39 results on '"Nicolas S. Merle"'
Search Results
2. Hemopexin and albumin inhibit heme-induced macrophage activation while also enabling heme-LPS synergistic promotion of TNF production
- Author
-
Rafael Cardoso Maciel Costa Silva, Luis Batista Tan, Andreza Moreira dos Santos Gama, Nuccia Nicole Theodoro De Cicco, Nicolas S. Merle, Lubka T. Roumenina, Yi Zhang, Gregory C. Henderson, André N.A. Gonçalves, Georgia C. Atella, João Trindade Marques, Leonardo Holanda Travassos, Claudia N. Paiva, Bénédicte Manoury, and Marcelo Torres Bozza
- Subjects
Albumin ,Hemopexin ,Heme ,Inflammation ,ROS ,Biochemistry ,QD415-436 - Abstract
Free heme released from hemoglobin contributes to exacerbated inflammation and tissue damage in hemolytic diseases. While a moderate level of free heme does not cause intravascular inflammation by itself, its presence during infection greatly enhances inflammation. Although specific serum proteins have been found to affect heme-induced inflammation, the selective contribution of serum proteins inhibiting macrophage activation by heme or, conversely, amplifying the production of cytokines by macrophages stimulated with heme and microbial molecules, is poorly defined. Here we identified a serum fraction containing proteins with >50 KDa which was capable of inhibiting heme-stimulated TNF production and capable of enabling TNF production under conditions of a heme-LPS synergy. The inhibition of heme-induced TNF production was mimicked by Hemopexin (Hx), human serum albumin (HSA), serum from Hx-knockout mice, and less efficiently by serum from albumin-knockout mice, but not by serum LDL. Hx and HSA inhibited heme-induced ROS generation, MAPK/ Syk phosphorylation and cell death. However, Hx and HSA each also promoted the synergistic relationship between heme and LPS upon TNF production. Serum from Hx-knockout mice was fully capable of enabling this synergy, while serum from albumin-knockout mice was less efficient to promote TNF production under these conditions. Low concentrations of HSA mimicked the ability of serum to enable heme-stimulated IL-1β production after LPS priming, while high concentrations inhibited it. Together, our findings indicate how heme inflammatory effects are restrained in the blood upon sterile hemolysis, yet exacerbate inflammation in the presence of microbes. Moreover, it is interesting to note that opposing effects of serum proteins on heme-induced macrophage activation were selected through evolution, with both effects exerted by Hx and albumin.
- Published
- 2023
- Full Text
- View/download PDF
3. Editorial: Complement and COVID-19 Disease
- Author
-
Zoltán Prohászka and Nicolas S. Merle
- Subjects
COVID-19 ,SARS – CoV – 2 ,complement system ,thromboinflammation ,kinin-kallikrein system ,Immunologic diseases. Allergy ,RC581-607 - Published
- 2022
- Full Text
- View/download PDF
4. Circulating FH Protects Kidneys From Tubular Injury During Systemic Hemolysis
- Author
-
Nicolas S. Merle, Juliette Leon, Victoria Poillerat, Anne Grunenwald, Idris Boudhabhay, Samantha Knockaert, Tania Robe-Rybkine, Carine Torset, Matthew C. Pickering, Sophie Chauvet, Veronique Fremeaux-Bacchi, and Lubka T. Roumenina
- Subjects
complement – immunological term ,complement factor H ,hemolysis ,kidney ,acute tubular damage ,Immunologic diseases. Allergy ,RC581-607 - Abstract
Intravascular hemolysis of any cause can induce acute kidney injury (AKI). Hemolysis-derived product heme activates the innate immune complement system and contributes to renal damage. Therefore, we explored the role of the master complement regulator Factor H (FH) in the kidney's resistance to hemolysis-mediated AKI. Acute systemic hemolysis was induced in mice lacking liver expression of FH (hepatoFH−/−, ~20% residual FH) and in WT controls, by phenylhydrazine injection. The impaired complement regulation in hepatoFH−/− mice resulted in a delayed but aggravated phenotype of hemolysis-related kidney injuries. Plasma urea as well as markers for tubular (NGAL, Kim-1) and vascular aggression peaked at day 1 in WT mice and normalized at day 2, while they increased more in hepatoFH−/− compared to the WT and still persisted at day 4. These were accompanied by exacerbated tubular dilatation and the appearance of tubular casts in the kidneys of hemolytic hepatoFH−/− mice. Complement activation in hemolytic mice occurred in the circulation and C3b/iC3b was deposited in glomeruli in both strains. Both genotypes presented with positive staining of FH in the glomeruli, but hepatoFH−/− mice had reduced staining in the tubular compartment. Despite the clear phenotype of tubular injury, no complement activation was detected in the tubulointerstitium of the phenylhydrazin-injected mice irrespective of the genotype. Nevertheless, phenylhydrazin triggered overexpression of C5aR1 in tubules, predominantly in hepatoFH−/− mice. Moreover, C5b-9 was deposited only in the glomeruli of the hemolytic hepatoFH−/− mice. Therefore, we hypothesize that C5a, generated in the glomeruli, could be filtered into the tubulointerstitium to activate C5aR1 expressed by tubular cells injured by hemolysis-derived products and will aggravate the tissue injury. Plasma-derived FH is critical for the tubular protection, since pre-treatment of the hemolytic hepatoFH−/− mice with purified FH attenuated the tubular injury. Worsening of acute tubular necrosis in the hepatoFH−/− mice was trigger-dependent, as it was also observed in LPS-induced septic AKI model but not in chemotherapy-induced AKI upon cisplatin injection. In conclusion, plasma FH plays a key role in protecting the kidneys, especially the tubules, against hemolysis-mediated injury. Thus, FH-based molecules might be explored as promising therapeutic agents in a context of AKI.
- Published
- 2020
- Full Text
- View/download PDF
5. Heme Drives Susceptibility of Glomerular Endothelium to Complement Overactivation Due to Inefficient Upregulation of Heme Oxygenase-1
- Author
-
Olivia May, Nicolas S. Merle, Anne Grunenwald, Viviane Gnemmi, Juliette Leon, Cloé Payet, Tania Robe-Rybkine, Romain Paule, Florian Delguste, Simon C. Satchell, Peter W. Mathieson, Marc Hazzan, Eric Boulanger, Jordan D. Dimitrov, Veronique Fremeaux-Bacchi, Marie Frimat, and Lubka T. Roumenina
- Subjects
atypical hemolytic uremic syndrome ,complement system ,endothelial cells ,heme ,heme oxygenase-1 ,thrombomodulin ,Immunologic diseases. Allergy ,RC581-607 - Abstract
Atypical hemolytic uremic syndrome (aHUS) is a severe disease characterized by microvascular endothelial cell (EC) lesions leading to thrombi formation, mechanical hemolysis and organ failure, predominantly renal. Complement system overactivation is a hallmark of aHUS. To investigate this selective susceptibility of the microvascular renal endothelium to complement attack and thrombotic microangiopathic lesions, we compared complement and cyto-protection markers on EC, from different vascular beds, in in vitro and in vivo models as well as in patients. No difference was observed for complement deposits or expression of complement and coagulation regulators between macrovascular and microvascular EC, either at resting state or after inflammatory challenge. After prolonged exposure to hemolysis-derived heme, higher C3 deposits were found on glomerular EC, in vitro and in vivo, compared with other EC in culture and in mice organs (liver, skin, brain, lungs and heart). This could be explained by a reduced complement regulation capacity due to weaker binding of Factor H and inefficient upregulation of thrombomodulin (TM). Microvascular EC also failed to upregulate the cytoprotective heme-degrading enzyme heme-oxygenase 1 (HO-1), normally induced by hemolysis products. Only HUVEC (Human Umbilical Vein EC) developed adaptation to heme, which was lost after inhibition of HO-1 activity. Interestingly, the expression of KLF2 and KLF4—known transcription factors of TM, also described as possible transcription modulators of HO-1- was weaker in micro than macrovascular EC under hemolytic conditions. Our results show that the microvascular EC, and especially glomerular EC, fail to adapt to the stress imposed by hemolysis and acquire a pro-coagulant and complement-activating phenotype. Together, these findings indicate that the vulnerability of glomerular EC to hemolysis is a key factor in aHUS, amplifying complement overactivation and thrombotic microangiopathic lesions.
- Published
- 2018
- Full Text
- View/download PDF
6. A Single-Domain Antibody Targeting Complement Component C5 Acts as a Selective Inhibitor of the Terminal Pathway of the Complement System and Thus Functionally Mimicks the C-Terminal Domain of the Staphylococcus aureus SSL7 Protein
- Author
-
Laure Yatime, Nicolas S. Merle, Annette G. Hansen, Niels Anton Friis, Jakob A. Østergaard, Mette Bjerre, Lubka T. Roumenina, Steffen Thiel, Peter Kristensen, and Gregers R. Andersen
- Subjects
complement ,terminal pathway inhibition ,single-domain antibody ,pathogen mimicry ,hemolysis ,bacteriolysis ,Immunologic diseases. Allergy ,RC581-607 - Abstract
The complement system is an efficient anti-microbial effector mechanism. On the other hand abnormal complement activation is involved in the pathogenesis of multiple inflammatory and hemolytic diseases. As general inhibition of the complement system may jeopardize patient health due to increased susceptibility to infections, the development of pathway-specific complement therapeutics has been a long-lasting goal over the last decades. In particular, pathogen mimicry has been considered as a promising approach for the design of selective anti-complement drugs. The C-terminal domain of staphylococcal superantigen-like protein 7 (SSL7), a protein secreted by Staphylococcus aureus, was recently found to be a specific inhibitor of the terminal pathway of the complement system, providing selective inhibition of cell lysis mediated by the membrane attack complex (MAC). We describe here the selection by phage display of a humanized single-domain antibody (sdAb) mimicking the C-terminal domain of SSL7. The antibody, called sdAb_E4, binds complement C5 with an affinity in the low micromolar range. Furthermore, sdAb_E4 induces selective inhibition of MAC-mediated lysis, allowing inhibition of red blood cell hemolysis and inhibition of complement deposition on apopto-necrotic cells, while maintaining efficient bactericidal activity of the complement terminal pathway. Finally, we present preliminary results indicating that sdAb_E4 may also be efficient in inhibiting hemolysis of erythrocytes from patients with paroxysmal nocturnal hemoglobinuria. Our data provide a proof of concept for the design of a selective MAC inhibitor capable of retaining complement bacteriolytic activity and this study opens up promising perspectives for the development of an sdAb_E4-derived therapeutics with application in the treatment of complement-mediated hemolytic disorders.
