15 results on '"Nie, Y. B."'
Search Results
2. The Detector System of The Daya Bay Reactor Neutrino Experiment
- Author
-
An, F. P., Bai, J. Z., Balantekin, A. B., Band, H. R., Beavis, D., Beriguete, W., Bishai, M., Blyth, S., Brown, R. L., Butorov, I., Cao, D., Cao, G. F., Cao, J., Carr, R., Cen, W. R., Chan, W. T., Chan, Y. L., Chang, J. F., Chang, L. C., Chang, Y., Chasman, C., Chen, H. Y., Chen, H. S., Chen, M. J., Chen, Q. Y., Chen, S. J., Chen, S. M., Chen, X. C., Chen, X. H., Chen, X. S., Chen, Y. X., Chen, Y., Cheng, J. H., Cheng, J., Cheng, Y. P., Cherwinka, J. J., Chidzik, S., Chow, K., Chu, M. C., Cummings, J. P., de Arcos, J., Deng, Z. Y., Ding, X. F., Ding, Y. Y., Diwan, M. V., Dong, L., Dove, J., Draeger, E., Du, X. F., Dwyer, D. A., Edwards, W. R., Ely, S. R., Fang, S. D., Fu, J. Y., Fu, Z. W., Ge, L. Q., Ghazikhanian, V., Gill, R., Goett, J., Gonchar, M., Gong, G. H., Gong, H., Gornushkin, Y. A., Grassi, M., Greenler, L. S., Gu, W. Q., Guan, M. Y., Guo, R. P., Guo, X. H., Hackenburg, R. W., Hahn, R. L., Han, R., Hans, S., He, M., He, Q., He, W. S., Heeger, K. M., Heng, Y. K., Higuera, A., Hinrichs, P., Ho, T. H., Hoff, M., Hor, Y. K., Hsiung, Y. B., Hu, B. Z., Hu, L. M., Hu, L. J., Hu, T., Hu, W., Huang, E. C., Huang, H. Z., Huang, H. X., Huang, P. W., Huang, X., Huang, X. T., Huber, P., Hussain, G., Isvan, Z., Jaffe, D. E., Jaffke, P., Jen, K. L., Jetter, S., Ji, X. P., Ji, X. L., Jiang, H. J., Jiang, W. Q., Jiao, J. B., Johnson, R. A., Joseph, J., Kang, L., Kettell, S. H., Kohn, S., Kramer, M., Kwan, K. K., Kwok, M. W., Kwok, T., Lai, C. Y., Lai, W. C., Lai, W. H., Langford, T. J., Lau, K., Lebanowski, L., Lee, J., Lee, M. K. P., Lei, R. T., Leitner, R., Leung, J. K. C., Leung, K. Y., Lewis, C. A., Li, B., Li, C., Li, D. J., Li, F., Li, G. S., Li, J., Li, N. Y., Li, Q. J., Li, S. F., Li, S. C., Li, W. D., Li, X. B., Li, X. N., Li, X. Q., Li, Y., Li, Y. F., Li, Z. B., Liang, H., Liang, J., Lin, C. J., Lin, G. L., Lin, P. Y., Lin, S. X., Lin, S. K., Lin, Y. C., Ling, J. J., Link, J. M., Littenberg, L., Littlejohn, B. R., Liu, B. J., Liu, C., Liu, D. W., Liu, H., Liu, J. L., Liu, J. C., Liu, S., Liu, S. S., Liu, X., Liu, Y. B., Lu, C., Lu, H. Q., Lu, J. S., Luk, A., Luk, K. B., Luo, T., Luo, X. L., Ma, L. H., Ma, Q. M., Ma, X. Y., Ma, X. B., Ma, Y. Q., Mayes, B., McDonald, K. T., McFarlane, M. C., McKeown, R. D., Meng, Y., Mitchell, I., Mohapatra, D., Kebwaro, J. Monari, Morgan, J. E., Nakajima, Y., Napolitano, J., Naumov, D., Naumova, E., Newsom, C., Ngai, H. Y., Ngai, W. K., Nie, Y. B., Ning, Z., Ochoa-Ricoux, J. P., Olshevskiy, A., Pagac, A., Pan, H. -R., Patton, S., Pearson, C., Pec, V., Peng, J. C., Piilonen, L. E., Pinsky, L., Pun, C. S. J., Qi, F. Z., Qi, M., Qian, X., Raper, N., Ren, B., Ren, J., Rosero, R., Roskovec, B., Ruan, X. C., Sands III, W. R., Seilhan, B., Shao, B. B., Shih, K., Song, W. Y., Steiner, H., Stoler, P., Stuart, M., Sun, G. X., Sun, J. L., Tagg, N., Tam, Y. H., Tanaka, H. K., Tang, W., Tang, X., Taychenachev, D., Themann, H., Torun, Y., Trentalange, S., Tsai, O., Tsang, K. V., Tsang, R. H. M., Tull, C. E., Tung, Y. C., Viaux, N., Viren, B., Virostek, S., Vorobel, V., Wang, C. H., Wang, L. S., Wang, L. Y., Wang, L. Z., Wang, M., Wang, N. Y., Wang, R. G., Wang, T., Wang, W., Wang, W. W., Wang, X. T., Wang, X., Wang, Y. F., Wang, Z., Wang, Z. M., Webber, D. M., Wei, H. Y., Wei, Y. D., Wen, L. J., Wenman, D. L., Whisnant, K., White, C. G., Whitehead, L., Whitten Jr., C. A., Wilhelmi, J., Wise, T., Wong, H. C., Wong, H. L. H., Wong, J., Wong, S. C. F., Worcester, E., Wu, F. F., Wu, Q., Xia, D. M., Xia, J. K., Xiang, S. T., Xiao, Q., Xing, Z. Z., Xu, G., Xu, J. Y., Xu, J. L., Xu, J., Xu, W., Xu, Y., Xue, T., Yan, J., Yang, C. G., Yang, L., Yang, M. S., Yang, M. T., Ye, M., Yeh, M., Yeh, Y. S., Yip, K., Young, B. L., Yu, G. Y., Yu, Z. Y., Zeng, S., Zhan, L., Zhang, C., Zhang, F. H., Zhang, H. H., Zhang, J. W., Zhang, K., Zhang, Q. X., Zhang, Q. M., Zhang, S. H., Zhang, X. T., Zhang, Y. C., Zhang, Y. H., Zhang, Y. M., Zhang, Y. X., Zhang, Z. J., Zhang, Z. Y., Zhang, Z. P., Zhao, J., Zhao, Q. W., Zhao, Y. F., Zhao, Y. B., Zheng, L., Zhong, W. L., Zhou, L., Zhou, N., Zhou, Z. Y., Zhuang, H. L., Zimmerman, S., and Zou, J. H.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment - Abstract
The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of $\bar{\nu}_e$ oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of $\rm{sin}^22\theta_{13}$ and the effective mass splitting $\Delta m_{ee}^2$. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrum due to neutrino mixing. Instrumented with photomultiplier tubes (PMTs), the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors' baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This paper describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking., Comment: 52 pages, 51 figures
- Published
- 2015
- Full Text
- View/download PDF
3. Improved Measurement of Electron Antineutrino Disappearance at Daya Bay
- Author
-
