Tumor identification is one of the main and most influential factors in the identification of the type of treatment, the treatment process, the success rate of treatment and the follow-up of the disease. Convolution neural networks are one of the most important and practical classes in the field of deep learning and feed-forward neural networks that is highly applicable for analyzing visual imagery. CNNs learn the features extracted by the convolution and maxpooling layers. Extreme Learning Machines (ELM) are a kind of learning algorithm that consists of one or more layers of hidden nodes. These networks are used in various fields such as classification and regression. By using a CNN, this paper tries to extract hidden features from images. Then a kernel ELM (KELM) classifies the images based on these extracted features. In this work, we will use a dataset to evaluate the effectiveness of our proposed method, which consists of three types of brain tumors including meningioma, glioma and pituitary tumor in T1-weighted contrast-enhanced MRI (CE-MRI) images. The results of this ensemble of CNN and KELM (KE-CNN) are compared with different classifiers such as Support Vector Machine, Radial Base Function, and some other classifiers. These comparisons show that the KE-CNN has promising results for brain tumor classification.