- Published
- 2018
- Full Text
- View/download PDF
7. Characterization of Renal Injury and Inflammation in an Experimental Model of Intravascular Hemolysis
- Author
-
Nicolas S. Merle, Anne Grunenwald, Marie-Lucile Figueres, Sophie Chauvet, Marie Daugan, Samantha Knockaert, Tania Robe-Rybkine, Remi Noe, Olivia May, Marie Frimat, Nathan Brinkman, Thomas Gentinetta, Sylvia Miescher, Pascal Houillier, Veronique Legros, Florence Gonnet, Olivier P. Blanc-Brude, Marion Rabant, Regis Daniel, Jordan D. Dimitrov, and Lubka T. Roumenina
- Subjects
hemolysis ,heme ,kidney injury ,endothelial activation ,inflammation ,hemopexin ,Immunologic diseases. Allergy ,RC581-607 - Abstract
Intravascular erythrocyte destruction, accompanied by the release of pro-oxidative and pro-inflammatory components hemoglobin and heme, is a common event in the pathogenesis of numerous diseases with heterogeneous etiology and clinical features. A frequent adverse effect related to massive hemolysis is the renal injury and inflammation. Nevertheless, it is still unclear whether heme––a danger-associated molecular pattern––and ligand for TLR4 or upstream hemolysis-derived products are responsible for these effects. Well-characterized animal models of hemolysis with kidney impairment are needed to investigate how hemolysis drives kidney injury and to test novel therapeutic strategies. Here, we characterized the pathological processes leading to acute kidney injury and inflammation during massive intravascular hemolysis, using a mouse model of phenylhydrazine (PHZ)-triggered erythrocyte destruction. We observed profound changes in mRNA levels for markers of tubular damage (Kim-1, NGAL) and regeneration (indirect marker of tubular injury, Ki-67), and tissue and vascular inflammation (IL-6, E-selectin, P-selectin, ICAM-1) in kidneys of PHZ-treated mice, associated with ultrastructural signs of tubular injury. Moreover, mass spectrometry revealed presence of markers of tubular damage in urine, including meprin-α, cytoskeletal keratins, α-1-antitrypsin, and α-1-microglobulin. Signs of renal injury and inflammation rapidly resolved and the renal function was preserved, despite major changes in metabolic parameters of PHZ-injected animals. Mechanistically, renal alterations were largely heme-independent, since injection of free heme could not reproduce them, and scavenging heme with hemopexin in PHZ-administered mice could not prevent them. Reduced overall health status of the mice suggested multiorgan involvement. We detected amylasemia and amylasuria, two markers of acute pancreatitis. We also provide detailed characterization of renal manifestations associated with acute intravascular hemolysis, which may be mediated by hemolysis-derived products upstream of heme release. This analysis provides a platform for further investigations of hemolytic diseases and associated renal injury and the evaluation of novel therapeutic strategies that target intravascular hemolysis.
- Published
- 2018
- Full Text
- View/download PDF
8. Functional Characterization of the Disease-Associated N-Terminal Complement Factor H Mutation W198R
- Author
-
Marcell Cserhalmi, Barbara Uzonyi, Nicolas S. Merle, Dorottya Csuka, Edgar Meusburger, Karl Lhotta, Zoltán Prohászka, and Mihály Józsi
- Subjects
complement dysregulation ,factor H ,C3 glomerulopathy ,atypical hemolytic uremic syndrome ,mutation ,kidney disease ,Immunologic diseases. Allergy ,RC581-607 - Abstract
Dysregulation of the complement alternative pathway is involved in the pathogenesis of several diseases, including the kidney diseases atypical hemolytic uremic syndrome (aHUS) and C3 glomerulopathy (C3G). In a patient, initially diagnosed with chronic glomerulonephritis, possibly C3G, and who 6 years later had an episode of aHUS, a heterozygous missense mutation leading to a tryptophan to arginine exchange (W198R) in the factor H (FH) complement control protein (CCP) 3 domain has previously been identified. The aim of this study was to clarify the functional relevance of this mutation. To this end, wild-type (FH1–4WT) and mutant (FH1–4W198R) CCPs 1–4 of FH were expressed as recombinant proteins. The FH1–4W198R mutant showed decreased C3b binding compared with FH1–4WT. FH1–4W198R had reduced cofactor and decay accelerating activity compared with the wild-type protein. Hemolysis assays demonstrated impaired capacity of FH1–4W198R to protect rabbit erythrocytes from human complement-mediated lysis, and also to prevent lysis of sheep erythrocytes in human serum induced by a monoclonal antibody binding in FH CCP5 domain, compared with that of FH1–4WT. Thus, the FH W198R exchange results in impaired complement alternative pathway regulation. The heterozygous nature of this mutation in the index patient may explain the manifestation of two diseases, likely due to different triggers leading to complement dysregulation in plasma or on cell surfaces.
- Published
- 2017
- Full Text
- View/download PDF
9. Complement system part II: role in immunity
- Author
-
Nicolas S. Merle, Remi eNoe, Lise eHalbwachs-Mecarelli, Veronique eFremeaux-Bacchi, and Lubka T. Roumenina
- Subjects
Adaptive Immunity ,Anaphylatoxins ,Complement C3 ,Phagocytosis ,innate immunity ,atypical hemolytic uremic syndrome (aHUS) ,Immunologic diseases. Allergy ,RC581-607 - Abstract
The complement system has been considered for a long time as a simple lytic system, aimed to kill bacteria infecting the host organism. Nowadays this vision has changed and it is well accepted that complement is a complex innate immune surveillance system, playing a key role in host homeostasis, inflammation and in the defense against pathogens. This review discusses recent advances in the understanding of the role of complement in physiology and pathology. It starts with a description of complement contribution to the normal physiology (homeostasis) of a healthy organism, including the silent clearance of apoptotic cells and maintenance of cell survival. In pathology, complement can be a friend or a foe. It acts as a friend in the defense against pathogens, by inducing a direct killing by C5b-9 membrane attack complex by triggering inflammatory responses with the anaphylatoxins C3a and C5a and helps the mounting of an adaptive immune response, involving antigen presenting cells, T- and B- lymphocytes. But it can be also an enemy, when pathogens hijack complement regulators to protect themselves from the immune system. Also examples will be discussed, where inadequate complement activation becomes a disease cause, including atypical hemolytic uremic syndrome (aHUS), C3 glomerulopathies (C3G) and systemic lupus erythematosus (SLE). Age related macular degeneration (AMD) and cancer will be described as examples showing that complement contributes to a large variety of diseases, far exceeding the classical examples of diseases associated with complement deficiencies. Finally, we discuss complement as a therapeutic target.
- Published
- 2015
- Full Text
- View/download PDF
10. Supplementary Figures from Intracellular Factor H Drives Tumor Progression Independently of the Complement Cascade
- Author
-
Lubka T. Roumenina, Wolf H. Fridman, Diane Damotte, Catherine Sautès-Fridman, Marco Alifano, Audrey Mansuet-Lupo, Isabelle Cremer, Mathew C. Pickering, Rafael Sanchez-Salas, Xavier Cathelineau, Pierre Validire, Arnaud Mejean, Stephane Marie Oudard, Virginie Verkarre, Rémi Noé, Nicolas S. Merle, Carine Torset, Tania Robe-Rybkine, Marie-Agnès Dragon-Durey, Romane Thouenon, Margot Revel, and Marie V. Daugan
- Abstract
Supplementary figures
- Published
- 2023
11. Supplementary Tables from Intracellular Factor H Drives Tumor Progression Independently of the Complement Cascade
- Author
-
Lubka T. Roumenina, Wolf H. Fridman, Diane Damotte, Catherine Sautès-Fridman, Marco Alifano, Audrey Mansuet-Lupo, Isabelle Cremer, Mathew C. Pickering, Rafael Sanchez-Salas, Xavier Cathelineau, Pierre Validire, Arnaud Mejean, Stephane Marie Oudard, Virginie Verkarre, Rémi Noé, Nicolas S. Merle, Carine Torset, Tania Robe-Rybkine, Marie-Agnès Dragon-Durey, Romane Thouenon, Margot Revel, and Marie V. Daugan