Daya Bay Collaboration, An, F. P., An, Q., Bai, J. Z., Balantekin, A. B., Band, H. R., Beriguete, W., Bishai, M., Blyth, S., Brown, R. L., Cao, G. F., Cao, J., Carr, R., Chan, W. T., Chang, J. F., Chang, Y., Chasman, C., Chen, H. S., Chen, H. Y., Chen, S. J., Chen, S. M., Chen, X. C., Chen, X. H., Chen, X. S., Chen, Y., Chen, Y. X., Cherwinka, J. J., Chu, M. C., Cummings, J. P., Deng, Z. Y., Ding, Y. Y., Diwan, M. V., Draeger, E., Du, X. F., Dwyer, D., Edwards, W. R., Ely, S. R., Fang, S. D., Fu, J. Y., Fu, Z. W., Ge, L. Q., Gill, R. L., Gonchar, M., Gong, G. H., Gong, H., Gornushkin, Y. A., Gu, W. Q., Guan, M. Y., Guo, X. H., Hackenburg, R. W., Hahn, R. L., Hans, S., Hao, H. F., He, M., He, Q., Heeger, K. M., Heng, Y. K., Hinrichs, P., Hor, Y. K., Hsiung, Y. B., Hu, B. Z., Hu, T., Huang, H. X., Huang, H. Z., Huang, X. T., Huber, P., Issakov, V., Isvan, Z., Jaffe, D. E., Jetter, S., Ji, X. L., Ji, X. P., Jiang, H. J., Jiao, J. B., Johnson, R. A., Kang, L., Kettell, S. H., Kramer, M., Kwan, K. K., Kwok, M. W., Kwok, T., Lai, C. Y., Lai, W. C., Lai, W. H., Lau, K., Lebanowski, L., Lee, J., Lei, R. T., Leitner, R., Leung, J. K. C., Leung, K. Y., Lewis, C. A., Li, F., Li, G. S., Li, Q. J., Li, W. D., Li, X. B., Li, X. N., Li, X. Q., Li, Y., Li, Z. B., Liang, H., Lin, C. J., Lin, G. L., Lin, S. K., Lin, Y. C., Ling, J. J., Link, J. M., Littenberg, L., Littlejohn, B. R., Liu, D. W., Liu, J. C., Liu, J. L., Liu, Y. B., Lu, C., Lu, H. Q., Luk, A., Luk, K. B., Ma, Q. M., Ma, X. B., Ma, X. Y., Ma, Y. Q., McDonald, K. T., McFarlane, M. C., McKeown, R. D., Meng, Y., Mohapatra, D., Nakajima, Y., Napolitano, J., Naumov, D., Nemchenok, I., Ngai, H. Y., Ngai, W. K., Nie, Y. B., Ning, Z., Ochoa-Ricoux, J. P., Olshevski, A., Patton, S., Pec, V., Peng, J. C., Piilonen, L. E., Pinsky, L., Pun, C. S. J., Qi, F. Z., Qi, M., Qian, X., Raper, N., Ren, J., Rosero, R., Roskovec, B., Ruan, X. C., Shao, B. B., Shih, K., Steiner, H., Sun, G. X., Sun, J. L., Tagg, N., Tam, Y. H., Tanaka, H. K., Tang, X., Themann, H., Torun, Y., Trentalange, S., Tsai, O., Tsang, K. V., Tsang, R. H. M., Tull, C. E., Tung, Y. C., Viren, B., Vorobel, V., Wang, C. H., Wang, L. S., Wang, L. Y., Wang, L. Z., Wang, M., Wang, N. Y., Wang, R. G., Wang, W., Wang, X., Wang, Y. F., Wang, Z., Wang, Z. M., Webber, D. M., Wei, H. Y., Wei, Y. D., Wen, L. J., Whisnant, K., White, C. G., Whitehead, L., Williamson, Y., Wise, T., Wong, H. L. H., Worcester, E. T., Wu, F. F., Wu, Q., Xi, J. B., Xia, D. M., Xing, Z. Z., Xu, J., Xu, J. L., Xu, Y., Xue, T., Yang, C. G., Yang, L., Ye, M., Yeh, M., Yeh, Y. S., Young, B. L., Yu, Z. Y., Zhan, L., Zhang, C., Zhang, F. H., Zhang, J. W., Zhang, Q. M., Zhang, S. H., Zhang, Y. C., Zhang, Y. H., Zhang, Y. X., Zhang, Z. J., Zhang, Z. P., Zhang, Z. Y., Zhao, J., Zhao, Q. W., Zhao, Y. B., Zheng, L., Zhong, W. L., Zhou, L., Zhou, Z. Y., Zhuang, H. L., and Zou, J. H.
- Subjects
High Energy Physics - Experiment ,Nuclear Experiment - Abstract
We report an improved measurement of the neutrino mixing angle $\theta_{13}$ from the Daya Bay Reactor Neutrino Experiment. We exclude a zero value for $\sin^22\theta_{13}$ with a significance of 7.7 standard deviations. Electron antineutrinos from six reactors of 2.9 GW$_{\rm th}$ were detected in six antineutrino detectors deployed in two near (flux-weighted baselines of 470 m and 576 m) and one far (1648 m) underground experimental halls. Using 139 days of data, 28909 (205308) electron antineutrino candidates were detected at the far hall (near halls). The ratio of the observed to the expected number of antineutrinos assuming no oscillations at the far hall is $0.944\pm 0.007({\rm stat.}) \pm 0.003({\rm syst.})$. An analysis of the relative rates in six detectors finds $\sin^22\theta_{13}=0.089\pm 0.010({\rm stat.})\pm0.005({\rm syst.})$ in a three-neutrino framework., Comment: 21 pages, 24 figures. Submitted to and accepted by Chinese Physics C. Two typos were corrected. Description improved
- Published
- 2012
- Full Text
- View/download PDF
4. Observation of electron-antineutrino disappearance at Daya Bay
- Author
-
An, F. P., Bai, J. Z., Balantekin, A. B., Band, H. R., Beavis, D., Beriguete, W., Bishai, M., Blyth, S., Boddy, K., Brown, R. L., Cai, B., Cao, G. F., Cao, J., Carr, R., Chan, W. T., Chang, J. F., Chang, Y., Chasman, C., Chen, H. S., Chen, H. Y., Chen, S. J., Chen, S. M., Chen, X. C., Chen, X. H., Chen, X. S., Chen, Y., Chen, Y. X., Cherwinka, J. J., Chu, M. C., Cummings, J. P., Deng, Z. Y., Ding, Y. Y., Diwan, M. V., Dong, L., Draeger, E., Du, X. F., Dwyer, D. A., Edwards, W. R., Ely, S. R., Fang, S. D., Fu, J. Y., Fu, Z. W., Ge, L. Q., Ghazikhanian, V., Gill, R. L., Goett, J., Gonchar, M., Gong, G. H., Gong, H., Gornushkin, Y. A., Greenler, L. S., Gu, W. Q., Guan, M. Y., Guo, X. H., Hackenburg, R. W., Hahn, R. L., Hans, S., He, M., He, Q., He, W. S., Heeger, K. M., Heng, Y. K., Hinrichs, P., Ho, T. H., Hor, Y. K., Hsiung, Y. B., Hu, B. Z., Hu, T., Huang, H. X., Huang, H. Z., Huang, P. W., Huang, X., Huang, X. T., Huber, P., Isvan, Z., Jaffe, D. E., Jetter, S., Ji, X. L., Ji, X. P., Jiang, H. J., Jiang, W. Q., Jiao, J. B., Johnson, R. A., Kang, L., Kettell, S. H., Kramer, M., Kwan, K. K., Kwok, M. W., Kwok, T., Lai, C. Y., Lai, W. C., Lai, W. H., Lau, K., Lebanowski, L., Lee, J., Lee, M. K. P., Leitner, R., Leung, J. K. C., Leung, K. Y., Lewis, C. A., Li, B., Li, F., Li, G. S., Li, J., Li, Q. J., Li, S. F., Li, W. D., Li, X. B., Li, X. N., Li, X. Q., Li, Y., Li, Z. B., Liang, H., Liang, J., Lin, C. J., Lin, G. L., Lin, S. K., Lin, S. X., Lin, Y. C., Ling, J. J., Link, J. M., Littenberg, L., Littlejohn, B. R., Liu, B. J., Liu, C., Liu, D. W., Liu, H., Liu, J. C., Liu, J. L., Liu, S., Liu, X., Liu, Y. B., Lu, C., Lu, H. Q., Luk, A., Luk, K. B., Luo, T., Luo, X. L., Ma, L. H., Ma, Q. M., Ma, X. B., Ma, X. Y., Ma, Y. Q., Mayes, B., McDonald, K. T., McFarlane, M. C., McKeown, R. D., Meng, Y., Mohapatra, D., Morgan, J. E., Nakajima, Y., Napolitano, J., Naumov, D., Nemchenok, I., Newsom, C., Ngai, H. Y., Ngai, W. K., Nie, Y. B., Ning, Z., Ochoa-Ricoux, J. P., Oh, D., Olshevski, A., Pagac, A., Patton, S., Pearson, C., Pec, V., Peng, J. C., Piilonen, L. E., Pinsky, L., Pun, C. S. J., Qi, F. Z., Qi, M., Qian, X., Raper, N., Rosero, R., Roskovec, B., Ruan, X. C., Seilhan, B., Shao, B. B., Shih, K., Steiner, H., Stoler, P., Sun, G. X., Sun, J. L., Tam, Y. H., Tanaka, H. K., Tang, X., Themann, H., Torun, Y., Trentalange, S., Tsai, O., Tsang, K. V., Tsang, R. H. M., Tull, C., Viren, B., Virostek, S., Vorobel, V., Wang, C. H., Wang, L. S., Wang, L. Y., Wang, L. Z., Wang, M., Wang, N. Y., Wang, R. G., Wang, T., Wang, W., Wang, X., Wang, Y. F., Wang, Z., Wang, Z. M., Webber, D. M., Wei, Y. D., Wen, L. J., Wenman, D. L., Whisnant, K., White, C. G., Whitehead, L., Whitten Jr., C. A., Wilhelmi, J., Wise, T., Wong, H. C., Wong, H. L. H., Wong, J., Worcester, E. T., Wu, F. F., Wu, Q., Xia, D. M., Xiang, S. T., Xiao, Q., Xing, Z. Z., Xu, G., Xu, J., Xu, J. L., Xu, W., Xu, Y., Xue, T., Yang, C. G., Yang, L., Ye, M., Yeh, M., Yeh, Y. S., Yip, K., Young, B. L., Yu, Z. Y., Zhan, L., Zhang, C., Zhang, F. H., Zhang, J. W., Zhang, Q. M., Zhang, K., Zhang, Q. X., Zhang, S. H., Zhang, Y. C., Zhang, Y. H., Zhang, Y. X., Zhang, Z. J., Zhang, Z. P., Zhang, Z. Y., Zhao, J., Zhao, Q. W., Zhao, Y. B., Zheng, L., Zhong, W. L., Zhou, L., Zhou, Z. Y., Zhuang, H. L., and Zou, J. H.
- Subjects
High Energy Physics - Experiment - Abstract
The Daya Bay Reactor Neutrino Experiment has measured a non-zero value for the neutrino mixing angle $\theta_{13}$ with a significance of 5.2 standard deviations. Antineutrinos from six 2.9 GW$_{\rm th}$ reactors were detected in six antineutrino detectors deployed in two near (flux-weighted baseline 470 m and 576 m) and one far (1648 m) underground experimental halls. With a 43,000 ton-GW_{\rm th}-day livetime exposure in 55 days, 10416 (80376) electron antineutrino candidates were detected at the far hall (near halls). The ratio of the observed to expected number of antineutrinos at the far hall is $R=0.940\pm 0.011({\rm stat}) \pm 0.004({\rm syst})$. A rate-only analysis finds $\sin^22\theta_{13}=0.092\pm 0.016({\rm stat})\pm0.005({\rm syst})$ in a three-neutrino framework., Comment: 5 figures. Version to appear in Phys. Rev. Lett
- Published
- 2012
- Full Text
- View/download PDF
5. A side-by-side comparison of Daya Bay antineutrino detectors
- Author
-
Daya Bay Collaboration, An, F. P., An, Q., Bai, J. Z., Balantekin, A. B., Band, H. R., Beriguete, W., Bishai, M., Blyth, S., Brown, R. L., Cao, G. F., Cao, J., Carr, R., Chang, J. F., Chang, Y., Chasman, C., Chen, H. S., Chen, S. J., Chen, S. M., Chen, X. C., Chen, X. H., Chen, X. S., Chen, Y., Cherwinka, J. J., Chu, M. C., Cummings, J. P., Deng, Z. Y., Ding, Y. Y., Diwan, M. V., Draeger, E., Du, X. F., Dwyer, D., Edwards, W. R., Ely, S. R., Fang, S. D., Fu, J. Y., Fu, Z. W., Ge, L. Q., Gill, R. L., Gonchar, M., Gong, G. H., Gong, H., Gornushkin, Y. A., Greenler, L. S., Gu, W. Q., Guan, M. Y., Guo, X. H., Hackenburg, R. W., Hahn, R. L., Hans, S., Hao, H. F., He, M., He, Q., He, W. S., Heeger, K. M., Heng, Y. K., Hinrichs, P., Ho, T. H., Hor, Y. K., Hsiung, Y. B., Hu, B. Z., Hu, T., Huang, H. X., Huang, H. Z., Huang, P. W., Huang, X., Huang, X. T., Huber, P., Jaffe, D. E., Jetter, S., Ji, X. L., Ji, X. P., Jiang, H. J., Jiang, W. Q., Jiao, J. B., Johnson, R. A., Kang, L., Kettell, S. H., Kramer, M., Kwan, K. K., Kwok, M. W., Kwok, T., Lai, C. Y., Lai, W. C., Lai, W. H., Lau, K., Lebanowski, L., Lee, M. K. P., Leitner, R., Leung, J. K. C., Leung, K. Y., Lewis, C. A., Li, F., Li, G. S., Li, J., Li, Q. J., Li, S. F., Li, W. D., Li, X. B., Li, X. N., Li, X. Q., Li, Y., Li, Z. B., Liang, H., Lin, C. J., Lin, G. L., Lin, S. K., Lin, S. X., Lin, Y. C., Ling, J. J., Link, J. M., Littenberg, L., Littlejohn, B. R., Liu, B. J., Liu, D. W., Liu, J. C., Liu, J. L., Liu, S., Liu, X., Liu, Y. B., Lu, C., Lu, H. Q., Luk, A., Luk, K. B., Luo, X. L., Ma, L. H., Ma, Q. M., Ma, X. Y., Ma, Y. Q., Mayes, B., McDonald, K. T., McFarlane, M. C., McKeown, R. D., Meng, Y., Mohapatra, D., Nakajima, Y., Napolitano, J., Naumov, D., Nemchenok, I., Newsom, C., Ngai, H. Y., Ngai, W. K., Nie, Y. B., Ning, Z., Ochoa-Ricoux, J. P., Olshevski, A., Pagac, A., Patton, S., Pec, V., Peng, J. C., Piilonen, L. E., Pinsky, L., Pun, C. S. J., Qi, F. Z., Qi, M., Qian, X., Rosero, R., Roskovec, B., Ruan, X. C., Seilhan, B., Shao, B. B., Shih, K., Steiner, H., Stoler, P., Sun