in-house prepared soft matter NPs, suitable for life science applications. In this study, size and dispersity of poly(lactic-co-glycolic acid) (PLGA) NPs and in-house prepared NPs, consisting of the commercially available pharmapolymer Eudragit® E or of a polymer of similar composition synthesized via reversible addition fragmentation chain transfer (RAFT) polymerization, were investigated. Simultaneously, an insight on the presence of the utilized surfactant on the NP formulations, which is usually limited with other techniques, could be achieved by multi-speed experiments with the AUC in one experimental setting. While the repeatability and ruggedness of observations with modern AUC instruments of the newest generation is demonstrated, the results are further underpinned by the classical relations of hydrodynamics. Investigations aiming at hydrodynamic diameters (from DLS) and radii of gyration (from FFF-MALLS) are critically discussed and compared to the repeatable and rugged investigations by an AUC. The latter is proven to provide a self-sufficient experimental approach for NP characterization in the field of nanomedicine based on absolute principles, compares well to FFF-MALLS, and can unravel issues in NP sizing that arise when more common techniques, such as DLS, are used., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
23. Ethoxy acetalated dextran-based nanocarriers accomplish efficient inhibition of leukotriene formation by a novel FLAP antagonist in human leukocytes and blood.
- Author
-
Kretzer C, Shkodra B, Klemm P, Jordan PM, Schröder D, Cinar G, Vollrath A, Schubert S, Nischang I, Hoeppener S, Stumpf S, Banoglu E, Gladigau F, Bilancia R, Rossi A, Eggeling C, Neugebauer U, Schubert US, and Werz O
- Subjects
- Animals, Female, Healthy Volunteers, Humans, Male, Mice, Leukotriene Antagonists pharmacology, Leukotrienes biosynthesis, Leukotrienes metabolism, Nanoparticles chemistry
- Abstract
Leukotrienes are pro-inflammatory lipid mediators generated by 5-lipoxygenase aided by the 5-lipoxygenase-activating protein (FLAP). BRP-201, a novel benzimidazole-based FLAP antagonist, inhibits leukotriene biosynthesis in isolated leukocytes. However, like other FLAP antagonists, BRP-201 fails to effectively suppress leukotriene formation in blood, which limits its therapeutic value. Here, we describe the encapsulation of BRP-201 into poly(lactide-co-glycolide) (PLGA) and ethoxy acetalated dextran (Ace-DEX) nanoparticles (NPs), aiming to overcome these detrimental pharmacokinetic limitations and to enhance the bioactivity of BRP-201. NPs loaded with BRP-201 were produced via nanoprecipitation and the physicochemical properties of the NPs were analyzed in-depth using dynamic light scattering (size, dispersity, degradation), electrophoretic light scattering (effective charge), NP tracking analysis (size, dispersity), scanning electron microscopy (size and morphology), UV-VIS spectroscopy (drug loading), an analytical ultracentrifuge (drug release, degradation kinetics), and Raman spectroscopy (chemical attributes). Biological assays were performed to study cytotoxicity, cellular uptake, and efficiency of BRP-201-loaded NPs versus free BRP-201 to suppress leukotriene formation in primary human leukocytes and whole blood. Both PLGA- and Ace-DEX-based NPs were significantly more efficient to inhibit leukotriene formation in neutrophils versus free drug. Whole blood experiments revealed that encapsulation of BRP-201 into Ace-DEX NPs strongly increases its potency, especially upon pro-longed (≥ 5 h) incubations and upon lipopolysaccharide-challenge of blood. Finally, intravenous injection of BRP-201-loaded NPs significantly suppressed leukotriene levels in blood of mice in vivo. These results reveal the feasibility of our pharmacological approach using a novel FLAP antagonist encapsulated into Ace-DEX-based NPs with improved efficiency in blood to suppress leukotriene biosynthesis., (© 2021. The Author(s).)
- Published
- 2021
- Full Text
- View/download PDF
24. Reincarnation of the Analytical Ultracentrifuge: Emerging Opportunities for Nanomedicine.
- Author
-
Valderrama OJ and Nischang I
- Subjects
- Molecular Weight, Polymers, Ultracentrifugation, Nanomedicine, Nanoparticles
- Abstract
The analytical ultracentrifuge (AUC) and the modern field of analytical ultracentrifugation found its inception approximately a century ago. We highlight the scope of its major experimental opportunities as a transport-based method, contemporary and up-and-coming investigation potential for polymers, polymer-drug conjugates, polymer assemblies, as well as medical nanoparticles. Special focus lies on molar mass estimates of unimeric polymeric species, self-assemblies in solution, and (co)localization of multicomponent systems in solution alongside the material-biofluid interactions. We close with present challenges and incentives for future research.
- Published
- 2021
- Full Text
- View/download PDF
25. Core-crosslinked, temperature- and pH-responsive micelles: design, physicochemical characterization, and gene delivery application.
- Author
-
Leer K, Cinar G, Solomun JI, Martin L, Nischang I, and Traeger A
- Subjects
- HEK293 Cells, Humans, Hydrogen-Ion Concentration, Temperature, Gene Transfer Techniques, Micelles
- Abstract
Stimuli-responsive block copolymer micelles can provide tailored properties for the efficient delivery of genetic material. In particular, temperature- and pH-responsive materials are of interest, since their physicochemical properties can be easily tailored to meet the requirements for successful gene delivery. Within this study, a stimuli-responsive micelle system for gene delivery was designed based on a diblock copolymer consisting of poly( N , N -diethylacrylamide) (PDEAm) as a temperature-responsive segment combined with poly(aminoethyl acrylamide) (PAEAm) as a pH-responsive, cationic segment. Upon temperature increase, the PDEAm block becomes hydrophobic due to its lower critical solution temperature (LCST), leading to micelle formation. Furthermore, the monomer 2-(pyridin-2-yldisulfanyl)ethyl acrylate (PDSAc) was incorporated into the temperature-responsive PDEAm building block enabling disulfide crosslinking of the formed micelle core to stabilize its structure regardless of temperature and dilution. The cloud points of the PDEAm block and the diblock copolymer were investigated by turbidimetry and fluorescence spectroscopy. The temperature-dependent formation of micelles was analyzed by dynamic light scattering (DLS) and elucidated in detail by an analytical ultracentrifuge (AUC), which provided detailed insights into the solution dynamics between polymers and assembled micelles as a function of temperature. Finally, the micelles were investigated for their applicability as gene delivery vectors by evaluation of cytotoxicity, pDNA binding, and transfection efficiency using HEK293T cells. The investigations showed that core-crosslinking resulted in a 13-fold increase in observed transfection efficiency. Our study presents a comprehensive investigation from polymer synthesis to an in-depth physicochemical characterization and biological application of a crosslinked micelle system including stimuli-responsive behavior.