- Abstract
Supplementary tables 1-5
- Published
- 2023
12. Complement's favourite organelle—Mitochondria?
- Author
-
Parul Singh, Nathalie Niyonzima, Nicolas S. Merle, Claudia Kemper, and Jubayer Rahman
- Subjects
0301 basic medicine ,Complement ,Review Article ,Biology ,Canonical and Non‐canonical Functions of the Complement System in Health and Disease ,03 medical and health sciences ,0302 clinical medicine ,Immune system ,Organelle ,Homeostasis ,Humans ,Immunologic Factors ,CD46 ,Pharmacology ,Innate immune system ,Effector ,Complement System Proteins ,glycolysis ,OXPHOS ,Immunity, Innate ,Complement system ,Mitochondria ,Crosstalk (biology) ,030104 developmental biology ,Neuroscience ,metabolism ,030217 neurology & neurosurgery ,Intracellular - Abstract
The complement system, well known for its central role in innate immunity, is currently emerging as an unexpected, cell‐autonomous, orchestrator of normal cell physiology. Specifically, an intracellularly active complement system—the complosome—controls key pathways of normal cell metabolism during immune cell homeostasis and effector function. So far, we know little about the exact structure and localization of intracellular complement components within and among cells. A common scheme, however, is that they operate in crosstalk with other intracellular immune sensors, such as inflammasomes, and that they impact on the activity of key subcellular compartments. Among cell compartments, mitochondria appear to have built a particularly early and strong relationship with the complosome and extracellularly active complement—not surprising in view of the strong impact of the complosome on metabolism. In this review, we will hence summarize the current knowledge about the close complosome–mitochondria relationship and also discuss key questions surrounding this novel research area. Linked Articles This article is part of a themed issue on Canonical and non‐canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc
- Published
- 2020
13. Integrins meet complement: The evolutionary tip of an iceberg orchestrating metabolism and immunity
- Author
-
Claudia Kemper, Jubayer Rahman, Parul Singh, and Nicolas S. Merle
- Subjects
0301 basic medicine ,Pharmacology ,Integrins ,Innate immune system ,biology ,CD46 ,Integrin ,Complement System Proteins ,Review Article ,Canonical and Non‐canonical Functions of the Complement System in Health and Disease ,Complement system ,03 medical and health sciences ,Crosstalk (biology) ,Multicellular organism ,030104 developmental biology ,0302 clinical medicine ,Immune system ,Immunity ,Immune System ,biology.protein ,Humans ,Neuroscience ,030217 neurology & neurosurgery - Abstract
Immunologists have recently realized that there is more to the classic innate immune sensor systems than just mere protection against invading pathogens. It is becoming increasingly clear that such sensors, including the inflammasomes, toll-like receptors, and the complement system, are heavily involved in the regulation of basic cell physiological processes and particularly those of metabolic nature. In fact, their "non-canonical" activities make sense as no system directing immune cell activity can perform such task without the need for energy. Further, many of these ancient immune sensors appeared early and concurrently during evolution, particularly during the developmental leap from the single-cell organisms to multicellularity, and therefore crosstalk heavily with each other. Here, we will review the current knowledge about the emerging cooperation between the major inter-cell communicators, integrins, and the cell-autonomous intracellularly and autocrine-active complement, the complosome, during the regulation of single-cell metabolism. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
- Published
- 2020
14. Systematic Single Cell Pathway Analysis (SCPA) Reveals Novel Pathways Engaged During Early T Cell Activation
- Author
-
Jack A. Bibby, Divyansh Agarwal, Tilo Freiwald, Natalia Kunz, Nicolas S. Merle, Erin E. West, Andre Larochelle, Fariba Chinian, Somabha Mukherjee, Behdad Afzali, Claudia Kemper, and Nancy R. Zhang
- Abstract
SummaryNext generation sequencing technologies have revolutionized the study of T cell biology, capturing previously unrecognized diversity in cellular states and functions. Pathway analysis is a key analytical stage in the interpretation of such transcriptomic data, providing a powerful method for detecting alterations in important biological processes. Current pathway analysis tools are built on models developed for bulk-RNA sequencing, limiting their effectiveness when applied to more complex single cell RNA-sequencing (scRNA-seq) datasets. We recently developed a sensitive and distribution-free statistical framework for multisample distribution testing, which we implement here in the open-source R package Single Cell Pathway Analysis (SCPA). After demonstrating the effectiveness of SCPA over commonly used methods, we generate a scRNA-seq T cell dataset and characterize pathway activity over early cellular activation and between T cell populations. This revealed unexpected regulatory pathways in T cells, such as an intrinsic type I interferon system regulating T cell survival and a reliance on arachidonic acid metabolism throughout T cell activation. A systems level characterization of pathway activity in T cells across multiple human tissues also revealed alpha defensin expression as a hallmark of bone marrow derived T cells. Overall, our work here provides a widely applicable tool for single cell pathway analysis, and highlights unexpected regulatory mechanisms of T cells using a novel T cell dataset.
- Published
- 2022
15. Mitochondrial C5aR1 activity in macrophages controls IL-1β production underlying sterile inflammation
- Author
-
Nathalie Niyonzima, Jubayer Rahman, Natalia Kunz, Erin E. West, Tilo Freiwald, Jigar V. Desai, Nicolas S. Merle, Alexandre Gidon, Bjørnar Sporsheim, Michail S. Lionakis, Kristin Evensen, Beate Lindberg, Karolina Skagen, Mona Skjelland, Parul Singh, Markus Haug, Marieta M. Ruseva, Martin Kolev, Jack Bibby, Olivia Marshall, Brett O’Brien, Nigel Deeks, Behdad Afzali, Richard J. Clark, Trent M. Woodruff, Milton Pryor, Zhi-Hong Yang, Alan T. Remaley, Tom E. Mollnes, Stephen M. Hewitt, Bingyu Yan, Majid Kazemian, Máté G. Kiss, Christoph J. Binder, Bente Halvorsen, Terje Espevik, and Claudia Kemper
- Subjects
Inflammation ,Mice, Inbred C57BL ,Mice, Knockout ,Mice ,Macrophages ,Interleukin-1beta ,Immunology ,Animals ,Humans ,General Medicine ,Receptor, Anaphylatoxin C5a ,Article ,Cell Line - Abstract
While serum-circulating complement destroys invading pathogens, intracellularly active complement, termed the ‘complosome’, functions as a vital orchestrator of cell-metabolic events underlying T cell effector responses. Whether intracellular complement is also non-redundant for the activity of myeloid immune cells is currently unknown. Here, we show that monocytes and macrophages constitutively express complement component (C) 5 and generate autocrine C5a via formation of an intracellular C5 convertase. Cholesterol crystal-sensing by macrophages induced C5aR1 signaling on mitochondrial membranes, which shifted ATP production via reverse electron chain flux towards reactive oxygen species (ROS) generation and anaerobic glycolysis to favor IL-1β production, both at the transcriptional level and processing of pro-IL-1β. Consequently, atherosclerosis-prone mice lacking macrophage-specific C5ar1 had ameliorated cardiovascular disease on a high-cholesterol diet. Conversely, inflammatory gene signatures and IL-1β produced by cells in unstable atherosclerotic plaques of patients were normalized by a specific cell-permeable C5aR1 antagonist. Deficiency of the macrophage cell autonomous C5 system also protected mice from crystal nephropathy mediated by folic acid. These data demonstrate the unexpected intracellular formation of a C5 convertase and identify C5aR1 as a direct modulator of mitochondrial function and inflammatory output from myeloid cells. Together, these findings suggest that the complosome is a contributor to the biologic processes underlying sterile inflammation and indicate that targeting this system could be beneficial in macrophage-dependent diseases, such as atherosclerosis.
- Published
- 2021
16. Systematic single-cell pathway analysis to characterize early T cell activation
- Author
-
Jack A. Bibby, Divyansh Agarwal, Tilo Freiwald, Natalia Kunz, Nicolas S. Merle, Erin E. West, Parul Singh, Andre Larochelle, Fariba Chinian, Somabha Mukherjee, Behdad Afzali, Claudia Kemper, and Nancy R. Zhang
- Subjects
T-Lymphocytes ,Exome Sequencing ,Single-Cell Analysis ,Lymphocyte Activation ,Software ,General Biochemistry, Genetics and Molecular Biology - Abstract
Pathway analysis is a key analytical stage in the interpretation of omics data, providing a powerful method for detecting alterations in cellular processes. We recently developed a sensitive and distribution-free statistical framework for multisample distribution testing, which we implement here in the open-source R package single-cell pathway analysis (SCPA). We demonstrate the effectiveness of SCPA over commonly used methods, generate a scRNA-seq T cell dataset, and characterize pathway activity over early cellular activation. This reveals regulatory pathways in T cells, including an intrinsic type I interferon system regulating T cell survival and a reliance on arachidonic acid metabolism throughout T cell activation. A systems-level characterization of pathway activity in T cells across multiple tissues also identifies alpha-defensin expression as a hallmark of bone-marrow-derived T cells. Overall, this work provides a widely applicable tool for single-cell pathway analysis and highlights regulatory mechanisms of T cells.
- Published
- 2022
17. Setting the pace: CD4 T cell-intrinsic Arginase 1 orchestrates Th1 induction and contraction
- Author
-
Erin E West, Simon Freeley, Marcin M Kaminski, Nicolas S Merle, Sharon Veenbergen, Duck-Yeon Lee, Lisa St. John-Williams, J. Will Thompson, Douglas R Green, Sabine Scholl-Buergi, Daniela Karall, Martina Huemer, and Claudia Kemper
- Subjects
Immunology ,Immunology and Allergy - Abstract
CD4 T cell-intrinsic engagement of the complement receptor CD46 controls nutrient influx and the metabolic reprogramming events that are essential for both the initiation and contraction of human Th1 responses, characterized by IFN-g and IL-10 production respectively. Here, we demonstrate that CD46 also orchestrates T cell arginine metabolism by upregulating the arginine transporter CAT-1 and, unexpectedly, Arginase 1 (Arg1). Arg1 has been well characterized in macrophages where it is associated with the IL-10 secreting M2 type, but its expression or function in T cells has not been described. Surprisingly, in CD4 T cell, Arg1 seems to restrain IL-10 production and contraction: T cells isolated from four patients with rare Arg1 deficiency mount strong Th1 responses but display significantly increased IL-10 switching and early contraction when compared to healthy control cells. Similarly, Arg1fl/fl CD4-cre+ mice infected with influenza virus are characterized by an enhanced Th1 response that contracts more rapidly, resulting in viral control and significantly reduced lung pathology. Unexpectedly, both Arg1-deficient mouse and human T cells produce normal levels of nitric oxide (NO) and polyamines. Metabolic profiling rather revealed that T cells lacking Arg1 have enhanced glycolysis, reduced TCA-cycle intermediates, and engage an “alternative” glutamine pathway often utilized by cancer cells. Normalization of these metabolic perturbations, through the targeting of specific metabolic enzymes, restored typical Th1 induction/contraction. Overall, these data unveil an unexpected intrinsic role for Arginase 1 as a pacemaker of the Th1 lifecycle, which could be harnessed for the amelioration Th1-driven pathologies.
- Published
- 2022
18. The receptor for advanced glycation end products is a sensor for cell-free heme
- Author
-
Marie V. Daugan, Jordan D. Dimitrov, Mike Howsam, Muriel Billamboz, Eric Boulanger, Olivia May, Nicolas S. Merle, Laure Yatime, Lubka T. Roumenina, Charles Paul‐Constant, Alina Ghinet, Steve Lancel, Florian Delguste, and Marie Frimat
- Subjects
0301 basic medicine ,Glycation End Products, Advanced ,endocrine system diseases ,MAP Kinase Signaling System ,Interleukin-1beta ,Receptor for Advanced Glycation End Products ,Heme ,Ligands ,Biochemistry ,Proinflammatory cytokine ,RAGE (receptor) ,03 medical and health sciences ,chemistry.chemical_compound ,Mice ,0302 clinical medicine ,Glycation ,Animals ,Humans ,cardiovascular diseases ,Receptor ,Molecular Biology ,Protein kinase B ,Lung ,Binding Sites ,Chemistry ,Tumor Necrosis Factor-alpha ,nutritional and metabolic diseases ,Cell Biology ,Cell biology ,Toll-Like Receptor 4 ,030104 developmental biology ,030220 oncology & carcinogenesis ,cardiovascular system ,TLR4 ,Signal transduction ,human activities ,Proto-Oncogene Proteins c-akt - Abstract
Heme's interaction with Toll-like receptor 4 (TLR4) does not fully explain the proinflammatory properties of this hemoglobin-derived molecule during intravascular hemolysis. The receptor for advanced glycation end products (RAGE) shares many features with TLR4 such as common ligands and proinflammatory, prothrombotic, and pro-oxidative signaling pathways, prompting us to study its involvement as a heme sensor. Stable RAGE-heme complexes with micromolar affinity were detected as heme-mediated RAGE oligomerization. The heme-binding site was located in the V domain of RAGE. This interaction was Fe3+ -dependent and competitive with carboxymethyllysine, another RAGE ligand. We confirmed a strong basal gene expression of RAGE in mouse lungs. After intraperitoneal heme injection, pulmonary TNF-α, IL1β, and tissue factor gene expression levels increased in WT mice but were significantly lower in their RAGE-/- littermates. This may be related to the lower activation of ERK1/2 and Akt observed in the lungs of heme-treated, RAGE-/- mice. Overall, heme binds to RAGE with micromolar affinity and could promote proinflammatory and prothrombotic signaling in vivo, suggesting that this interaction could be implicated in heme-overload conditions.
- Published
- 2020
19. Intracellular Factor H Drives Tumor Progression Independently of the Complement Cascade
- Author
-
Marie V. Daugan, Carine Torset, Diane Damotte, Pierre Validire, Wolf H. Fridman, Xavier Cathelineau, Stéphane Oudard, Lubka T. Roumenina, Tania Robe-Rybkine, Mathew C. Pickering, Rafael Sanchez-Salas, Marco Alifano, Virginie Verkarre, Romane Thouenon, Nicolas S. Merle, Audrey Mansuet-Lupo, Marie-Agnès Dragon-Durey, Margot Revel, Isabelle Cremer, Catherine Sautès-Fridman, Remi Noe, Arnaud Mejean, Centre de Recherche des Cordeliers (CRC), Université Pierre et Marie Curie - Paris 6 (UPMC)-École pratique des hautes études (EPHE), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Subjects
Cancer Research ,[SDV]Life Sciences [q-bio] ,Immunology ,Cell ,intracellular complement ,Biology ,clear cell renal cell carcinoma ,Cell Line ,03 medical and health sciences ,Mice ,0302 clinical medicine ,medicine ,Animals ,Humans ,Complement Activation ,ComputingMilieux_MISCELLANEOUS ,complement system ,030304 developmental biology ,0303 health sciences ,Tumor microenvironment ,medicine.disease ,lung adenocarcinoma ,3. Good health ,Complement system ,Clear cell renal cell carcinoma ,medicine.anatomical_structure ,Tumor progression ,030220 oncology & carcinogenesis ,Factor H ,Complement Factor H ,Cancer research ,Disease Progression ,Adenocarcinoma ,Intracellular - Abstract
The complement system is a powerful and druggable innate immune component of the tumor microenvironment. Nevertheless, it is challenging to elucidate the exact mechanisms by which complement affects tumor growth. In this study, we examined the processes by which the master complement regulator factor H (FH) affects clear cell renal cell carcinoma (ccRCC) and lung cancer, two cancers in which complement overactivation predicts poor prognosis. FH was present in two distinct cellular compartments: the membranous (mb-FH) and intracellular (int-FH) compartments. Int-FH resided in lysosomes and colocalized with C3. In ccRCC and lung adenocarcinoma, FH exerted protumoral action through an intracellular, noncanonical mechanism. FH silencing in ccRCC cell lines resulted in decreased proliferation, due to cell-cycle arrest and increased mortality, and this was associated with increased p53 phosphorylation and NFκB translocation to the nucleus. Moreover, the migration of the FH-silenced cells was reduced, likely due to altered morphology. These effects were cell type–specific because no modifications occurred upon CFH silencing in other FH-expressing cells tested: tubular cells (from which ccRCC originates), endothelial cells (human umbilical vein endothelial cells), and squamous cell lung cancer cells. Consistent with this, in ccRCC and lung adenocarcinoma, but not in lung squamous cell carcinoma, int-FH conferred poor prognosis in patient cohorts. Mb-FH performed its canonical function of complement regulation but had no impact on tumor cell phenotype or patient survival. The discovery of intracellular functions for FH redefines the role of the protein in tumor progression and its use as a prognostic biomarker or potential therapeutic target. See article by Daugan et al., p. 891 (36).
- Published
- 2020
20. Tumor cells hijack macrophage-produced complement C1q to promote tumor growth
- Author
-
Marina Botto, Imene Sakhi, Catherine Sautès-Fridman, Olivier Delfour, Stéphane Oudard, Xavier Cathelineau, Eric Chetaille, Cheng-Ming Sun, Virginie Verkarre, Florent Petitprez, Julie Meilleroux, Wolf H. Fridman, Marie V. Daugan, Nicolas S. Merle, Alexandre Passioukov, Rafael Sanchez-Salas, Janick Selves, Aurélien de Reyniès, Sonia Keddani, Bénédicte Le Clec'h, Nathalie Corvaia, Pierre Validire, Celine Thuilliez, Laetitia Lacroix, Nicolas A. Giraldo, Eric Barret, Lubka T. Roumenina, Yann Vano, Remi Noe, Arnaud Méjean, Etienne Becht, Pierre Ferré, Isabelle Vandenberghe, Centre de Recherche des Cordeliers (CRC (UMR_S_1138 / U1138)), École pratique des hautes études (EPHE)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU), Université Sorbonne Paris Cité (USPC), Sorbonne Université (SU), Ligue Nationale Contre le Cancer - Paris, Ligue Nationnale Contre le Cancer, Hôpital Européen Georges Pompidou [APHP] (HEGP), Hôpitaux Universitaires Paris Ouest - Hôpitaux Universitaires Île de France Ouest (HUPO)-Assistance publique - Hôpitaux de Paris (AP-HP) (APHP), Service d'urologie [Institut Mutualiste Montsouris], Institut Mutualiste de Montsouris (IMM), Institut Universitaire du Cancer de Toulouse - Oncopole (IUCT Oncopole - UMR 1037), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-CHU Toulouse [Toulouse]-Institut National de la Santé et de la Recherche Médicale (INSERM), Johns Hopkins University School of Medicine [Baltimore], Centre de Recherche Pierre Fabre, Imperial College London, Service d'oncologie médicale [CHU HEGP], Hôpitaux Universitaires Paris Ouest - Hôpitaux Universitaires Île de France Ouest (HUPO)-Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-Hôpitaux Universitaires Paris Ouest - Hôpitaux Universitaires Île de France Ouest (HUPO)-Assistance publique - Hôpitaux de Paris (AP-HP) (APHP), École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpitaux Universitaires Paris Ouest - Hôpitaux Universitaires Île de France Ouest (HUPO), Centre de Recherche Pierre Fabre (Centre de R&D Pierre Fabre), PIERRE FABRE, and Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpitaux Universitaires Paris Ouest - Hôpitaux Universitaires Île de France Ouest (HUPO)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpitaux Universitaires Paris Ouest - Hôpitaux Universitaires Île de France Ouest (HUPO)
- Subjects
0301 basic medicine ,Male ,Cancer Research ,POLARIZATION ,PROTEIN ,Apoptosis ,[SDV.IMM.II]Life Sciences [q-bio]/Immunology/Innate immunity ,[SDV.MHEP.UN]Life Sciences [q-bio]/Human health and pathology/Urology and Nephrology ,Mice ,0302 clinical medicine ,Tumor Cells, Cultured ,Tumor Microenvironment ,Macrophage ,Prospective Studies ,Complement C1q ,Complement Activation ,Mice, Knockout ,Complement C4 ,Complement C3 ,Middle Aged ,Prognosis ,Kidney Neoplasms ,3. Good health ,Survival Rate ,Oncology ,030220 oncology & carcinogenesis ,Female ,medicine.symptom ,Life Sciences & Biomedicine ,Immunology ,Inflammation ,[SDV.CAN]Life Sciences [q-bio]/Cancer ,Biology ,03 medical and health sciences ,Classical complement pathway ,TROPHOBLAST ,Immune system ,INFLAMMATION ,medicine ,Animals ,Humans ,Immunologic Factors ,Carcinoma, Renal Cell ,Cell Proliferation ,Retrospective Studies ,Science & Technology ,Macrophages ,Cancer ,medicine.disease ,Complement system ,IMMUNE CONTEXTURE ,Mice, Inbred C57BL ,030104 developmental biology ,Cancer research ,Complement component 5a ,Follow-Up Studies - Abstract
Clear-cell renal cell carcinoma (ccRCC) possesses an unmet medical need, particularly at the metastatic stage, when surgery is ineffective. Complement is a key factor in tissue inflammation, favoring cancer progression through the production of complement component 5a (C5a). However, the activation pathways that generate C5a in tumors remain obscure. By data mining, we identified ccRCC as a cancer type expressing concomitantly high expression of the components that are part of the classical complement pathway. To understand how the complement cascade is activated in ccRCC and impacts patients' clinical outcome, primary tumors from three patient cohorts (n = 106, 154, and 43), ccRCC cell lines, and tumor models in complement-deficient mice were used. High densities of cells producing classical complement pathway components C1q and C4 and the presence of C4 activation fragment deposits in primary tumors correlated with poor prognosis. The in situ orchestrated production of C1q by tumor-associated macrophages (TAM) and C1r, C1s, C4, and C3 by tumor cells associated with IgG deposits, led to C1 complex assembly, and complement activation. Accordingly, mice deficient in C1q, C4, or C3 displayed decreased tumor growth. However, the ccRCC tumors infiltrated with high densities of C1q-producing TAMs exhibited an immunosuppressed microenvironment, characterized by high expression of immune checkpoints (i.e., PD-1, Lag-3, PD-L1, and PD-L2). Our data have identified the classical complement pathway as a key inflammatory mechanism activated by the cooperation between tumor cells and TAMs, favoring cancer progression, and highlight potential therapeutic targets to restore an efficient immune reaction to cancer.