, G. X., Sun, J. L., Tam, Y. H., Tanaka, H. K., Tang, X., Torun, Y., Trentalange, S., Tsai, O., Tsang, K. V., Tsang, R. H. M., Tull, C., Viren, B., Vorobel, V., Wang, C. H., Wang, L. S., Wang, L. Y., Wang, M., Wang, N. Y., Wang, R. G., Wang, W., Wang, X., Wang, Y. F., Wang, Z., Wang, Z. M., Webber, D. M., Wei, Y. D., Wen, L. J., Wenman, D. L., Whisnant, K., White, C. G., Whitehead, L., Wilhelmi, J., Wise, T., Wong, H. L. H., Wong, J., Wu, F. F., Wu, Q., Xi, J. B., Xia, D. M., Xiao, Q., Xing, Z. Z., Xu, G., Xu, J., Xu, J. L., Xu, Y., Xue, T., Yang, C. G., Yang, L., Ye, M., Yeh, M., Yeh, Y. S., Young, B. L., Yu, Z. Y., Zhan, L., Zhang, C., Zhang, F. H., Zhang, J. W., Zhang, Q. M., Zhang, S. H., Zhang, Y. C., Zhang, Y. H., Zhang, Y. X., Zhang, Z. J., Zhang, Z. P., Zhang, Z. Y., Zhao, H., Zhao, J., Zhao, Q. W., Zhao, Y. B., Zheng, L., Zhong, W. L., Zhou, L., Zhou, Y. Z., Zhou, Z. Y., Zhuang, H. L., and Zou, J. H.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment ,Nuclear Experiment - Abstract
The Daya Bay Reactor Neutrino Experiment is designed to determine precisely the neutrino mixing angle $\theta_{13}$ with a sensitivity better than 0.01 in the parameter sin$^22\theta_{13}$ at the 90% confidence level. To achieve this goal, the collaboration will build eight functionally identical antineutrino detectors. The first two detectors have been constructed, installed and commissioned in Experimental Hall 1, with steady data-taking beginning September 23, 2011. A comparison of the data collected over the subsequent three months indicates that the detectors are functionally identical, and that detector-related systematic uncertainties exceed requirements., Comment: 24 pages, 36 figures
- Published
- 2012
- Full Text
- View/download PDF
6. Cloning and Characterization of Disease Resistance Protein RPM1 Genes against Powdery Mildew in Wheat Line N9134
- Author
-
Nie, Y. B. and Ji, W. Q.
- Published
- 2019
- Full Text
- View/download PDF
7. Measurement and calculation of neutron leakage spectra from slab samples of beryllium, gallium and tungsten irradiated with 14.8MeV neutrons.
- Author
-
Nie, Y. B., Ruan, X. C., Ren, J., Zhang, S., Han, R., Bao, J., Huang, H. X., Ding, Y. Y., Wu, H. C., Liu, P., and Zhou, Z. Y.
- Subjects
- *
NUCLEAR reactions , *TUNGSTEN , *DATA libraries , *SCINTILLATION counters - Abstract
In order to make benchmark validation of the nuclear data for gallium (Ga), tungsten (W) and beryllium (Be) in existing modern evaluated nuclear data files, neutron leakage spectra in the range from 0.8 to 15MeV from slab samples were measured by time-of-flight technique with a BC501 scintillation detector. The measurements were performed at China Institute of Atomic Energy (CIAE) using a D-T neutron source. The thicknesses of the slabs were 0.5 to 2.5 mean free path for 14.8MeV neutrons, and the measured angles were chosen to be 60° and 120°. The measured spectra were compared with those calculated by the continuous energy Monte-Carlo transport code MCNP, using the data from the CENDL-3.1, ENDF/B-VII.1 and JENDL-4.0 nuclear data files, the comparison between the experimental and calculated results show that: The results from all three libraries significantly underestimate the cross section in energy range of 10-13MeV for Ga; For W, the calculated spectra using data from CENDL-3.1 and JENDL-4.0 libraries show larger discrepancies with the measured ones, especially around 8.5-13.5MeV; and for Be, all the libraries led to underestimation below 3MeV at 120°. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
8. Cloning and Characterization of Disease Resistance Protein RPM1Genes against Powdery Mildew in Wheat Line N9134
- Author
-
Nie, Y. B. and Ji, W. Q.
- Abstract
Powdery mildew (Blumeria graminisf. sp. tritici) is one of the most devastating wheat diseases. The wheat line N9134 contains PmAS846that was transferred to N9134 from wild emmer wheat, and is still one of the most effective resistance genes in China. A full-length wheat RPM1gene was obtained by rapid amplification of cDNA ends (RACE) based on the up-regulated probe sequence from differentially expressed transcripts during the N9134 and powdery mildew interaction. The gene was named TaRPM1, and the open reading frame (ORF) is 2721 nucleotides and encodes a polypeptide of 907 amino acids with a predicted isoelectric point of 4.86. Phylogenetic analysis revealed that TaRPM1was highly homologous on both Aegilops tauschiiand Triticum urartuat both the nucleotide and protein level. Using real-time quantitative PCR, the TaRPM1gene expression level in wheat leaves was found to be sharply up-regulated, while the transcript level was lowly induced in the root and stem. Under the powdery mildew treatment, the transcription profile of TaRPM1was very strongly expressed at 48 hour post inoculation (hpi), which increased again to 96 hpi and reaching a high level at 120 hpi. Based on sequence similarities and positions, we inferred that the TaRPM1gene was on wheat chromosome 3D. These results suggested that TaRPM1plays an important role in the mechanism of innate immunity to infection by the powdery mildew pathogen.