- Published
- 2021
- Full Text
- View/download PDF
26. Adjusting the length of supramolecular polymer bottlebrushes by top-down approaches.
- Author
-
Klein T, Gruschwitz FV, Kuchenbrod MT, Nischang I, Hoeppener S, and Brendel JC
- Abstract
Controlling the length of one-dimensional (1D) polymer nanostructures remains a key challenge on the way toward the applications of these structures. Here, we demonstrate that top-down processing facilitates a straightforward adjustment of the length of polyethylene oxide (PEO)-based supramolecular polymer bottlebrushes (SPBs) in aqueous solutions. These cylindrical structures self-assemble via directional hydrogen bonds formed by benzenetrisurea (BTU) or benzenetrispeptide (BTP) motifs located within the hydrophobic core of the fiber. A slow transition from different organic solvents to water leads first to the formation of µm-long fibers, which can subsequently be fragmented by ultrasonication or dual asymmetric centrifugation. The latter allows for a better adjustment of applied shear stresses, and thus enables access to differently sized fragments depending on time and rotation rate. Extended sonication and scission analysis further allowed an estimation of tensile strengths of around 16 MPa for both the BTU and BTP systems. In combination with the high kinetic stability of these SPBs, the applied top-down methods represent an easily implementable technique toward 1D polymer nanostructures with an adjustable length in the range of interest for perspective biomedical applications., (Copyright © 2021, Klein et al.)
- Published
- 2021
- Full Text
- View/download PDF
27. Targeted delivery of a phosphoinositide 3-kinase γ inhibitor to restore organ function in sepsis.
- Author
-
Press AT, Babic P, Hoffmann B, Müller T, Foo W, Hauswald W, Benecke J, Beretta M, Cseresnyés Z, Hoeppener S, Nischang I, Coldewey SM, Gräler MH, Bauer R, Gonnert F, Gaßler N, Wetzker R, Figge MT, Schubert US, and Bauer M
- Subjects
- Animals, Mice, Neutrophil Infiltration, Phosphatidylinositol 3-Kinases, Phosphoinositide-3 Kinase Inhibitors, Liver Diseases, Sepsis drug therapy
- Abstract
Jaundice, the clinical hallmark of infection-associated liver dysfunction, reflects altered membrane organization of the canalicular pole of hepatocytes and portends poor outcomes. Mice lacking phosphoinositide 3-kinase-γ (PI3Kγ) are protected against membrane disintegration and hepatic excretory dysfunction. However, they exhibit a severe immune defect that hinders neutrophil recruitment to sites of infection. To exploit the therapeutic potential of PI3Kγ inhibition in sepsis, a targeted approach to deliver drugs to hepatic parenchymal cells without compromising other cells, in particular immune cells, seems warranted. Here, we demonstrate that nanocarriers functionalized through DY-635, a fluorescent polymethine dye, and a ligand of organic anion transporters can selectively deliver therapeutics to hepatic parenchymal cells. Applying this strategy to a murine model of sepsis, we observed the PI3Kγ-dependent restoration of biliary canalicular architecture, maintained excretory liver function, and improved survival without impairing host defense mechanisms. This strategy carries the potential to expand targeted nanomedicines to disease entities with systemic inflammation and concomitantly impaired barrier functionality., (© 2021 The Authors. Published under the terms of the CC BY 4.0 license.)
- Published
- 2021
- Full Text
- View/download PDF
28. On the identification and quantification of proton-initiated species in the synthesis of poly(2-alkyl-2-oxazoline)s by high resolution liquid chromatography.
- Author
-
Brunzel M, Dirauf M, Sahn M, Czaplewska JA, Fritz N, Weber C, Nischang I, and Schubert US
- Subjects
- Molecular Weight, Protons, Chromatography, Liquid, Polymers chemical synthesis
- Abstract
Hydrophilic poly(2-oxazoline)s represent a promising alternative to replace poly(ethylene glycol) in the biomedical field. For that purpose, reliable analytical protocols to confirm identity and quantity of impurities are required. In particular, side products deriving from chain transfer reactions occurring during the cationic ring-opening polymerization and incomplete end-capping processes may be present. The analytical approach must hence be capable of separating polymers according to minor changes regarding their end group. We demonstrate that liquid chromatography, relying on a monolithic C18-modified silica column and isocratic as well as gradient elution using water / acetonitrile mixtures and varying detectors, can accomplish such demanding high resolution separations. Poly(2-ethyl-2-oxazoline)s (PEtOx) with acetyl, hydroxyl, and phthalimide ω-end groups were investigated. Identification of side products was achieved through coupling with electrospray ionization mass spectrometry. UV / Vis detection was applied to quantify chain transfer products in PEtOx comprising biphenyl moieties. In addition, gradient elution enabled the separation of PEtOx into macromolecules according to their specific degrees of polymerization in molar mass ranges around 2,000 g mol
-1 ., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2021 Elsevier B.V. All rights reserved.)- Published
- 2021
- Full Text
- View/download PDF
29. Stealth Effect of Short Polyoxazolines in Graft Copolymers: Minor Changes of Backbone End Group Determine Liver Cell-Type Specificity.