- Published
- 2019
21. Complement activation during intravascular hemolysis: Implication for sickle cell disease and hemolytic transfusion reactions
- Author
-
Juliette Leon, Idris Boudhabhay, Véronique Frémeaux-Bacchi, Lubka T. Roumenina, Nicolas S. Merle, Centre de Recherche des Cordeliers (CRC (UMR_S_1138 / U1138)), École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU), Université Sorbonne Paris Cité (USPC), Laboratoire d'Immunologie Biologique, Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpital Européen Georges Pompidou [APHP] (HEGP), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpitaux Universitaires Paris Ouest - Hôpitaux Universitaires Île de France Ouest (HUPO)-Hôpitaux Universitaires Paris Ouest - Hôpitaux Universitaires Île de France Ouest (HUPO), École pratique des hautes études (EPHE)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU), Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-Hôpital Européen Georges Pompidou [APHP] (HEGP), and Hôpitaux Universitaires Paris Ouest - Hôpitaux Universitaires Île de France Ouest (HUPO)-Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-Hôpitaux Universitaires Paris Ouest - Hôpitaux Universitaires Île de France Ouest (HUPO)
- Subjects
Time Factors ,[SDV]Life Sciences [q-bio] ,Clinical Biochemistry ,Anemia, Sickle Cell ,Heme ,030204 cardiovascular system & hematology ,Antibodies, Monoclonal, Humanized ,Hemolysis ,03 medical and health sciences ,Classical complement pathway ,0302 clinical medicine ,Cell-Derived Microparticles ,medicine ,Humans ,Complement Activation ,ComputingMilieux_MISCELLANEOUS ,Innate immune system ,business.industry ,Biochemistry (medical) ,Antibody-Dependent Cell Cytotoxicity ,Transfusion Reaction ,[SDV.MHEP.HEM]Life Sciences [q-bio]/Human health and pathology/Hematology ,Hematology ,Eculizumab ,medicine.disease ,Microvesicles ,3. Good health ,Complement system ,Red blood cell ,medicine.anatomical_structure ,Immunology ,Alternative complement pathway ,[SDV.IMM]Life Sciences [q-bio]/Immunology ,business ,[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology ,Biomarkers ,030215 immunology ,medicine.drug - Abstract
Intravascular hemolysis is a hallmark of a large spectrum of diseases, including the sickle cell disease (SCD), and is characterized by liberation of red blood cell (RBC) degradation products in the circulation. Released Hb, heme, RBC fragments and microvesicles (MVs) exert pro-inflammatory, pro-oxidative and cytotoxic effects and contribute to vascular and tissue damage. The innate immune complement system not only contributes to the RBC lysis, but it is also itself activated by heme, RBC MVs and the hypoxia-altered endothelium, amplifying thus the cell and tissue damage. This review focuses on the implication of the complement system in hemolysis and hemolysis-mediated injuries in SCD and in cases of delayed hemolytic transfusion reactions (DHTR). We summarize the evidences for presence of biomarkers of complement activation in patients with SCD and the mechanisms of complement activation in DHTR. We discuss the role of antibodies-dependent activation of the classical complement pathway as well as the heme-dependent activation of the alternative pathway. Finally, we describe the available evidences for the efficacy of therapeutic blockade of complement in cases of DHTR. In conclusion, complement blockade is holding promises but future prospective studies are required to introduce Eculizumab or another upcoming complement therapeutic for DHTR and even in SCD.
- Published
- 2019
22. Anti-inflammatory activity of intravenous immunoglobulin through scavenging of heme
- Author
-
Nicolas S. Merle, Marie Wiatr, Sofia Rossini, Maxime Lecerf, Victoria Poillerat, Jordan D. Dimitrov, Idris Boudhabhay, Lubka T. Roumenina, Sébastian Lacroix-Desmazes, Srini V. Kaveri, Jordan, Dimitrov, Centre de Recherche des Cordeliers (CRC (UMR_S_1138 / U1138)), École pratique des hautes études (EPHE), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)
- Subjects
0301 basic medicine ,Complement system ,medicine.drug_class ,Intravenous immunoglobulin (IVIg) ,IgG ,Endothelial cells ,Immunology ,Anti-Inflammatory Agents ,Heme ,Pharmacology ,Hemolysis ,Anti-inflammatory ,Article ,Autoimmune Diseases ,Cell Line ,Immunomodulation ,03 medical and health sciences ,chemistry.chemical_compound ,0302 clinical medicine ,hemic and lymphatic diseases ,Extracellular ,medicine ,Human Umbilical Vein Endothelial Cells ,Humans ,Molecular Biology ,Inflammation ,biology ,Immunoglobulins, Intravenous ,[SDV.IMM.IMM]Life Sciences [q-bio]/Immunology/Immunotherapy ,Complement System Proteins ,medicine.disease ,3. Good health ,030104 developmental biology ,chemistry ,biology.protein ,Antibody ,[SDV.IMM.IMM] Life Sciences [q-bio]/Immunology/Immunotherapy ,030215 immunology - Abstract
International audience; Therapeutic intravenous immunoglobulin preparations (IVIg) are used for treatment of wide range of auto-immune and inflammatory diseases. Versatile mechanisms have been reported to contribute to the im-munomodulatory effects of IVIg. Here we demonstrate that IVIg has a strong potential to inhibit pro-in-flammatory effect of extracellular heme. Indeed, the presence of immunoglobulins reduced the potential of heme to activate the complement system on the surface of human endothelial cells. Since extracellular heme is considered as one of the principal pathogenic factors in hemolytic disorders, its therapeutic scavenging by IVIg may have significant clinical repercussions.
- Published
- 2019
- Full Text
- View/download PDF
23. The C3-like molecule CD109 controls Th1 versus Th17 induction in CD4+ T cells
- Author
-
Nicolas S Merle, Martin Kolev, Jubayer Rahman, Erin West, Bingyu Yan, Majid Kazemian, Behdad Afzali, and Claudia Kemper
- Subjects
Immunology ,Immunology and Allergy - Abstract
Recent workdefined an unexpected and critical role for intracellular/autocrine active complement in human Th1 biology. Specifically, autocrine stimulation of CD46via TCR-induced C3b generation is needed for IFN-γ production by human CD4+ T cells. Thus, CD46-deficient patients are unable to generate normal Th1 responses. Analysis of the CD46-driven gene signature in Th1 cells revealed CD109 as a direct target of CD46. Indeed, T cells from CD46 deficient patients and from healthy donors in which CD46 expression was ablated via CRISPR-Cas9 technology failed to upregulate CD109. CD109 is aGPI-linked surface protein, mostly expressed on non-immune cells, and belongs to the complement C3 protein family. Though CD109 has been reported as a major negative regulator of TGF-β receptor signaling, direct functional activity for of CD109 on T cells remains unexplored. Knock-out of CD109 in human CD4+ T cells with CRISPR-Cas9 technology induced uncontrolled Th1 and Th17 activation upon in vitro stimulation under non-skewing conditions. Similarly, CD4+T cells from Cd109−/− mice displayed augmented Th1 and Th17 in vitro responses and caused significantly more tissue pathology and weight loss in a T cell-transfer colitis model. Surprisingly, on T cells, CD109 does not restrain IFN-γ and/or IL-17 induction via modulation of TGF-β receptor activity. Instead, CD109 engages with a non-canonical costimulatory molecule and controls stemness- and metabolism-related signaling pathways. Together, these data suggest that the complement-related protein CD109 serves as an important and novel molecular switch on CD4+ T-cells, where it regulates the balance between Th1 and Th17-induction pathways.
- Published
- 2021
24. A single-domain antibody targeting complement component c5 acts as a selective inhibitor of the terminal pathway of the complement system and thus functionally mimicks the c-terminal domain of the staphylococcus aureusSSL7 protein
- Author
-
Laure Yatime, Nicolas S. Merle, Annette G. Hansen, Niels Anton Friis, Jakob A. Østergaard, Mette Bjerre, Lubka T. Roumenina, Steffen Thiel, Peter Kristensen, Gregers R. Andersen, YATIME, Laure, Dynamique des interactions membranaires normales et pathologiques (DIMNP), Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Aarhus University [Aarhus], Centre de Recherche des Cordeliers (CRC (UMR_S_1138 / U1138)), École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU), Aarhus University Hospital, Aalborg University [Denmark] (AAU), and Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université Montpellier 1 (UM1)
- Subjects
0301 basic medicine ,lcsh:Immunologic diseases. Allergy ,Single-domain antibody ,Phage display ,paroxysmal nocturnal hemoglobinuria ,Immunology ,Complement ,terminal pathway inhibition ,Terminal pathway inhibition ,[SDV.IMM.II]Life Sciences [q-bio]/Immunology/Innate immunity ,Hemolysis ,03 medical and health sciences ,0302 clinical medicine ,Bacteriolysis ,bacteriolysis ,medicine ,Immunology and Allergy ,complement ,Paroxysmal nocturnal hemoglobinuria ,[SDV.IMM.II] Life Sciences [q-bio]/Immunology/Innate immunity ,Pathogen mimicry ,single-domain antibody ,Complement component 5 ,biology ,Chemistry ,medicine.disease ,3. Good health ,Complement system ,Cell biology ,030104 developmental biology ,biology.protein ,pathogen mimicry ,Antibody ,hemolysis ,Complement membrane attack complex ,lcsh:RC581-607 ,030215 immunology - Abstract
International audience; The complement system is an efficient anti-microbial effector mechanism. On the other hand abnormal complement activation is involved in the pathogenesis of multiple inflammatory and hemolytic diseases. As general inhibition of the complement system may jeopardize patient health due to increased susceptibility to infections, the development of pathway-specific complement therapeutics has been a long-lasting goal over the last decades. In particular, pathogen mimicry has been considered as a promising approach for the design of selective anti-complement drugs. The C-terminal domain of staphylococcal superantigen-like protein 7 (SSL7), a protein secreted by Staphylococcus aureus, was recently found to be a specific inhibitor of the terminal pathway of the complement system, providing selective inhibition of cell lysis mediated by the membrane attack complex (MAC). We describe here the selection by phage display of a humanized single-domain antibody (sdAb) mimicking the C-terminal domain of SSL7. The antibody, called sdAb_E4, binds complement C5 with an affinity in the low micromolar range. Furthermore, sdAb_E4 induces selective inhibition of MAC-mediated lysis, allowing inhibition of red blood cell hemolysis and inhibition of complement deposition on apopto-necrotic cells, while maintaining efficient bactericidal activity of the complement terminal pathway. Finally, we present preliminary results indicating that sdAb_E4 may also be efficient in inhibiting hemolysis of erythrocytes from patients with paroxysmal nocturnal hemoglobinuria. Our data provide a proof of concept for the design of a selective MAC inhibitor capable of retaining complement bacteriolytic activity and this study opens up promising perspectives for the development of an sdAb_E4-derived therapeutics with application in the treatment of complement-mediated hemolytic disorders.