- Published
- 2019
- Full Text
- View/download PDF
9. Observation of Electron-Antineutrino Disappearance at Daya Bay
- Author
-
Center for Neutrino Physics, Physics, An, F. P., Bai, J. Z., Balantekin, A. B., Band, H. R., Beavis, D., Beriguete, W., Bishai, M., Blyth, S., Boddy, K., Brown, R. L., Cai, B., Cao, G. F., Cao, J., Carr, Rachel E., Chan, W. T., Chang, J. F., Chang, Y., Chasman, C., Chen, H. S., Chen, H. Y., Chen, S. J., Chen, S. M., Chen, X. C., Chen, X. H., Chen, X. S., Chen, Y., Chen, Y. X., Cherwinka, J. J., Chu, M. C., Cummings, J. P., Deng, Z. Y., Ding, Y. Y., Diwan, M. V., Dong, L., Draeger, E., Du, X. F., Dwyer, D. A., Edwards, W. R., Ely, S. R., Fang, S. D., Fu, J. Y., Fu, Z. W., Ge, L. Q., Ghazikhanian, V., Gill, R. L., Goett, J., Gonchar, M., Gong, G. H., Gong, H., Gornushkin, Y. A., Greenler, L. S., Gu, W. Q., Guan, M. Y., Guo, X. H., Hackenburg, R. W., Hahn, R. L., Hans, S., He, M., He, Q., He, W. S., Heeger, K. M., Heng, Y. K., Hinrichs, P., Ho, T. H., Hor, Y. K., Hsiung, Y. B., Hu, B. Z., Hu, T., Huang, H. X., Huang, H. Z., Huang, P. W., Huang, X., Huang, X. T., Huber, Patrick, Isvan, Z., Jaffe, D. E., Jetter, S., Ji, X. L., Ji, X. P., Jiang, H. J., Jiang, W. Q., Jiao, J. B., Johnson, R. A., Kang, L., Kettell, S. H., Kramer, M., Kwan, K. K., Kwok, M. W., Kwok, T., Lai, C. Y., Lai, W. C., Lai, W. H., Lau, K., Lebanowski, L., Lee, J., Lee, M. K. P., Leitner, R., Leung, J. K. C., Leung, K. Y., Lewis, C. A., Li, B., Li, F., Li, G. S., Li, J., Li, Q. J., Li, S. F., Li, W. D., Li, X. B., Li, X. N., Li, X. Q., Li, Y., Li, Z. B., Liang, H., Liang, J., Lin, C. J., Lin, G. L., Lin, S. K., Lin, S. X., Lin, Y. C., Ling, J. J., Link, Jonathan M., Littenberg, L., Littlejohn, B. R., Liu, B. J., Liu, C., Liu, D. W., Liu, H., Liu, J. C., Liu, J. L., Liu, S., Liu, X., Liu, Y. B., Lu, C., Lu, H. Q., Luk, A., Luk, K. B., Luo, T., Luo, X. L., Ma, L. H., Ma, Q. M., Ma, X. B., Ma, X. Y., Ma, Y. Q., Mayes, B., McDonald, K. T., McFarlane, M. C., McKeown, R. D., Meng, Y., Mohapatra, D., Morgan, J. E., Nakajima, Y., Napolitano, J., Naumov, D., Nemchenok, I., Newsom, C., Ngai, H. Y., Ngai, W. K., Nie, Y. B., Ning, Z., Ochoa-Ricoux, J. P., Oh, D., Olshevski, A., Pagac, A., Patton, S., Pearson, C., Pec, V., Peng, J. C., Piilonen, Leo E., Pinsky, L., Pun, C. S. J., Qi, F. Z., Qi, M., Qian, X., Raper, N., Rosero, R., Roskovec, B., Ruan, X. C., Seilhan, B., Shao, B. B., Shih, K., Steiner, H., Stoler, P., Sun, G. X., Sun, J. L., Tam, Y. H., Tanaka, H. K., Tang, X., Themann, H., Torun, Y., Trentalange, S., Tsai, O., Tsang, K. V., Tsang, R. H. M., Tull, C., Viren, B., Virostek, S., Vorobel, V., Wang, C. H., Wang, L. S., Wang, L. Y., Wang, L. Z., Wang, M., Wang, N. Y., Wang, R. G., Wang, T., Wang, W., Wang, X., Wang, Y. F., Wang, Z., Wang, Z. M., Webber, D. M., Wei, Y. D., Wen, L. J., Wenman, D. L., Whisnant, K., White, C. G., Whitehead, L., Whitten, C. A., Wilhelmi, J., Wise, T., Wong, H. C., Wong, H. L. H., Wong, J., Worcester, E., Wu, F. F., Wu, Q., Xia, D. M., Xiang, S. T., Xiao, Q., Xing, Z. Z., Xu, G., Xu, J., Xu, J. L., Xu, W., Xu, Y., Xue, T., Yang, C. G., Yang, L., Ye, M., Yeh, M., Yeh, Y. S., Yip, K., Young, B. L., Yu, Z. Y., Zhan, L., Zhang, C., Zhang, F. H., Zhang, J. W., Zhang, Q. M., Zhang, K., Zhang, Q. X., Zhang, S. H., Zhang, Y. C., Zhang, Y. H. Percival, Zhang, Y. X., Zhang, Z. J., Zhang, Z. P., Zhang, Z. Y., Zhao, J., Zhao, Q. W., Zhao, Y. B., Zheng, L., Zhong, W. L., Zhou, L., Zhou, Z. Y., Zhuang, H. L., Zou, J. H., Center for Neutrino Physics, Physics, An, F. P., Bai, J. Z., Balantekin, A. B., Band, H. R., Beavis, D., Beriguete, W., Bishai, M., Blyth, S., Boddy, K., Brown, R. L., Cai, B., Cao, G. F., Cao, J., Carr, Rachel E., Chan, W. T., Chang, J. F., Chang, Y., Chasman, C., Chen, H. S., Chen, H. Y., Chen, S. J., Chen, S. M., Chen, X. C., Chen, X. H., Chen, X. S., Chen, Y., Chen, Y. X., Cherwinka, J. J., Chu, M. C., Cummings, J. P., Deng, Z. Y., Ding, Y. Y., Diwan, M. V., Dong, L., Draeger, E., Du, X. F., Dwyer, D. A., Edwards, W. R., Ely, S. R., Fang, S. D., Fu, J. Y., Fu, Z. W., Ge, L. Q., Ghazikhanian, V., Gill, R. L., Goett, J., Gonchar, M., Gong, G. H., Gong, H., Gornushkin, Y. A., Greenler, L. S., Gu, W. Q., Guan, M. Y., Guo, X. H., Hackenburg, R. W., Hahn, R. L., Hans, S., He, M., He, Q., He, W. S., Heeger, K. M., Heng, Y. K., Hinrichs, P., Ho, T. H., Hor, Y. K., Hsiung, Y. B., Hu, B. Z., Hu, T., Huang, H. X., Huang, H. Z., Huang, P. W., Huang, X., Huang, X. T., Huber, Patrick, Isvan, Z., Jaffe, D. E., Jetter, S., Ji, X. L., Ji, X. P., Jiang, H. J., Jiang, W. Q., Jiao, J. B., Johnson, R. A., Kang, L., Kettell, S. H., Kramer, M., Kwan, K. K., Kwok, M. W., Kwok, T., Lai, C. Y., Lai, W. C., Lai, W. H., Lau, K., Lebanowski, L., Lee, J., Lee, M. K. P., Leitner, R., Leung, J. K. C., Leung, K. Y., Lewis, C. A., Li, B., Li, F., Li, G. S., Li, J., Li, Q. J., Li, S. F., Li, W. D., Li, X. B., Li, X. N., Li, X. Q., Li, Y., Li, Z. B., Liang, H., Liang, J., Lin, C. J., Lin, G. L., Lin, S. K., Lin, S. X., Lin, Y. C., Ling, J. J., Link, Jonathan M., Littenberg, L., Littlejohn, B. R., Liu, B. J., Liu, C., Liu, D. W., Liu, H., Liu, J. C., Liu, J. L., Liu, S., Liu, X., Liu, Y. B., Lu, C., Lu, H. Q., Luk, A., Luk, K. B., Luo, T., Luo, X. L., Ma, L. H., Ma, Q. M., Ma, X. B., Ma, X. Y., Ma, Y. Q., Mayes, B., McDonald, K. T., McFarlane, M. C., McKeown, R. D., Meng, Y., Mohapatra, D., Morgan, J. E., Nakajima, Y., Napolitano, J., Naumov, D., Nemchenok, I., Newsom, C., Ngai, H. Y., Ngai, W. K., Nie, Y. B., Ning, Z., Ochoa-Ricoux, J. P., Oh, D., Olshevski, A., Pagac, A., Patton, S., Pearson, C., Pec, V., Peng, J. C., Piilonen, Leo E., Pinsky, L., Pun, C. S. J., Qi, F. Z., Qi, M., Qian, X., Raper, N., Rosero, R., Roskovec, B., Ruan, X. C., Seilhan, B., Shao, B. B., Shih, K., Steiner, H., Stoler, P., Sun, G. X., Sun, J. L., Tam, Y. H., Tanaka, H. K., Tang, X., Themann, H., Torun, Y., Trentalange, S., Tsai, O., Tsang, K. V., Tsang, R. H. M., Tull, C., Viren, B., Virostek, S., Vorobel, V., Wang, C. H., Wang, L. S., Wang, L. Y., Wang, L. Z., Wang, M., Wang, N. Y., Wang, R. G., Wang, T., Wang, W., Wang, X., Wang, Y. F., Wang, Z., Wang, Z. M., Webber, D. M., Wei, Y. D., Wen, L. J., Wenman, D. L., Whisnant, K., White, C. G., Whitehead, L., Whitten, C. A., Wilhelmi, J., Wise, T., Wong, H. C., Wong, H. L. H., Wong, J., Worcester, E., Wu, F. F., Wu, Q., Xia, D. M., Xiang, S. T., Xiao, Q., Xing, Z. Z., Xu, G., Xu, J., Xu, J. L., Xu, W., Xu, Y., Xue, T., Yang, C. G., Yang, L., Ye, M., Yeh, M., Yeh, Y. S., Yip, K., Young, B. L., Yu, Z. Y., Zhan, L., Zhang, C., Zhang, F. H., Zhang, J. W., Zhang, Q. M., Zhang, K., Zhang, Q. X., Zhang, S. H., Zhang, Y. C., Zhang, Y. H. Percival, Zhang, Y. X., Zhang, Z. J., Zhang, Z. P., Zhang, Z. Y., Zhao, J., Zhao, Q. W., Zhao, Y. B., Zheng, L., Zhong, W. L., Zhou, L., Zhou, Z. Y., Zhuang, H. L., and Zou, J. H.