- Author
-
Muljajew I, Huschke S, Ramoji A, Cseresnyés Z, Hoeppener S, Nischang I, Foo W, Popp J, Figge MT, Weber C, Bauer M, Schubert US, and Press AT
- Subjects
- Polymers chemistry, Hydrophobic and Hydrophilic Interactions, Liver, Micelles, Drug Carriers chemistry
- Abstract
Dye-loaded micelles of 10 nm diameter formed from amphiphilic graft copolymers composed of a hydrophobic poly(methyl methacrylate) backbone and hydrophilic poly(2-ethyl-2-oxazoline) side chains with a degree of polymerization of 15 were investigated concerning their cellular interaction and uptake in vitro as well as their interaction with local and circulating cells of the reticuloendothelial system in the liver by intravital microscopy. Despite the high molar mass of the individual macromolecules ( M
n ≈ 20 kg mol-1 ), backbone end group modification by attachment of a hydrophilic anionic fluorescent probe strongly affected the in vivo performance. To understand these effects, the end group was additionally modified by the attachment of four methacrylic acid repeating units. Although various micelles appeared similar in dynamic light scattering and cryo-transmission electron microscopy, changes in the micelles were evident from principal component analysis of the Raman spectra. Whereas an efficient stealth effect was found for micelles formed from polymers with anionically charged or thiol end groups, a hydrophobic end group altered the micelles' structure sufficiently to adapt cell-type specificity and stealth properties in the liver.- Published
- 2021
- Full Text
- View/download PDF
30. Kinetically Controlling the Length of Self-Assembled Polymer Nanofibers Formed by Intermolecular Hydrogen Bonds.
- Author
-
Gruschwitz FV, Klein T, Kuchenbrod MT, Moriyama N, Fujii S, Nischang I, Hoeppener S, Sakurai K, Schubert US, and Brendel JC
- Subjects
- Hydrogen Bonding, Hydrophobic and Hydrophilic Interactions, Polymers chemistry, Water chemistry, Nanofibers chemistry, Nanostructures chemistry
- Abstract
Strong directional hydrogen bonds represent a suitable supramolecular force to drive the one-dimensional (1D) aqueous self-assembly of polymeric amphiphiles resulting in cylindrical polymer brushes. However, our understanding of the kinetics in these assembly processes is still limited. We here demonstrate that the obtained morphologies for our recently reported benzene tris-urea and tris-peptide conjugates are strongly pathway-dependent. A controlled transfer from solutions in organic solvents to aqueous environments enabled a rate-dependent formation of kinetically trapped but stable nanostructures ranging from small cylindrical or spherical objects (<50 nm) to remarkably large fibers (>2 μm). A detailed analysis of the underlying assembly mechanism revealed a cooperative nature despite the steric demands of the polymers. Nucleation is induced by hydrophobic interactions crossing a critical water content, followed by an elongation process due to the strong hydrogen bonds. These findings open an interesting new pathway to control the length of 1D polymer nanostructures.
- Published
- 2021
- Full Text
- View/download PDF
31. Overcoming the Necessity of a Lateral Aggregation in the Formation of Supramolecular Polymer Bottlebrushes in Water.
- Author
-
Klein T, Ulrich HF, Gruschwitz FV, Kuchenbrod MT, Takahashi R, Hoeppener S, Nischang I, Sakurai K, and Brendel JC
- Subjects
- Hydrogen Bonding, Hydrophobic and Hydrophilic Interactions, Micelles, Polymers, Water
- Abstract
The assembly of supramolecular polymer bottlebrushes in aqueous systems is, in most cases, associated with a lateral aggregation of the supramolecular building blocks in addition to their axial stacking. Here, it is demonstrated that this limitation can be overcome by attaching three polymer chains to a central supramolecular unit that possesses a sufficiently high number of hydrogen bonding units to compensate for the increased steric strain. Therefore, a 1,3,5-benzenetrisurea-polyethylene oxide conjugate is modified with different peptide units located next to the urea groups which should facilitate self-assembly in water. For a single amino acid per arm, spherical micelles are obtained for all three tested amino acids (alanine, leucine, and phenylalanine) featuring different hydrophobicities. Only a slight increase in size and solution stability of spherical micelles is observed with increasing hydrophobicity of amino acid unit. In contrast, introducing two amino acid units per arm and thus increasing the number of hydrogen bonds per unimer molecule results in the formation of cylindrical structures, that is, supramolecular polymer bottlebrushes, despite a suppressed lateral aggregation. Consequently, it can be concluded that the number of hydrogen bonds has a more profound impact on the resulting solution morphology than the hydrophobicity of the amino acid unit., (© 2020 The Authors. Macromolecular Rapid Communications published by Wiley-VCH GmbH.)
- Published
- 2021
- Full Text
- View/download PDF
32. Drug-Induced Dynamics of Bile Colloids.
- Author
-
Hanio S, Schlauersbach J, Lenz B, Spiegel F, Böckmann RA, Schweins R, Nischang I, Schubert US, Endres S, Pöppler AC, Brandl FP, Smit TM, Kolter K, and Meinel L
- Abstract
Bile colloids containing taurocholate and lecithin are essential for the solubilization of hydrophobic molecules including poorly water-soluble drugs such as Perphenazine. We detail the impact of Perphenazine concentrations on taurocholate/lecithin colloids using analytical ultracentrifugation, dynamic light scattering, small-angle neutron scattering, nuclear magnetic resonance spectroscopy, coarse-grained molecular dynamics simulations, and isothermal titration calorimetry. Perphenazine impacted colloidal molecular arrangement, structure, and binding thermodynamics in a concentration-dependent manner. At low concentration, Perphenazine was integrated into stable and large taurocholate/lecithin colloids and close to lecithin. Integration of Perphenazine into these colloids was exothermic. At higher Perphenazine concentration, the taurocholate/lecithin colloids had an approximately 5-fold reduction in apparent hydrodynamic size, heat release was less exothermic upon drug integration into the colloids, and Perphenazine interacted with both lecithin and taurocholate. In addition, Perphenazine induced a morphological transition from vesicles to wormlike micelles as indicated by neutron scattering. Despite these surprising colloidal dynamics, these natural colloids successfully ensured stable relative amounts of free Perphenazine throughout the entire drug concentration range tested here. Future studies are required to further detail these findings both on a molecular structural basis and in terms of in vivo relevance.