- Published
- 2018
25. L’hème, un nouveau ligand du récepteur des produits de glycation avancée (RAGE)
- Author
-
Alina Ghinet, M. Billamboz, Jordan D. Dimitrov, Nicolas S. Merle, Marie Frimat, Eric Boulanger, Olivia May, Lubka T. Roumenina, Florian Delguste, Laure Yatime, Hôpital Claude Huriez [Lille], CHU Lille, Lille Inflammation Research International Center - U 995 (LIRIC), Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Laboratory of Pathogen and Host Immunity [Montpellier] (LPHI), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Centre de Recherche des Cordeliers (CRC (UMR_S_1138 / U1138)), École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU), Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP), Dynamique des interactions membranaires normales et pathologiques (DIMNP), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université Montpellier 1 (UM1), École pratique des hautes études (EPHE), Hôpital Claude Huriez, Lille Inflammation Research International Center (LIRIC), Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), École pratique des hautes études (EPHE)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU), and Université de Lille, Droit et Santé-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)
- Subjects
03 medical and health sciences ,0302 clinical medicine ,Nephrology ,030232 urology & nephrology ,[SDV.MHEP.HEM]Life Sciences [q-bio]/Human health and pathology/Hematology ,030204 cardiovascular system & hematology ,16. Peace & justice ,[SDV.IMM.II]Life Sciences [q-bio]/Immunology/Innate immunity ,ComputingMilieux_MISCELLANEOUS ,3. Good health - Abstract
Introduction Le syndrome hemolytique et uremique atypique (SHUa) est une microangiopathie thrombotique renale caracterisee par une hemolyse mecanique et une suractivation du complement. Il est demontre que l’heme, derive de l’hemolyse, lie C3a, amplifiant ainsi l’activation du complement. Les mecanismes d’action du complexe heme-C3a sont inconnus. Une interaction du C3a avec le Recepteur aux produits de glycation avancee (RAGE) est rapportee. RAGE, recepteur multi-ligands ubiquitaire, est implique dans differentes pathologies a tropisme renal (nephropathie diabetique, lupique, polykystose) mais aucun role dans le SHUa n’est decrit a ce jour. Notre objectif etait ainsi d’analyser l’interaction C3a-RAGE en conditions hemolytiques. Patients/Materiels et methodes Les interactions entre RAGE, l’heme et C3a etaient etudiees en resonance plasmonique de surface (SPR), spectrophotometrie et chromatographie d’exclusion serique. Pour analyser in vivo l’impact de RAGE en conditions hemolytiques, des souris C57Bl/6 RAGE−/− et leurs controles +/ + littermates recevaient ± une injection intraperitoneale d’heme (50, 100, 200 μmol/kg) avant sacrifice a 16 h. L’expression renale des genes de RAGE et de marqueurs inflammatoires (IL1β, IL6, TNFα) etait etudiee par RTqPCR. Observation/Resultats En SPR, le RAGE recombinant liait la carboxymethyllysine, son principal ligand connu, mais l’interaction RAGE-C3a restait indetectable. A contrario, C3a expose a l’heme liait le RAGE avec une haute affinite. Cette interaction etait donc mediee par l’heme, qui liait RAGE de facon dose-dependante. L’immobilisation des differents domaines de RAGE permettait d’identifier le site de liaison de l’heme sur le domaine V. L’interaction domaine V-heme etait tres affine et specifique, alors que l’heme ne se liait pas aux domaines C1 et C2. Cette liaison etait confirmee en spectroscopie et chromatographie d’exclusion. In vivo, l’injection d’heme a des souris induisait une augmentation dose-dependante de l’expression de RAGE ainsi que l’activation du complement au niveau renal, menant au clivage du C3 et la generation de fragments d’activation du C3 sur l’endothelium glomerulaire. Nous observions egalement une augmentation dose-dependante de l’expression renale des marqueurs de l’inflammation, quantifiee a la condition heme 200 μM/kg autour de × 4, × 200 et × 3,5 pour IL1β, IL6 et TNFα respectivement par rapport au controle (PBS). Les analyses preliminaires montraient une elevation moindre de l’expression de ces genes chez les souris RAGE−/−, dans les memes conditions : × 1,5, × 50 et × 2 respectivement. Discussion/Conclusion Ce travail revele RAGE comme un nouveau recepteur de l’heme. En conditions hemolytiques, les souris RAGE−/− semblent en partie protegees de l’inflammation au niveau renal, ouvrant des perspectives therapeutiques dans les maladies hemolytiques via les molecules anti-RAGE.
- Published
- 2018
26. Intravascular hemolysis activates complement via cell-free heme and heme-loaded microvesicles
- Author
-
Anne Grunenwald, Viviane Gnemmi, Sara Petrillo, Samantha Knockaert, Dominique Charue, Olivier Blanc-Brude, Marion Rabant, Sylvain Le Jeune, Helena Rajaratnam, Lubka T. Roumenina, Tania Robe-Rybkine, Sylvia Miescher, Jordan D. Dimitrov, Pascal Houillier, Emanuela Tolosano, Marie-Lucile Figueres, Sanah Bouzekri, Nicolas S. Merle, Véronique Frémeaux-Bacchi, Marie Frimat, Marie Le-Hoang, Nathan Brinkman, Monika Edler, Remi Noe, Sophie Chauvet, and Thomas Gentinetta
- Subjects
0301 basic medicine ,Erythrocytes ,Inflammation ,Anemia, Sickle Cell ,Complement Membrane Attack Complex ,Heme ,Kidney ,Hemolysis ,Receptors, G-Protein-Coupled ,03 medical and health sciences ,chemistry.chemical_compound ,Mice ,0302 clinical medicine ,Hemopexin ,medicine ,Animals ,Hepatitis A Virus Cellular Receptor 1 ,Receptor, Anaphylatoxin C5a ,Cell-Free System ,CD46 ,Chemistry ,Endothelial Cells ,General Medicine ,Complement C3 ,Acute Kidney Injury ,medicine.disease ,Molecular biology ,Microvesicles ,Complement system ,Mice, Inbred C57BL ,Red blood cell ,Disease Models, Animal ,P-Selectin ,030104 developmental biology ,medicine.anatomical_structure ,Female ,medicine.symptom ,030215 immunology ,Research Article - Abstract
In hemolytic diseases, such as sickle cell disease (SCD), intravascular hemolysis results in the release of hemoglobin, heme, and heme-loaded membrane microvesicles in the bloodstream. Intravascular hemolysis is thus associated with inflammation and organ injury. Complement system can be activated by heme in vitro. We investigated the mechanisms by which hemolysis and red blood cell (RBC) degradation products trigger complement activation in vivo. In kidney biopsies of SCD nephropathy patients and a mouse model with SCD, we detected tissue deposits of complement C3 and C5b-9. Moreover, drug-induced intravascular hemolysis or injection of heme or hemoglobin in mice triggered C3 deposition, primarily in kidneys. Renal injury markers (Kim-1, NGAL) were attenuated in C3-/- hemolytic mice. RBC degradation products, such as heme-loaded microvesicles and heme, induced alternative and terminal complement pathway activation in sera and on endothelial surfaces, in contrast to hemoglobin. Heme triggered rapid P selectin, C3aR, and C5aR expression and downregulated CD46 on endothelial cells. Importantly, complement deposition was attenuated in vivo and in vitro by heme scavenger hemopexin. In conclusion, we demonstrate that intravascular hemolysis triggers complement activation in vivo, encouraging further studies on its role in SCD nephropathy. Conversely, heme inhibition using hemopexin may provide a novel therapeutic opportunity to limit complement activation in hemolytic diseases.
- Published
- 2017
27. L’hémolyse, facteur amplificateur des lésions de microangiopathie thrombotique dans le syndrome hémolytique et urémique atypique
- Author
-
Véronique Frémeaux-Bacchi, Matthew C. Pickering, Juliette Leon, Nicolas S. Merle, and Lubka T. Roumenina
- Subjects
Nephrology - Abstract
Introduction Le syndrome hemolytique et uremique atypique (SHUa) est une microangiopathie thrombotique (MAT) severe, essentiellement renale, caracterisee par une anemie hemolytique, une thrombopenie et une insuffisance renale aigue. Le SHUa est associe a une hyper-activation de la voie alterne du complement (VA), liee a des anomalies genetiques des proteines regulatrices, notamment le facteur H (FH). L’heme, facteur endothelio-toxique libere lors d’une hemolyse, a recemment ete identifie comme activateur de la VA. Cependant, son role ainsi que celui de l’hemolyse dans la physiopathologie du SHUa reste meconnu. Notre objectif a ete d’etudier le role in vivo de ces derniers dans la genese des lesions de MAT dans le SHUa. Patients/Materiels et methodes Pour explorer l’impact de l’hemolyse sur l’apparition de MAT, nous avons injecte de la phenylhydrazine en intra-peritoneale, un agent chimique hemolytique, chez des souris transgeniques deficitaires en FH hepatique versus des souris temoins. Ces souris n’expriment plus que 20 % de FH circulant et sont susceptibles de developper un SHUa apres un evenement declenchant (e.g. serum nephrotoxique). Les parametres hematologiques (plaquettes, hematocrite), histologiques (thrombus) et la fonction renale (uree, proteinurie, hematurie) ont ete analyses a j1, j2 et j4 post-injection. L’expression de marqueurs d’atteinte renale (NGAL, Kim-1), de lesion endotheliale (P-selectine, VCAM, ICAM), de proliferation cellulaire (Ki67), des systemes du complement (FH, C3, C5b9) et de la coagulation (Thrombomoduline, PAI, Facteur tissulaire) ont ete etudies : soit par RT-qPCR, immunohistochimie et immunofluorescence au niveau renal, soit par Western Blot au niveau plasmatique. Observation/Resultats Contrairement aux souris temoins, les souris deficitaires en FH hepatique ont developpes un tableau de MAT des j2 associant insuffisance renale aigue, thrombopenie et apparition de thrombi fibrinoplaquettaires principalement arteriolaires. En parallele, une activation glomerulaire du complement et une agression de l’endothelium sont retrouvees. L’analyse transcriptomique a revele une augmentation des marqueurs de souffrance renale et endotheliale, ainsi qu’une activation de l’hemostase et un defaut de fibrinolyse. Discussion/Conclusion En cas de susceptibilite genetique conduisant a une deregulation du complement, comme dans le SHUa, l’hemolyse massive favorise l’apparition des lesions de MAT. Ces dernieres sont induites par une sur-activation du complement et par une agression endotheliale. Ces resultats ouvrent vers de nouvelles therapeutiques dans le SHUa ciblant l’hemolyse.