- Abstract
The Daya Bay Reactor Neutrino Experiment has measured a nonzero value for the neutrino mixing angle 0(13) with a significance of 5.2 standard deviations. Antineutrinos from six 2.9 GW(th) reactors were detected in six antineutrino detectors deployed in two near (flux-weighted baseline 470 m and 576 m) and one far (1648 m) underground experimental halls. With a 43 000 ton-GW(th)-day live-time exposure in 55 days, 10 416 (80 376) electron-antineutrino candidates were detected at the far hall (near halls). The ratio of the observed to expected number of antineutrinos at the far hall is R = 0.940 +/- 0.011(stat.) +/- 0.004(syst.). A rate-only analysis finds sin(2)2 theta(13) = 0.092 +/- 0.016(stat.) +/- 0.005(syst.) in a three-neutrino framework.
- Published
- 2012
10. Improved measurement of electron antineutrino disappearance at Daya Bay
- Author
-
An, F. P., primary, An, Q., additional, Bai, J. Z., additional, Balantekin, A. B., additional, Band, H. R., additional, Beriguete, W., additional, Bishai, M., additional, Blyth, S., additional, Brown, R. L., additional, Cao, G. F., additional, Cao, J., additional, Carr, R., additional, Chan, W. T., additional, Chang, J. F., additional, Chang, Y., additional, Chasman, C., additional, Chen, H. S., additional, Chen, H. Y., additional, Chen, S. J., additional, Chen, S. M., additional, Chen, X. C., additional, Chen, X. H., additional, Chen, X. S., additional, Chen, Y., additional, Chen, Y. X., additional, Cherwinka, J. J., additional, Chu, M. C., additional, Cummings, J. P., additional, Deng, Z. Y., additional, Ding, Y. Y., additional, Diwan, M. V., additional, Draeger, E., additional, Du, X. F., additional, Dwyer, D., additional, Edwards, W. R., additional, Ely, S. R., additional, Fang, S. D., additional, Fu, J. Y., additional, Fu, Z. W., additional, Ge, L. Q., additional, Gill, R. L., additional, Gonchar, M., additional, Gong, G. H., additional, Gong, H., additional, Gornushkin, Y. A., additional, Gu, W. Q., additional, Guan, M. Y., additional, Guo, X. H., additional, Hackenburg, R. W., additional, Hahn, R. L., additional, Hans, S., additional, Hao, H. F., additional, He, M., additional, He, Q., additional, Heeger, K. M., additional, Heng, Y. K., additional, Hinrichs, P., additional, Hor, Y. K., additional, Hsiung, Y. B., additional, Hu, B. Z., additional, Hu, T., additional, Huang, H. X., additional, Huang, H. Z., additional, Huang, X. T., additional, Huber, P., additional, Issakov, V., additional, Isvan, Z., additional, Jaffe, D. E., additional, Jetter, S., additional, Ji, X. L., additional, Ji, X. P., additional, Jiang, H. J., additional, Jiao, J. B., additional, Johnson, R. A., additional, Kang, L., additional, Kettell, S. H., additional, Kramer, M., additional, Kwan, K. K., additional, Kwok, M. W., additional, Kwok, T., additional, Lai, C. Y., additional, Lai, W. C., additional, Lai, W. H., additional, Lau, K., additional, Lebanowski, L., additional, Lee, J., additional, Lei, R. T., additional, Leitner, R., additional, Leung, J. K. C., additional, Leung, K. Y., additional, Lewis, C. A., additional, Li, F., additional, Li, G. S., additional, Li, Q. J., additional, Li, W. D., additional, Li, X. B., additional, Li, X. N., additional, Li, X. Q., additional, Li, Y., additional, Li, Z. B., additional, Liang, H., additional, Lin, C. J., additional, Lin, G. L., additional, Lin, S. K., additional, Lin, Y. C., additional, Ling, J. J., additional, Link, J. M., additional, Littenberg, L., additional, Littlejohn, B. R., additional, Liu, D. W., additional, Liu, J. C., additional, Liu, J. L., additional, Liu, Y. B., additional, Lu, C., additional, Lu, H. Q., additional, Luk, A., additional, Luk, K. B., additional, Ma, Q. M., additional, Ma, X. B., additional, Ma, X. Y., additional, Ma, Y. Q., additional, McDonald, K. T., additional, McFarlane, M. C., additional, McKeown, R. D., additional, Meng, Y., additional, Mohapatra, D., additional, Nakajima, Y., additional, Napolitano, J., additional, Naumov, D., additional, Nemchenok, I., additional, Ngai, H. Y., additional, Ngai, W. K., additional, Nie, Y. B., additional, Ning, Z., additional, Ochoa-Ricoux, J. P., additional, Olshevski, A., additional, Patton, S., additional, Pec, V., additional, Peng, J. C., additional, Piilonen, L. E., additional, Pinsky, L., additional, Pun, C. S. J., additional, Qi, F. Z., additional, Qi, M., additional, Qian, X., additional, Raper, N., additional, Ren, J., additional, Rosero, R., additional, Roskovec, B., additional, Ruan, X. C., additional, Shao, B. B., additional, Shih, K., additional, Steiner, H., additional, Sun, G. X., additional, Sun, J. L., additional, Tagg, N., additional, Tam, Y. H., additional, Tanaka, H. K., additional, Tang, X., additional, Themann, H., additional, Torun, Y., additional, Trentalange, S., additional, Tsai, O., additional, Tsang, K. V., additional, Tsang, R. H. M., additional, Tull, C. E., additional, Tung, Y. C., additional, Viren, B., additional, Vorobel, V., additional, Wang, C. H., additional, Wang, L. S., additional, Wang, L. Y., additional, Wang, L. Z., additional, Wang, M., additional, Wang, N. Y., additional, Wang, R. G., additional, Wang, W., additional, Wang, X., additional, Wang, Y. F., additional, Wang, Z., additional, Wang, Z. M., additional, Webber, D. M., additional, Wei, H. Y., additional, Wei, Y. D., additional, Wen, L. J., additional, Whisnant, K., additional, White, C. G., additional, Whitehead, L., additional, Williamson, Y., additional, Wise, T., additional, Wong, H. L. H., additional, Worcester, E. T., additional, Wu, F. F., additional, Wu, Q., additional, Xi, J. B., additional, Xia, D. M., additional, Xing, Z. Z., additional, Xu, J., additional, Xu, J. L., additional, Xu, Y., additional, Xue, T., additional, Yang, C. G., additional, Yang, L., additional, Ye, M., additional, Yeh, M., additional, Yeh, Y. S., additional, Young, B. L., additional, Yu, Z. Y., additional, Zhan, L., additional, Zhang, C., additional, Zhang, F. H., additional, Zhang, J. W., additional, Zhang, Q. M., additional, Zhang, S. H., additional, Zhang, Y. C., additional, Zhang, Y. H., additional, Zhang, Y. X., additional, Zhang, Z. J., additional, Zhang, Z. P., additional, Zhang, Z. Y., additional, Zhao, J., additional, Zhao, Q. W., additional, Zhao, Y. B., additional, Zheng, L., additional, Zhong, W. L., additional, Zhou, L., additional, Zhou, Z. Y., additional, Zhuang, H. L., additional, and Zou, J. H., additional
- Published
- 2013
- Full Text
- View/download PDF
11. Observation of Electron-Antineutrino Disappearance at Daya Bay
- Author
-