- Published
- 2021
- Full Text
- View/download PDF
33. Well-defined poly(ethylene glycol) polymers as non-conventional reactive tracers of colloidal transport in porous media.
- Author
-
Ritschel T, Lehmann K, Brunzel M, Vitz J, Nischang I, Schubert US, and Totsche KU
- Abstract
Hypothesis: A prominent fraction of mobile organic matter in natural aqueous soil solutions is formed by molecules in sizes that seamlessly exceed the lower end of what is defined as a colloid. The hydrodynamics and the functional diversity of these molecules result in a transport behavior that is fundamentally different from smaller compounds. However, there is a lack of "reactive tracers" that allow for the study of colloidal transport phenomena appropriately. We hypothesize that tailor-made and well-defined synthetic polymers can overcome this limitation., Experiments: We prepared and characterized the hydrodynamic properties of water-soluble poly(ethylene glycol)s (PEG) and studied their adsorption to mixtures of quartz, illite, and goethite in batch and column experiments., Findings: We used this information to independently predict the transport of PEG with striking agreement to the observed mean breakthrough times in all porous media. As PEG transport can be comprehensively and quantitatively reconstructed, we conclude that functionalized PEGs are promising candidates to be used as tailorable and non-toxic tracers available in the size range of natural organic (macro-)molecules., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
34. Solely aqueous formulation of hydrophobic cationic polymers for efficient gene delivery.
- Author
-
Solomun JI, Cinar G, Mapfumo P, Richter F, Moek E, Hausig F, Martin L, Hoeppener S, Nischang I, and Traeger A
- Subjects
- Cations, HEK293 Cells, Humans, Transfection, Gene Transfer Techniques, Polymers
- Abstract
Cationic polymers are promising gene delivery vectors due to their ability to bind and protect genetic material. The introduction of hydrophobic moieties into cationic polymers can further improve the vector efficiency, but common formulations of hydrophobic polymers involve harsh conditions such as organic solvents, impairing intactness and loading efficiency of the genetic material. In this study, a mild, aqueous formulation method for the encapsulation of high amounts of genetic material is presented. A well-defined pH-responsive hydrophobic copolymer, i.e. poly((n-butylmethacrylate)-co-(methylmethacrylate)-co-(2-(dimethylamino) ethylmethacrylate)), (PBMD) was synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization. Exploiting the pH-dependent solubility behavior of the polymer, stable pDNA loaded nanoparticles were prepared and characterized using analytical ultracentrifugation (AUC), cryo-transmission electron microscopy (cryo-TEM) and dynamic light scattering (DLS). This novel formulation approach showed high transfection efficiencies in HEK293T cells, while requiring 5- to 10-fold less pDNA compared to linear polyethylenimine (LPEI), in particular at short incubation times and in serum-containing media. Furthermore, the formulation was successfully adopted for siRNA and mRNA encapsulation and the commercially approved polymer Eudragit® E(PO/100). Overall, the aqueous formulation approach, accompanied by a tailor-made hydrophobic polymer and detailed physicochemical and application studies, led to improved gene delivery vectors with high potential for further applications., (Copyright © 2020 Elsevier B.V. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
35. Salient features of medical nanoparticles in biological fluids from an analytical ultracentrifuge.
- Author
-
Cinar G, Englert C, Schubert US, and Nischang I
- Subjects
- Humans, Nanoparticles
- Abstract
From the perspective of future translation, medical, biodegradable nanoparticles (NPs) have been investigated using an analytical ultracentrifuge in fluids of various complexity, including human serum, in the temperature range of 6 to 40 °C, and timescales relevant for a nanomedical targeting and clearance application. These studies provided salient insights into the integrity and degradation aspects of the NPs, imposed by varying solution environmental conditions. This was enabled by selective monitoring of the targeting dye moiety, cell-specifically directing the NPs to the desired location of interest, i.e. considering a future translative in vivo application. Our study provides experimental insights that are believed to be of key importance to gauge the feasibility of such translative applications in terms of (i) compatibility with patient sera, (ii) timescales of targeting success, and (iii) timescales of desired erosion enabling clearance from the target. All such aspects are provided a priori any in vivo implementation.
- Published
- 2020
- Full Text
- View/download PDF
36. Formulation of Liver-Specific PLGA-DY-635 Nanoparticles Loaded with the Protein Kinase C Inhibitor Bisindolylmaleimide I.
- Author
-
Shkodra B, Press AT, Vollrath A, Nischang I, Schubert S, Hoeppener S, Haas D, Enzensperger C, Lehmann M, Babic P, Benecke KJ, Traeger A, Bauer M, and Schubert US
- Abstract
Bisindolylmaleimide I (BIM-I) is a competitive pan protein kinase C inhibitor with anti-inflammatory and anti-metastatic properties, suggested to treat inflammatory diseases and various cancer entities. However, despite its therapeutic potential, BIM-I has two major drawbacks, i.e., it has a poor water solubility, and it binds the human ether-à-go-go-related gene (hERG) ion channels, potentially causing deadly arrhythmias. In this case, a targeted delivery of BIM-I is imperative to minimize peripheral side effects. To circumvent these drawbacks BIM-I was encapsulated into nanoparticles prepared from poly(lactic- co -glycolic acid) (PLGA) functionalized by the near-infrared dye DY-635. DY-635 served as an active targeting moiety since it selectively binds the OATP1B1 and OATP1B3 transporters that are highly expressed in liver and cancer cells. PLGA-DY-635 (BIM-I) nanoparticles were produced by nanoprecipitation and characterized using dynamic light scattering, analytical ultracentrifugation, and cryogenic transmission electron microscopy. Particle sizes were found to be in the range of 20 to 70 nm, while a difference in sizes between the drug-loaded and unloaded particles was observed by all analytical techniques. In vitro studies demonstrated that PLGA-DY-635 (BIM-I) NPs prevent the PKC activation efficiently, proving the efficacy of the inhibitor after its encapsulation, and suggesting that BIM-I is released from the PLGA-NPs. Ultimately, our results present a feasible formulation strategy that improved the cytotoxicity profile of BIM-I and showed a high cellular uptake in the liver as demonstrated in vivo by intravital microscopy investigations.