- Published
- 2018
28. Atypical hemolytic uremic syndrome – Why the kidney?
- Author
-
Olivia May, Véronique Frémeaux-Bacchi, Lubka T. Roumenina, Tania Robe-Rybkine, Marc Hazzan, Jordan D. Dimitrov, Anne Grunenwald, Nicolas S. Merle, Viviane Gnemmi, and Marie Frimat
- Subjects
Pathology ,medicine.medical_specialty ,Kidney ,medicine.anatomical_structure ,business.industry ,Immunology ,Atypical hemolytic uremic syndrome ,medicine ,medicine.disease ,business ,Molecular Biology - Published
- 2017
29. Intravascular hemolysis activates complement via cell-free heme and heme-loaded microvesicles
- Author
-
Nicolas S. Merle, Véronique Frémeaux-Bacchi, Lubka T. Roumenina, and Olivier Blanc-Brude
- Subjects
Intravascular hemolysis ,chemistry.chemical_compound ,Chemistry ,Immunology ,Cell free ,Molecular Biology ,Heme ,Microvesicles ,Complement (complexity) ,Cell biology - Published
- 2018
30. FP076ATYPICAL HEMOLYTIC UREMIC SYNDROME - WHY THE KIDNEY?
- Author
-
Olivia May, Lubka T. Roumenina, Tania Robe-Rybkine, Marie Frimat, Jordan D. Dimitrov, Viviane Gnemmi, Nicolas S. Merle, Anne Grunenwald, Véronique Frémeaux-Bacchi, and Marc Hazzan
- Subjects
Transplantation ,medicine.medical_specialty ,Kidney ,medicine.anatomical_structure ,Nephrology ,business.industry ,Internal medicine ,Atypical hemolytic uremic syndrome ,medicine ,business ,medicine.disease ,Gastroenterology - Published
- 2018
31. Complement System Part I – Molecular Mechanisms of Activation and Regulation
- Author
-
Lubka T. Roumenina, Sarah E. Church, Nicolas S. Merle, and Véronique Frémeaux-Bacchi
- Subjects
lcsh:Immunologic diseases. Allergy ,Immunology ,complement system proteins ,structure–function relationships ,Heme ,Complement receptor ,Review ,Biology ,Classical complement pathway ,membrane-attack-complex ,Atypical hemolytic uremic syndrome ,medicine ,Immunology and Allergy ,Anaphylatoxin ,classical complement pathway ,Properdin ,complement regulatory proteins ,anaphylatoxins ,alternative complement pathway ,medicine.disease ,endothelial cells ,Complement system ,P-Selectin ,Alternative complement pathway ,lcsh:RC581-607 ,Complement membrane attack complex ,Neuroscience - Abstract
Complement is a complex innate immune surveillance system, playing a key role in defense against pathogens and in host homeostasis. The complement system is initiated by conformational changes in recognition molecular complexes upon sensing danger signals. The subsequent cascade of enzymatic reactions is tightly regulated to assure that complement is activated only at specific locations requiring defense against pathogens, thus avoiding host tissue damage. Here, we discuss the recent advances describing the molecular and structural basis of activation and regulation of the complement pathways and their implication on physiology and pathology. This article will review the mechanisms of activation of alternative, classical, and lectin pathways, the formation of C3 and C5 convertases, the action of anaphylatoxins, and the membrane-attack-complex. We will also discuss the importance of structure–function relationships using the example of atypical hemolytic uremic syndrome. Lastly, we will discuss the development and benefits of therapies using complement inhibitors.
- Published
- 2015
32. Syndrome hémolytique et urémique atypique : pourquoi le rein ?
- Author
-
Marie Frimat, Viviane Gnemmi, Olivia May, Anne Grunenwald, Jordan D. Dimitrov, Nicolas S. Merle, Tania Rybkine, P. Cloé, Lubka T. Roumenina, Véronique Frémeaux-Bacchi, Romain Paule, and Marc Hazzan
- Subjects
Nephrology - Abstract
Introduction Le syndrome uremique hemolytique atypique (SHUa) traduit des lesions de microangiopathie thrombotique d’expression majoritairement renale. L’identification chez plus de 60 % des patients d’anomalie de regulation de la voie alterne a mis en avant le role majeur du complement. Pour autant, la susceptibilite des cellules endotheliales (CE) renales, alors que l’activation complementaire est systemique, reste incomprise. Materiels et methodes Afin de comprendre le tropisme renal du SHUa, nous avons compare les caracteristiques de differents endotheliums en conditions hemolytiques in vitro et in vivo. Des marqueurs relatifs a l’activation du complement (C3b, iC3b) et a la cyto-protection des CE (facteur H [FH], thrombomoduline [TM], heme oxygenase 1 [HO1]) ont ete etudies dans des cultures de cellules d’origine glomerulaire (culture primaire et lignee), dermique ou de veine ombilicale (HUVEC), ainsi qu’au niveau renal, hepatique et cardiaque dans un modele murin expose a l’heme. Resultats A l’etat basal, le depot et l’expression des differents marqueurs etaient comparables. En revanche, les CE glomerulaires in vitro et l’endothelium glomerulaire in vivo deposaient significativement plus de fragments de C3 apres exposition prolongee a l’heme, par rapport aux HUVEC et aux autres organes testes chez la souris. Nous avons observe sur les CE glomerulaires exposees a l’heme une moindre regulation du complement (plus faible liaison du FH et moindre augmentation de la TM). De plus, contrairement aux autres types cellulaires, l’expression d’HO-1 – enzyme majeure cytoprotectrice degradant l’heme – n’etait pas augmentee sous l’effet de l’heme au sein de l’endothelium glomerulaire aussi bien in vitro qu’in vivo. Seules les HUVEC demontraient une capacite d’adaptation – le depot de C3 induit par l’heme diminuant lors d’une reexposition a ce stimulus – et celle-ci s’averait inhibee en cas de blocage de la fonction HO1. Discussion L’endothelium glomerulaire montre un defaut d’adaptation face a l’hemolyse (moindre synthese d’HO1) et a l’activation du complement (moins de FH, de TM), susceptible de s’exprimer d’autant plus en cas de deregulation sous-jacente de la voie alterne. Conclusion Ainsi, ce changement phenotypique heme-dependant des CE glomerulaires pourrait expliquer l’atteinte endotheliale renale preferentielle dans le SHUa.
- Published
- 2017
33. Intravascular hemolysis induces complement system activation
- Author
-
Nathan Brinkman, Jordan D. Dimitrov, Sylvain Le Jeune, Marie-Lucile Figueres, Nicolas S. Merle, Helena Rajaratnam, Véronique Frémeaux-Bacchi, Sylvia Miescher, Anne Grunenwald, Sanah Bouzekri, Viviane Gnemmi, Pascal Houillier, Lubka T. Roumenina, Tania Robe-Rybkine, Olivier Blanc-Brude, Dominique Charue, Marie Frimat, and Remi Noe
- Subjects
Intravascular hemolysis ,Chemistry ,Immunology ,Molecular Biology ,Complement system - Published
- 2017
34. Rôle de l’hème oxygénase dans la protection rénale contre l’activation du complément en conditions hémolytiques
- Author
-
Nicolas S. Merle, Olivia May, Tania Rybkine, Anne Grunenwald, Remi Noe, Véronique Frémeaux-Bacchi, Lubka T. Roumenina, J. Rosain, and Marie Frimat
- Subjects
Nephrology - Abstract
Introduction L’heme, en conditions hemolytiques, est un signal de danger qui provoque inflammation et dysfonction cellulaire. Pour reguler ses effets deleteres, il induit l’expression d’heme oxygenase 1 (HO-1), enzyme capable de degrader l’heme et moduler certains genes. Il est responsable de l’hyperactivation du complement a la surface de cellules endotheliales, pouvant contribuer a la pathogenese du syndrome hemolytique et uremique atypique (SHUa). Notre objectif est de caracteriser le role de l’HO-1 dans la protection des cellules endotheliales renales contre l’attaque du complement en situation hemolytique. Materiels et methodes Sur cellules HUVECS et endotheliales glomerulaires, incubees avec des concentrations croissantes d’heme, l’expression d’HO-1 et de regulateurs du complement (MCP, DAF et thrombomoduline) a ete etudiee par RT-qPCR, Western Blot ou cytometrie. Apres rechallenge a l’heme, les depots de C3 (serum normal ou deregule) ont ete etudies en cytometrie. In vivo, des souris C57B6 ont ete injectees par heme ou phenylhydrazine (traitement hemolytique) pour etudier les marquages HO-1, C3 et co-localisations endotheliales dans les reins, cœurs, foies et rates en immuno-histochimie et fluorescence. Resultats Nous mettons en evidence une protection contre l’attaque par le complement sur les HUVECS exprimant l’HO-1, mais pas les cellules endotheliales glomerulaires. L’expression des regulateurs du complement varie avec l’incubation des HUVECs par l’heme. En immuno-histochimie et immunofluorescence, les souris injectees par heme ou phenyl hydrazine ont des depots de C3 glomerulaires et le long de la membrane basale tubulaire. Discussion En conditions hemolytiques in vivo et in vitro, la surexpression d’HO-1 est associee avec des depots de C3 plus faibles. Les depots les plus importants sont intra-glomerulaires ou l’HO-1 n’est pas exprimee. Cet effet protecteur est peut-etre lie a la modulation de l’expression des regulateurs du complement lors d’une surexpression d’HO-1. Conclusion L’absence de protection glomerulaire par l’HO-1 peut expliquer le defaut de protection endotheliale contre l’attaque par le complement, notamment, en cas d’hyperactivation du complement comme dans le SHUa, expliquant potentiellement le tropisme renal du SHUa.
