1. Localization and Locality for Resistance Forms
- Author
-
Nicu Boboc and Gheorghe Bucur
- Subjects
Combinatorics ,Computational Mathematics ,Computational Theory and Mathematics ,Mathematics::Number Theory ,Applied Mathematics ,Fine topology ,Dirichlet space ,Mathematics - Abstract
For a resistance form \({(X, \mathcal{D}(\varepsilon),\varepsilon)}\) and a point \({x_0 \in X}\) as boundary, on the space \({X_0:=X {\setminus}\{x_0\}}\) we consider the Dirichlet space \({\mathcal{D}_{x_0}:=\{f\in\mathcal{D}(\varepsilon)\, |\, f(x_0)=0\}}\) and we develop a good potential theory. For any finely open subset D of X0 we consider a localized resistance form (\({\mathcal{D}_{X_0 {\setminus} D},\varepsilon_{D}}\)) where \({\mathcal{D}_{X_0 {\setminus} D}:=\{f\in\mathcal{D}_{x_0}\, |\, f=0}\) on \({X_0 {\setminus} D\},\, \varepsilon_D(f,g):=\varepsilon(f,g)}\) for all \({f,g\in\mathcal{D}_{X_0 {\setminus} D}}\). The main result is the equivalence between the local property of the resistance form and the sheaf property for the excessive elements on finely open sets.
- Published
- 2010
- Full Text
- View/download PDF