- Published
- 2020
- Full Text
- View/download PDF
37. Polysaccharide valproates: Structure - property relationships in solution.
- Author
-
Grube M, Dinu V, Lindemann H, Pielenz F, Festag G, Schubert US, Heinze T, Harding S, and Nischang I
- Subjects
- Chromatography, Gel, Diffusion, Hydrodynamics, Kinetics, Magnetic Resonance Spectroscopy, Molecular Weight, Solutions, Structure-Activity Relationship, Thermodynamics, Ultracentrifugation, Cellulose chemistry, Dextrans chemistry, Glucans chemistry, Valproic Acid chemistry
- Abstract
Polysaccharides are promising macromolecular platforms for use in the life sciences. Here, bioactive cellulose, pullulan, and dextran valproates are characterized hydrodynamically by sedimentation velocity and thermodynamically by sedimentation equilibrium analytical ultracentrifugation. Using sedimentation-diffusion analysis of sedimentation velocity experiments by numerical solution of the Lamm equation enabled the calculation of sedimentation and diffusion coefficients, and consequently molar masses. Sedimentation equilibrium experiments were then also used to determine the average molar masses. The corresponding set of data, with independently performed self-diffusion measurements by nuclear magnetic resonance spectroscopy, and together with size exclusion chromatography molar masses by coupling to refractive index-, viscometric-, and multi-angle laser light scattering detection, were subsequently correlated to each other by the hydrodynamic invariant and sedimentation parameter. We assess statistically most relevant average values of the molar masses of these polysaccharide valproates with relevant macromolecular conformational characteristics., (Copyright © 2020 Elsevier Ltd. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
38. In Situ, Quantitative Assessment of Multifunctional Nanoscale Drug Delivery Systems in Human Serum.
- Author
-
Cinar G, Englert C, Lehmann M, and Nischang I
- Subjects
- Humans, Nanoparticles metabolism, Ultracentrifugation, Drug Delivery Systems, Nanoparticles analysis
- Abstract
The large volume and diversified nanomedicine market, undergoing a rapid growth, relies not only on the creation and applicative exploration of nanocarrier-based medicines showing significant potential, but in particular, demands a quantitative assessment of their physicochemical properties. In this study, we demonstrate the in situ assessment of multifunctional biodegradable nanoparticle (NP) entries as core components of nanoscale drug delivery systems (NDDSs) by making use of analytical ultracentrifugation (AUC). We determine and elucidate the following characteristics of NPs in NDDSs: NP density and size, targeting dye functionality, encapsulated and free drug, surfactant, and also NP drug release dynamics, quantitatively interconnected to NP degradation. In concept, we demonstrate this by multidetection AUC experiments at variable speed and time profiles. We could verify the quantitative and accurate nature of AUC for assessment of NDDSs, that is, also future nanomedicines. This concerns modeled and real life solution application formats such as cell culture media and human serum.
- Published
- 2020
- Full Text
- View/download PDF
39. Revisiting very disperse macromolecule populations in hydrodynamic and light scattering studies of sodium carboxymethyl celluloses.
- Author
-
Grube M, Perevyazko I, Heinze T, Schubert US, and Nischang I
- Abstract
One of the most abundant natural macromolecule, cellulose, is of high importance in technological research including medicine, energy application platforms, and many more. One of its most important ionic derivatives, sodium carboxymethyl cellulose, is known to be very disperse and heterogeneous. The experimental robustness of the methods of hydrodynamics and light scattering are put to test by studying these highly disperse, charged, and heterogeneous macromolecule populations. The following opportunities for molar mass estimations from experimental data were taken into consideration: (i) from the classical Svedberg equation, (ii) from size exclusion chromatography coupled to multi-angle laser light scattering, (iii) from the hydrodynamic invariant, and (iv) the sedimentation parameter. The orthogonality of such approach demonstrates a statistically robust assessment of chain conformational and chain dimensional characteristics of macromolecule populations. Quantitative comparison between the absolute techniques indicates that those have to be checked for accuracy of the obtained and derived characteristics., (Copyright © 2019 Elsevier Ltd. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
40. Incentives of Using the Hydrodynamic Invariant and Sedimentation Parameter for the Study of Naturally- and Synthetically-Based Macromolecules in Solution.
- Author
-
Grube M, Cinar G, Schubert US, and Nischang I
- Abstract
The interrelation of experimental rotational and translational hydrodynamic friction data as a basis for the study of macromolecules in solution represents a useful attempt for the verification of hydrodynamic information. Such interrelation originates from the basic development of colloid and macromolecular science and has proven to be a powerful tool for the study of naturally- and synthetically-based, i.e., artificial, macromolecules. In this tutorial review, we introduce this very basic concept with a brief historical background, the governing physical principles, and guidelines for anyone making use of it. This is because very often data to determine such an interrelation are available and it only takes a set of simple equations for it to be established. We exemplify this with data collected over recent years, focused primarily on water-based macromolecular systems and with relevance for pharmaceutical applications. We conclude with future incentives and opportunities for verifying an advanced design and tailored properties of natural/synthetic macromolecular materials in a dispersed or dissolved manner, i.e., in solution. Particular importance for the here outlined concept emanates from the situation that the classical scaling relationships of Kuhn-Mark-Houwink-Sakurada, most frequently applied in macromolecular science, are fulfilled, once the hydrodynamic invariant and/or sedimentation parameter are established. However, the hydrodynamic invariant and sedimentation parameter concept do not require a series of molar masses for their establishment and can help in the verification of a sound estimation of molar mass values of macromolecules.