- Published
- 2015
35. The Calcium-Dependent Interaction between S100B and the Mitochondrial AAA ATPase ATAD3A and the Role of This Complex in the Cytoplasmic Processing of ATAD3A▿
- Author
-
Jacques Baudier, Denis Rousseau, Boualem Moulouel, Brian R. Cannon, Benoit Gilquin, Nicole Assard, Paul T. Wilder, David J. Weber, Sylvie Kieffer, Nicolas S. Merle, Elin Falk, and Arnaud Hubstenberger
- Subjects
Cytoplasm ,Molecular Sequence Data ,S100 Calcium Binding Protein beta Subunit ,Biology ,Mitochondrion ,DNA-binding protein ,Cell Line ,Mitochondrial Proteins ,Calcium-binding protein ,Animals ,Humans ,Amino Acid Sequence ,Nerve Growth Factors ,Molecular Biology ,Nuclear Magnetic Resonance, Biomolecular ,Adenosine Triphosphatases ,Stem Cells ,S100 Proteins ,Membrane Proteins ,Cell Biology ,Articles ,AAA proteins ,Cell biology ,Mitochondria ,Protein Structure, Tertiary ,Rats ,DNA-Binding Proteins ,Oligodendroglia ,Membrane protein ,Biochemistry ,ATPases Associated with Diverse Cellular Activities ,Calcium ,Target protein ,Peptides ,Sequence Alignment ,Binding domain - Abstract
S100 proteins comprise a multigene family of EF-hand calcium binding proteins that engage in multiple functions in response to cellular stress. In one case, the S100B protein has been implicated in oligodendrocyte progenitor cell (OPC) regeneration in response to demyelinating insult. In this example, we report that the mitochondrial ATAD3A protein is a major, high-affinity, and calcium-dependent S100B target protein in OPC. In OPC, ATAD3A is required for cell growth and differentiation. Molecular characterization of the S100B binding domain on ATAD3A by nuclear magnetic resonance (NMR) spectroscopy techniques defined a consensus calcium-dependent S100B binding motif. This S100B binding motif is conserved in several other S100B target proteins, including the p53 protein. Cellular studies using a truncated ATAD3A mutant that is deficient for mitochondrial import revealed that S100B prevents cytoplasmic ATAD3A mutant aggregation and restored its mitochondrial localization. With these results in mind, we propose that S100B could assist the newly synthesized ATAD3A protein, which harbors the consensus S100B binding domain for proper folding and subcellular localization. Such a function for S100B might also help to explain the rescue of nuclear translocation and activation of the temperature-sensitive p53val135 mutant by S100B at nonpermissive temperatures.
- Published
- 2010
36. The AAA+ ATPase ATAD3A Controls Mitochondrial Dynamics at the Interface of the Inner and Outer Membranes ▿
- Author
-
Nicole Assard, Arnaud Hubstenberger, Jacques Baudier, Nicolas S. Merle, Shiho Tomohiro, Emmanuel Taillebourg, Benoit Gilquin, Osamu Kuge, Nadia Cherradi, Marie-Odile Fauvarque, Laboratoire de Biologie à Grande Échelle (BGE - UMR S1038), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Genetics and Chemogenomics (GenChem), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Angiogenèse hormono-regulée et angiogenèse tumorale (LAPV), Université Joseph Fourier - Grenoble 1 (UJF)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Santé et de la Recherche Médicale (INSERM), Laboratoire de Biologie du Développement (LBD), Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Paris Seine (IBPS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie, Catalyse, Polymères et Procédés, R 5265 (C2P2), Centre National de la Recherche Scientifique (CNRS)-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Biologie Paris Seine (IBPS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
ATPase ,Cell ,Mutant ,Molecular Sequence Data ,Mitochondrion ,[SHS]Humanities and Social Sciences ,Cell Line ,Mitochondrial Proteins ,03 medical and health sciences ,0302 clinical medicine ,Protein structure ,Adenosine Triphosphate ,Two-Hybrid System Techniques ,medicine ,Animals ,Drosophila Proteins ,Humans ,Amino Acid Sequence ,Molecular Biology ,030304 developmental biology ,Adenosine Triphosphatases ,0303 health sciences ,biology ,Membrane Proteins ,Cell Biology ,Articles ,Mitochondrial carrier ,AAA proteins ,Cell biology ,Mitochondria ,Protein Structure, Tertiary ,DNA-Binding Proteins ,Transmembrane domain ,medicine.anatomical_structure ,Drosophila melanogaster ,030220 oncology & carcinogenesis ,Mitochondrial Membranes ,biology.protein ,ATPases Associated with Diverse Cellular Activities ,Sequence Alignment - Abstract
International audience; Dynamic interactions between components of the outer (OM) and inner (IM) membranes control a number of critical mitochondrial functions such as channeling of metabolites and coordinated fission and fusion. We identify here the mitochondrial AAA(+) ATPase protein ATAD3A specific to multicellular eukaryotes as a participant in these interactions. The N-terminal domain interacts with the OM. A central transmembrane segment (TMS) anchors the protein in the IM and positions the C-terminal AAA(+) ATPase domain in the matrix. Invalidation studies in Drosophila and in a human steroidogenic cell line showed that ATAD3A is required for normal cell growth and cholesterol channeling at contact sites. Using dominant-negative mutants, including a defective ATP-binding mutant and a truncated 50-amino-acid N-terminus mutant, we showed that ATAD3A regulates dynamic interactions between the mitochondrial OM and IM sensed by the cell fission machinery. The capacity of ATAD3A to impact essential mitochondrial functions and organization suggests that it possesses unique properties in regulating mitochondrial dynamics and cellular functions in multicellular organisms.
- Published
- 2010
37. Topological analysis of ATAD3A insertion in purified human mitochondria
- Author
-
Arnaud Hubstenberger, Romain Charton, Nicolas S. Merle, Denis L. Rousseau, and Gérard Brandolin
- Subjects
Cytoplasm ,Physiology ,ATPase ,Blotting, Western ,Molecular Sequence Data ,Fluorescent Antibody Technique ,Enzyme-Linked Immunosorbent Assay ,Mitochondrion ,Topology ,Mitochondrial Proteins ,Inner membrane ,Nucleoid ,Humans ,Amino Acid Sequence ,Cells, Cultured ,Adenosine Triphosphatases ,biology ,Membrane Proteins ,Cell Biology ,Cell biology ,Mitochondria ,Cytosol ,Translocase of the inner membrane ,Mitochondrial Membranes ,biology.protein ,ATPases Associated with Diverse Cellular Activities ,Intermembrane space - Abstract
ATAD3 is a mitochondrial inner membrane-associated protein that has been predicted to be an ATPase but from which no associated function is known. The topology of ATAD3 in mitochondrial membranes is not clear and subject to controversy. A direct interaction of the N-terminal domain (amino-acids 44-247) with the mtDNA has been described, but the same domain has been reported to be sensitive to limited proteolysis in purified mitochondria. Furthermore, ATAD3 has been found in a large purified nucleoid complex but could not be cross-linked to the nucleoid. To resolve these discrepancies we used two immunological approaches to test whether the N-terminal (amino-acids 40-53) and the C-terminal (amino-acids 572-586) regions of ATAD3 are accessible from the cytosol. Using N-terminal and C-terminal specific anti-peptide antibodies, we carried out back-titration ELISA measurements and immuno-fluorescence analysis on freshly purified human mitochondria. Both approaches showed that the N-terminal region of ATAD3A is accessible to antibodies in purified mitochondria. The N-terminal region of ATAD3A is thus probably in the cytoplasm or in an accessible intermembrane space. On the contrary, the C-terminal region is not accessible to the antibody and is probably located within the matrix. These results demonstrate both that the N-terminal part of ATAD3A is outside the inner membrane and that the C-terminal part is inside the matrix.
- Published
- 2009
38. Analyse des propriétés de protection contre l’activation du complément et de l’expression d’un phénotype prothrombotique de l’endothélium glomérulaire rénal
- Author
-
Olivia May, Nicolas S. Merle, Véronique Frémeaux-Bacchi, Marie Frimat, Christian Noel, Romain Paule, and Lubka T. Roumenina
- Subjects
Nephrology - Abstract
Introduction Le syndrome hemolytique uremique atypique (SHUa) constitue un prototype de pathologie liee a une dysregulation de la voie alterne du complement. Pour autant, certains aspects physiopathologiques restent incompris, parmi lesquels le tropisme majoritairement renal des lesions de microangiopathie thrombotique. Notre objectif est d’etudier les capacites de complement- et thrombo-resistances de differentes cellules endotheliales. Materiels et methodes Differents marqueurs relatifs a l’activation du complement (C3b, C5b9), a sa regulation (facteur H (FH), MCP, DAF, CD59) a l’inflammation (ICAM-1) ou a la thrombose (facteur von Willebrand (vWF), thrombomoduline (TM)) ont ete analyses sur des cellules endotheliales primaires glomerulaires humaines (hGEC, 1 donneur) et sur des HUVEC (Human Umbilical Vein Endothelial Cells). Leur expression a ete etudiee par cytometrie de flux ou Elisa, a l’etat basal ou apres incubation 30 minutes en presence d’heme libre, stimulus visant a mimer une hemolyse aigue. Resultats A l’etat basal, le depot de C3 et la formation de C5b9 etaient superieurs a la surface des hGEC par rapport aux HUVEC. Les hGEC produisaient moins de FH mais exprimaient plus fortement MCP, DAF et CD59, ainsi qu’ICAM-1. Apres stimulation par l’heme, le depot de C3 etait plus augmente sur les hGEC que sur les HUVEC et ceci de facon dose-dependante. L’expression de CD55 et de TM diminuaient de facon comparable sur les hGEC et les HUVEC, tandis que la diminution de MCP etait plus forte sur les hGEC. Les HUVEC exprimaient plus de vWF apres stimulation par l’heme par rapport aux hGEC. Discussion et conclusion L’endothelium glomerulaire semble etre une surface naturellement activatrice du complement, malgre la forte expression de regulateurs membranaires. Les hGEC deposent plus de complement sous l’effet de l’heme, ce qui pourrait etre lie a la diminution de l’expression de MCP, de CD55 et la plus faible production de FH. Ces donnees pourraient nous permettre de mieux comprendre le tropisme preferentiel renal du SHUa.
- Published
- 2014
39. A prevalent CFHR1/FH reverse hybrid gene in aHUS patients induces deregulation of the alternative pathway
- Author
-
Lisa Strain, T. H. J. Goodship, Véronique Frémeaux-Bacchi, D. Deury, Lise Halbwachs-Mecarelli, Nicolas S. Merle, and Lubka T. Roumenina
- Subjects
Hybrid gene ,Deregulation ,Immunology ,Alternative complement pathway ,Cancer research ,Biology ,Molecular Biology - Published
- 2013
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.