An, F. P., primary, Bai, J. Z., additional, Balantekin, A. B., additional, Band, H. R., additional, Beavis, D., additional, Beriguete, W., additional, Bishai, M., additional, Blyth, S., additional, Boddy, K., additional, Brown, R. L., additional, Cai, B., additional, Cao, G. F., additional, Cao, J., additional, Carr, R., additional, Chan, W. T., additional, Chang, J. F., additional, Chang, Y., additional, Chasman, C., additional, Chen, H. S., additional, Chen, H. Y., additional, Chen, S. J., additional, Chen, S. M., additional, Chen, X. C., additional, Chen, X. H., additional, Chen, X. S., additional, Chen, Y., additional, Chen, Y. X., additional, Cherwinka, J. J., additional, Chu, M. C., additional, Cummings, J. P., additional, Deng, Z. Y., additional, Ding, Y. Y., additional, Diwan, M. V., additional, Dong, L., additional, Draeger, E., additional, Du, X. F., additional, Dwyer, D. A., additional, Edwards, W. R., additional, Ely, S. R., additional, Fang, S. D., additional, Fu, J. Y., additional, Fu, Z. W., additional, Ge, L. Q., additional, Ghazikhanian, V., additional, Gill, R. L., additional, Goett, J., additional, Gonchar, M., additional, Gong, G. H., additional, Gong, H., additional, Gornushkin, Y. A., additional, Greenler, L. S., additional, Gu, W. Q., additional, Guan, M. Y., additional, Guo, X. H., additional, Hackenburg, R. W., additional, Hahn, R. L., additional, Hans, S., additional, He, M., additional, He, Q., additional, He, W. S., additional, Heeger, K. M., additional, Heng, Y. K., additional, Hinrichs, P., additional, Ho, T. H., additional, Hor, Y. K., additional, Hsiung, Y. B., additional, Hu, B. Z., additional, Hu, T., additional, Huang, H. X., additional, Huang, H. Z., additional, Huang, P. W., additional, Huang, X., additional, Huang, X. T., additional, Huber, P., additional, Isvan, Z., additional, Jaffe, D. E., additional, Jetter, S., additional, Ji, X. L., additional, Ji, X. P., additional, Jiang, H. J., additional, Jiang, W. Q., additional, Jiao, J. B., additional, Johnson, R. A., additional, Kang, L., additional, Kettell, S. H., additional, Kramer, M., additional, Kwan, K. K., additional, Kwok, M. W., additional, Kwok, T., additional, Lai, C. Y., additional, Lai, W. C., additional, Lai, W. H., additional, Lau, K., additional, Lebanowski, L., additional, Lee, J., additional, Lee, M. K. P., additional, Leitner, R., additional, Leung, J. K. C., additional, Leung, K. Y., additional, Lewis, C. A., additional, Li, B., additional, Li, F., additional, Li, G. S., additional, Li, J., additional, Li, Q. J., additional, Li, S. F., additional, Li, W. D., additional, Li, X. B., additional, Li, X. N., additional, Li, X. Q., additional, Li, Y., additional, Li, Z. B., additional, Liang, H., additional, Liang, J., additional, Lin, C. J., additional, Lin, G. L., additional, Lin, S. K., additional, Lin, S. X., additional, Lin, Y. C., additional, Ling, J. J., additional, Link, J. M., additional, Littenberg, L., additional, Littlejohn, B. R., additional, Liu, B. J., additional, Liu, C., additional, Liu, D. W., additional, Liu, H., additional, Liu, J. C., additional, Liu, J. L., additional, Liu, S., additional, Liu, X., additional, Liu, Y. B., additional, Lu, C., additional, Lu, H. Q., additional, Luk, A., additional, Luk, K. B., additional, Luo, T., additional, Luo, X. L., additional, Ma, L. H., additional, Ma, Q. M., additional, Ma, X. B., additional, Ma, X. Y., additional, Ma, Y. Q., additional, Mayes, B., additional, McDonald, K. T., additional, McFarlane, M. C., additional, McKeown, R. D., additional, Meng, Y., additional, Mohapatra, D., additional, Morgan, J. E., additional, Nakajima, Y., additional, Napolitano, J., additional, Naumov, D., additional, Nemchenok, I., additional, Newsom, C., additional, Ngai, H. Y., additional, Ngai, W. K., additional, Nie, Y. B., additional, Ning, Z., additional, Ochoa-Ricoux, J. P., additional, Oh, D., additional, Olshevski, A., additional, Pagac, A., additional, Patton, S., additional, Pearson, C., additional, Pec, V., additional, Peng, J. C., additional, Piilonen, L. E., additional, Pinsky, L., additional, Pun, C. S. J., additional, Qi, F. Z., additional, Qi, M., additional, Qian, X., additional, Raper, N., additional, Rosero, R., additional, Roskovec, B., additional, Ruan, X. C., additional, Seilhan, B., additional, Shao, B. B., additional, Shih, K., additional, Steiner, H., additional, Stoler, P., additional, Sun, G. X., additional, Sun, J. L., additional, Tam, Y. H., additional, Tanaka, H. K., additional, Tang, X., additional, Themann, H., additional, Torun, Y., additional, Trentalange, S., additional, Tsai, O., additional, Tsang, K. V., additional, Tsang, R. H. M., additional, Tull, C., additional, Viren, B., additional, Virostek, S., additional, Vorobel, V., additional, Wang, C. H., additional, Wang, L. S., additional, Wang, L. Y., additional, Wang, L. Z., additional, Wang, M., additional, Wang, N. Y., additional, Wang, R. G., additional, Wang, T., additional, Wang, W., additional, Wang, X., additional, Wang, Y. F., additional, Wang, Z., additional, Wang, Z. M., additional, Webber, D. M., additional, Wei, Y. D., additional, Wen, L. J., additional, Wenman, D. L., additional, Whisnant, K., additional, White, C. G., additional, Whitehead, L., additional, Whitten, C. A., additional, Wilhelmi, J., additional, Wise, T., additional, Wong, H. C., additional, Wong, H. L. H., additional, Wong, J., additional, Worcester, E. T., additional, Wu, F. F., additional, Wu, Q., additional, Xia, D. M., additional, Xiang, S. T., additional, Xiao, Q., additional, Xing, Z. Z., additional, Xu, G., additional, Xu, J., additional, Xu, J. L., additional, Xu, W., additional, Xu, Y., additional, Xue, T., additional, Yang, C. G., additional, Yang, L., additional, Ye, M., additional, Yeh, M., additional, Yeh, Y. S., additional, Yip, K., additional, Young, B. L., additional, Yu, Z. Y., additional, Zhan, L., additional, Zhang, C., additional, Zhang, F. H., additional, Zhang, J. W., additional, Zhang, Q. M., additional, Zhang, K., additional, Zhang, Q. X., additional, Zhang, S. H., additional, Zhang, Y. C., additional, Zhang, Y. H., additional, Zhang, Y. X., additional, Zhang, Z. J., additional, Zhang, Z. P., additional, Zhang, Z. Y., additional, Zhao, J., additional, Zhao, Q. W., additional, Zhao, Y. B., additional, Zheng, L., additional, Zhong, W. L., additional, Zhou, L., additional, Zhou, Z. Y., additional, Zhuang, H. L., additional, and Zou, J. H., additional
- Published
- 2012
- Full Text
- View/download PDF
12. Measurement of the Secondary Neutron Emission Differential and Double-Differential Cross Sections between 20 and 30 MeV
- Author
-
Ruan, X. C., primary, Chen, G. C., additional, Huang, H. X., additional, Li, X., additional, Nie, Y. B., additional, Zhou, B., additional, Ma, Z. Y., additional, Bao, J., additional, Zhong, Q. P., additional, Zhou, Z. Y., additional, Tang, H. Q., additional, Zhang, J. S., additional, Lan, C. L., additional, Zhang, Y. L., additional, and Li, Y. M., additional