- Published
- 2020
- Full Text
- View/download PDF
41. The influence of directed hydrogen bonds on the self-assembly of amphiphilic polymers in water.
- Author
-
Klein T, Gruschwitz FV, Rogers S, Hoeppener S, Nischang I, and Brendel JC
- Abstract
Hypothesis: Molecules forming directed intermolecular hydrogen bonds, such as the well-known benzene-1,3,5-tricarboxamides (BTA) motif, are known to self-assemble into long fibrous structures. However, only a few of these systems have so far demonstrated the ability to form such anisotropic nanostructures, if they are combined with hydrophilic polymers to create an amphiphilic material. Here, we designed BTA-polymer conjugates to investigate whether the directionality of the hydrogen bonds or the ratio of hydrophobic to hydrophilic parts of the molecule, and thus the packing parameter, is decisive for obtaining anisotropic supramolecular structures in water., Experiments: Poly(ethylene glycol) was conjugated to BTA moieties with varying lengths of hydrophobic alkyl spacers ranging from two to twelve methylene units. The resulting amphiphilic materials were characterized in aqueous solution by light and small-angle neutron scattering, analytical ultracentrifugation, and cryo-transmission electron microscopy., Findings: While spherical micelles were observed for C
6 and C10 alkyl spacers, anisotropic structures were only present in case of the C12 spacer. The comparison to an analogous material, which lacks the directed hydrogen bonds, revealed that the BTA motif cannot provide a sufficient driving force to induce anisotropic structures, but increases the packing density in the hydrophobic part. Therefore, the packing parameter governs the appearance of anisotropic aggregates., (Copyright © 2019 Elsevier Inc. All rights reserved.)- Published
- 2019
- Full Text
- View/download PDF
42. The influence of gradient and statistical arrangements of guanidinium or primary amine groups in poly(methacrylate) copolymers on their DNA binding affinity.
- Author
-
Tabujew I, Cokca C, Zartner L, Schubert US, Nischang I, Fischer D, and Peneva K
- Subjects
- Structure-Activity Relationship, Amines chemistry, DNA metabolism, Guanidine chemistry, Polymethacrylic Acids chemistry, Polymethacrylic Acids metabolism
- Abstract
Herein, we report the first gradient guanidinium containing cationic copolymers and investigate their binding ability to plasmid DNA (pDNA). To understand the effect of different charge distributions and cationic charge sources (primary amines vs. guanidinium group) on (pDNA) binding affinity, we synthesized a library of well-defined statistical cationic copolymers comprising N-(2-hydroxy-propyl)methacrylamide (HPMA) and N-(3-aminopropyl)methacrylamide (APMA) or N-(3-guanidinopropyl)methacrylamide (GPMA) and compared them with gradient polymers containing the same monomers of similar composition. All copolymers were synthesized through aqueous reversible addition-fragmentation chain transfer (aRAFT) polymerization at various monomer ratios by aiming at similar molar masses with low dispersity indices. For the molar mass characterization, in addition to size exclusion chromatography with two different systems, hydrodynamic characterization utilizing analytical ultracentrifugation, viscometry, and accompanied density measurements was conducted. pDNA was used as a model drug to demonstrate the impact of copolymer architecture on binding efficiency. For both HPMA-APMA and HPMA-GPMA copolymers, the gradient distribution demonstrated superior binding and denser packing of pDNA than their statistical counterparts at 20% and lower cationic charge contents. With respect to charge origin, the guanidinium group represented a higher binding efficiency than primary amines with the same nitrogen to phosphate ratio (N/P ratio). Our study demonstrates the profound effect of gradient monomer arrangement on the ability of polyplex formation and reveals the potential for further investigation in gene delivery applications. Gradient guanidinium containing copolymers have great promise for gene delivery applications due to their high affinity toward pDNA even at very low degrees (<20%) of charged monomer content.
- Published
- 2019
- Full Text
- View/download PDF
43. Tannic Acid-Mediated Aggregate Stabilization of Poly( N -vinylpyrrolidone)- b -poly(oligo (ethylene glycol) methyl ether methacrylate) Double Hydrophilic Block Copolymers.
- Author
-
Al Nakeeb N, Nischang I, and Schmidt BVKJ
- Abstract
The self-assembly of block copolymers in aqueous solution is an important field in modern polymer science that has been extended to double hydrophilic block copolymers (DHBC) in recent years. In here, a significant improvement of the self-assembly process of DHBC in aqueous solution by utilizing a linear-brush macromolecular architecture is presented. The improved self-assembly behavior of poly( N -vinylpyrrolidone)- b -poly(oligo(ethylene glycol) methyl ether methacrylate) (PVP- b -P(OEGMA)) and its concentration dependency is investigated via dynamic light scattering (DLS) (apparent hydrodynamic radii ≈ 100-120 nm). Moreover, the DHBC assemblies can be non-covalently crosslinked with tannic acid via hydrogen bonding, which leads to the formation of small aggregates as well (apparent hydrodynamic radius ≈ 15 nm). Non-covalent crosslinking improves the self-assembly and stabilizes the aggregates upon dilution, reducing the concentration dependency of aggregate self-assembly. Additionally, the non-covalent aggregates can be disassembled in basic media. The presence of aggregates was studied via cryogenic scanning electron microscopy (cryo-SEM) and DLS before and after non-covalent crosslinking. Furthermore, analytical ultracentrifugation of the formed aggregate structures was performed, clearly showing the existence of polymer assemblies, particularly after non-covalent crosslinking. In summary, we report on the completely hydrophilic self-assembled structures in solution formed from fully biocompatible building entities in water., Competing Interests: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.
- Published
- 2019
- Full Text
- View/download PDF
44. Fast Screening of Diol Impurities in Methoxy Poly(Ethylene Glycol)s (mPEG)s by Liquid Chromatography on Monolithic Silica Rods.
- Author
-
Brunzel M, Majdanski TC, Vitz J, Nischang I, and Schubert US
- Abstract
The determination of diol impurities in methoxy poly(ethylene glycol)s (mPEG)s is of high importance, e.g., in the area of pharmaceutical applications, since mPEGs are considered the gold standard-based on properties of biocompatibility, stealth effect against the immune system, and well-established procedures used in PEGylation reactions. Herein, we communicate a straightforward and fast approach for the resolution of the PEGdiol impurities in mPEG products by liquid chromatography on reversed-phase monolithic silica-rods. Thus, we utilize fine, in-house prepared and narrow dispersity mPEGs ( Ð ≤ 1.1) and commercial PEGdiol standards as a reference. Most efficient analysis of diol impurities becomes possible with reversed-phase liquid chromatography that results in selective elution of the PEGdiol from mPEG macromolecule populations in partition/adsorption mode. We do this by a minimum selectivity of the population of macromolecules characterizing the narrow molar mass distributions of mPEG. Control experiments with intentionally added water at the start of the well-controlled mPEG synthesis via the living anionic ring opening polymerization of ethylene oxide clearly reconciled the existence of PEGdiol impurity in chromatographed samples. The here-demonstrated methodology allows for the resolution of diol impurities of less than one percent in elution times of only a few minutes, confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) of the collected elution fractions. The unique combination of the open flow-through pore structure of the monolithic silica rods and resultant varying accessibility of C18-derivatized pore surfaces indicates beneficial properties for robust and end-group-specific adsorption/partition liquid chromatography of synthetic macromolecules.
- Published
- 2018
- Full Text
- View/download PDF
45. Analytical ultracentrifugation (AUC): a seminal tool offering multiple solutions.
- Author
-
Byron O, Nischang I, and Patel TR
- Subjects
- Macromolecular Substances chemistry, Macromolecular Substances metabolism, Ultracentrifugation
- Abstract
Analytical ultracentrifugation (AUC) remains a highly versatile and widely applicable tool for the analysis of macromolecules and their interactions. The current state-of-the-art was demonstrated at a recent international meeting held in Glasgow, Scotland, in July 2017, the 23rd International Analytical Ultracentrifugation Workshop and Symposium. This special issue showcases the reports made at the meeting, which concerned the application of AUC to a wide range of topics in biochemical and polymer science including antibody and membrane protein characterisation, and protein-carbohydrate interactions. Presentations on development and testing of new instrumentation and methods of analysis were a particular feature of the meeting, including the optimisation of experimental protocols, and the latest optimised computational approaches to experimental simulation and the modelling of macromolecular structures.
- Published
- 2018
- Full Text
- View/download PDF
46. PMMA- g -OEtOx Graft Copolymers: Influence of Grafting Degree and Side Chain Length on the Conformation in Aqueous Solution.
- Author
-
Muljajew I, Weber C, Nischang I, and Schubert US
- Abstract
Depending on the degree of grafting (DG) and the side chain degree of polymerization (DP), graft copolymers may feature properties similar to statistical copolymers or to block copolymers. This issue is approached by studying aqueous solutions of PMMA- g -OEtOx graft copolymers comprising a hydrophobic poly(methyl methacrylate) (PMMA) backbone and hydrophilic oligo(2-ethyl-2-oxazoline) (OEtOx) side chains. The graft copolymers were synthesized via reversible addition-fragmentation chain transfer (RAFT) copolymerization of methyl methacrylate (MMA) and OEtOx-methacrylate macromonomers of varying DP. All aqueous solutions of PMMA- g -OEtOx (9% ≤ DG ≤ 34%; 5 ≤ side chain DP ≤ 24) revealed lower critical solution temperature behavior. The graft copolymer architecture significantly influenced the aggregation behavior, the conformation in aqueous solution and the coil to globule transition, as verified by means of turbidimetry, dynamic light scattering, nuclear magnetic resonance spectroscopy, and analytical ultracentrifugation. The aggregation behavior of graft copolymers with a side chain DP of 5 was significantly affected by small variations of the DG, occasionally forming mesoglobules above the cloud point temperature (T
cp ), which was around human body temperature. On the other hand, PMMA- g -OEtOx with elongated side chains assembled into well-defined structures below the Tcp (apparent aggregation number (Nagg = 10)) that were able to solubilize Disperse Orange 3. The thermoresponsive behavior of aqueous solutions thus resembled that of micelles comprising a poly(2-ethyl-2-oxazoline) (PEtOx) shell (Tcp > 60 °C).- Published
- 2018
- Full Text
- View/download PDF
47. Photocontrolled Release of Chemicals from Nano- and Microparticle Containers.
- Author
-
Englert C, Nischang I, Bader C, Borchers P, Alex J, Pröhl M, Hentschel M, Hartlieb M, Traeger A, Pohnert G, Schubert S, Gottschaldt M, and Schubert US
- Abstract
A benzoin-derived diol linker was synthesized and used to generate biocompatible polyesters that can be fully decomposed on demand upon UV irradiation. Extensive structural optimization of the linker unit was performed to enable the defined encapsulation of diverse organic compounds in the polymeric structures and allow for a well-controllable polymer cleavage process. Selective tracking of the release kinetics of encapsulated model compounds from the polymeric nano- and microparticle containers was performed by confocal laser scanning microscopy in a proof-of-principle study. The physicochemical properties of the incorporated and released model compounds ranged from fully hydrophilic to fully hydrophobic. The demonstrated biocompatibility of the utilized polyesters and degradation products enables their use in advanced applications, for example, for the smart packaging of UV-sensitive pharmaceuticals, nutritional components, or even in the area of spatially selective self-healing processes., (© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.)