- Published
- 2011
- Full Text
- View/download PDF
13. Neutron-gamma discrimination with broaden the lower limit of energy threshold using BP neural network.
- Author
-
Zhang SY, Wei Z, Zhang PQ, Zhao Q, Li M, Bai XH, Wu K, Nie YB, Ding YY, Wang JR, Zhang Y, Su XD, and Yao ZE
- Abstract
Neutron-gamma discrimination is a tough and significative in experimental neutrons measurements procedure, especially for low-energy neutrons signal discrimination. In this work, based on the Pulse Shape Discrimination (PSD) and Back-Propagation (BP) artificial neural networks, a neutron-gamma discrimination method is developed to broaden the lower limit of energy threshold with the hidden layer of 20 neurons. Compared with neutron-gamma discrimination method based on PSD only, the developed neutron-gamma discrimination method based on the PSD and BP-ANN can discriminate neutron and gamma-ray signals with low energy threshold, which can discriminate signals up to 99.93%. Moreover, this work can reduce the energy threshold from 350 keV to 70 keV, as well as the acquired data utilization increased from 60% to more than 99.9%, which overcome the hardware limitations and distinguish neutron and gamma-ray signals, effectively. The developed neutron-gamma discrimination method and the trained neural network can be directly used to other experimental neutrons measurements., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
14. [The value of platelet count in predicting the efficacy of rituximab treatment in adult patients with chronic primary immune thrombocytopenia].
- Author
-
Wang SX, Nie YB, Ju MK, Sun T, Li HY, Zhang DL, Zhang L, and Yang RC
- Subjects
- Adolescent, Adult, Aged, Female, Humans, Male, Middle Aged, Platelet Count, Retrospective Studies, Treatment Outcome, Young Adult, Purpura, Thrombocytopenic, Idiopathic drug therapy, Rituximab therapeutic use
- Abstract
Objective: To investigate the value of platelet count in predicting the efficacy of rituximab treatment in chronic primary immune thrombocytopenia (ITP). Methods: A retrospective study was conducted in 103 chronic ITP patients hospitalized in our medical center between January 2011 and December 2014. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) of platelet count in different time points were analyzed for the predictor of treatment response. Optimal cutoff values were established using ROC analysis. Results: A total of 103 patients were included in the study. There were 46 males and 57 females, with a median age of 30 (18-67) years. At day 1, 3 and 7 after the first dose of rituximab, there was no significant difference in platelet counts between the success group (PLT≥50×10(9)/L after treatment) and the failure group (PLT≤50×10(9)/L after treatment) ( P >0.05). At day 14 after rituximab treatment (PTD 14), platelet counts became significantly different in the success and failure groups[41(8-384)×10(9)/L vs 23(0-106)×10(9)/L, P =0.003], and remained different thereafter, with increasing significance in the subsequent follow-ups. Patients were divided further using an optimal cut-off platelet count of 50×10(9)/L on PTD 14, PTD 30, and PTD 60, and PPV and NPV values were calculated for predicting eventual success and failure. Conclusion: Response can be predicted by obtaining platelet counts at 14, 30 and 60 days after rituximab treatment. The study proposed a protocol that guides patient monitoring and management planning.
- Published
- 2018
- Full Text
- View/download PDF
15. [Retrospectively analysis of the difference of bleeding frequency and hemophilic arthropathy between hemophilia A and hemophilia B patients].
- Author
-
Wang SX, Guan Y, Nie YB, Li HY, Sun BY, Wang XY, and Yang RC
- Subjects
- Disease Progression, Hemarthrosis, Hemorrhage, Humans, Phenotype, Retrospective Studies, Hemophilia A, Hemophilia B
- Abstract
Objective: To analyze the difference of bleeding frequency, plain radiographic (X-ray) , risk factors in hemophilic arthropathy progression and the Arnold-Hilgartner classification. Methods: A retrospective study was conducted in 211 hemophilia patients hospitalized in our medical center between January 2007 and December 2010, some patients with hemarthrosis were followed up for 5 years. Results: All patients were male, including 150 hemophilia A (HA) and 61 hemophilia B (HB) . The HA patients bled more frequently than HB patients with annualized total bleeding rate 20.5 (0-48) vs 13 (1-40) ; annualized joint bleeding rate 13.5 (0-38) vs 8 (0-33) , especially in moderate hemophilia [26 (1-48) vs 12 (1-36) , P <0.001; 18 (0-36) vs 7.5 (0-26) , P =0.001], but severe hemophilia had no difference in bleeding frequency [33 (1-41) vs 26 (1-40) , P =0.702; 22 (0-36) vs 18 (0-33) , P =0.429]. The condition of the affected joints of 108 HA and 54 HB was evaluated on roentgenography. In HA patients, the Arnold-Hilgartner classification increased with the severity ratings ( r =0.063, P =0.004) . However, similar associations were not found in HB patients ( r =0.045, P =0.082) . Five years later, 36 HA and 19 HB patients received the same joint X-ray, there were no significant differences in joints radiographic progression between the total HA and HB groups ( z =1.941, P =0.052) . However, significant difference between moderate HA and HB was observed ( z =0.076, P =0.002) . Multivariate unconditioned Logistic analysis showed that annualized joint bleeding rate [ P <0.001, OR =1.166 (95% CI 1.097-1.239) ] and articular structural injuries [ P= 0.018, OR =2.842 (95% CI 1.196-6.755) ] were independent risk factors for the joints radiographic progression. Conclusion: The study suggests that there was a difference in bleeding phenotype between HA and HB, especially in moderate hemophilia. HB patients showed mild but progressive development over time, compared with HA patients. Annualized joint bleeding rate and articular structural injuries were independent risk factors for the joints radiographic progression.
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.