- Published
- 2018
- Full Text
- View/download PDF
48. Site-Specific POxylation of Interleukin-4.
- Author
-
Lühmann T, Schmidt M, Leiske MN, Spieler V, Majdanski TC, Grube M, Hartlieb M, Nischang I, Schubert S, Schubert US, and Meinel L
- Abstract
Polymer conjugated biologics form a multibillion dollar market, dominated by poly(ethylene glycol) (PEG). Recent reports linked PEGs to immunological concerns, fueling the need for alternative polymers. Therefore, we are presenting a strategy replacing PEG by poly(2-oxazoline) (POx) polymers using genetically engineered interleukin-4 (IL-4) featuring an unnatural amino acid for site-specific conjugation through bioorthogonal copper-catalyzed azide alkyne cycloaddition (CuAAC). Conjugation yields of IL-4-PEG were poor and did not respond to an increase in the copper catalyst. In contrast, POxylated IL-4 conjugates resulted in homogeneous conjugate outcome, as demonstrated electrophoretically by size exclusion chromatography and analytical ultracentrifugation. Furthermore, POxylation did not impair thermal and chemical stability, and preserved wild-type IL-4 activity for the conjugates as demonstrated by TF-1 cell proliferation and STAT-6 phosphorylation in HEK293T cells, respectively. In conclusion, POxylation provides an interesting alternative to PEGylation with superior outcome for the synthesis yield by CuAAC and resulting in conjugates with excellent thermal and chemical stress profiles as well as biological performances.
- Published
- 2017
- Full Text
- View/download PDF
49. Hydrodynamic Analysis Resolves the Pharmaceutically-Relevant Absolute Molar Mass and Solution Properties of Synthetic Poly(ethylene glycol)s Created by Varying Initiation Sites.
- Author
-
Nischang I, Perevyazko I, Majdanski T, Vitz J, Festag G, and Schubert US
- Subjects
- Anions chemistry, Chromatography, Gel, Diffusion, Hydrodynamics, Molecular Weight, Polymerization, Solutions, Ultracentrifugation, Viscosity, Polyethylene Glycols chemistry
- Abstract
The solution behavior originating from molecular characteristics of synthetic macromolecules plays a pivotal role in many areas, in particular the life sciences. This situation necessitates the use of complementary hydrodynamic analytical methods as the only means for a complete structural understanding of any macromolecule in solution. To this end, we present a combined hydrodynamic approach for studying in-house prepared, low dispersity poly(ethylene glycols)s (PEGs), also known as poly(ethylene oxide)s (PEOs) depending on the classification used, synthesized from varying initiation sites by the living anionic ring opening polymerization. The series of linear PEGs in the molar mass range of only a few thousand to 50 000 g mol
-1 have been studied in detail via viscometry and sedimentation-diffusion analysis by analytical ultracentrifugation. The obtained estimations for intrinsic viscosity, diffusion coefficients, and sedimentation coefficients of the macromolecules in the solution-based analysis clearly showed self-consistency of the followed hydrodynamic approach. This self-consistency is underpinned by appropriate and physically sound values of hydrodynamic invariants, indicating adequate values of derived absolute molar masses. The classical scaling relations of Kuhn-Mark-Houwink-Sakurada of all molar-mass dependent hydrodynamic estimates show linear trends, allowing for interrelation of all parametric macromolecular characteristics. Differences among these are ascribed to the observation of α-end and chain-length dependent solvation of the macromolecules, identified from viscometric studies. This important information allows for analytical tracing of variations of scaling relationships and a physically sound estimation of hydrodynamic characteristics. The demonstrated self-sufficient methodology paves an important way for a complete structural understanding and potential replacement of pharmaceutically relevant PEGs by alternative macromolecules offering a suite of similar or tractably distinct physicochemical properties.- Published
- 2017
- Full Text
- View/download PDF
50. Radical-mediated step-growth: Preparation of hybrid polymer monolithic columns with fine control of nanostructural and chromatographic characteristics.
- Author
-
Alves F and Nischang I
- Subjects
- Adsorption, Chromatography, Liquid, Cross-Linking Reagents chemistry, Polymerization, Porosity, Silicon Dioxide chemistry, Solvents, Sulfhydryl Compounds chemistry, Nanostructures, Siloxanes chemistry, Vinyl Compounds chemistry
- Abstract
The currently most successful type of porous polymer monoliths utilized in chromatography is prepared by free-radical cross-linking (co)polymerization in porogenic solvents and a single-step molding process. Though such types of materials are well-recognized in the scientific community, they suffer from their multi-scale heterogeneity originating from the nanoscale through to their microscale and ultimately limited performance on their macroscale. This is in particular true when estimating their performance under equilibrium (i.e. isocratic) elution conditions for retained compounds. In this contribution, we study a new concept in the preparation of porous monolithic hybrid materials based on polyhedral oligomeric vinylsilsesquioxanes which undergo radical mediated step-growth cross-linking with thiol-linkers. Fundamental characterization of this new entry of materials is performed via a variety of characterization approaches including infrared and Raman spectroscopies, thermogravimetric analysis, gel fraction, dry-state surface area analysis, and visualization of the capillary-scale porous structure by scanning electron microscopy. This characterization identifies that a rational choice of experimental conditions in monolith preparation leads to destined and desirable materials' properties, in particular with experimentally accessible near-ideal nanoscale network structures. With the obtained structural informations at hand, we finally evidence the monoliths' tailored chromatographic performance by isocratic elution experiments of structurally similar small molecules under reversed-phase type of chromatographic conditions. This validates the fundamental origin for an improved performance of these types of monolithic materials under solvated conditions that has its foundation established in the creation of near-ideal nanoscale networks of material. This identified ideality is manifested in an enhanced and almost retention-insensitive performance in liquid chromatographic separations of small molecules across wide ranges of retention factors over at least two orders of magnitude and wide ranges of mobile phase compositions. Such experimental observation is explained by a more homogeneous energetic distribution of partition and adsorption sites. A reference analysis of normalized plate height data at varied retention was performed and set in context with data of state-of-the-art silica- and polymer-based monoliths. This analysis clearly identifies the present materials to display performance behavior clearly located in the domain of derivatized silica-based monoliths., (Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.