Yohann Demont, Delphine Lebon, Roggiero Lopes Dos Santos, Pascal Vong, Hakim Ouled-Haddou, Nicolas Jankovsky, Julien Demagny, Candice Carola, Jessica Platon, Alexis Caulier, Jacques Rochette, Nicolas Guillaume, Jean-Pierre Marolleau, Kahia Messaoudi, Loïc Garçon, HEMATIM - Hématopoïèse et immunologie - UR UPJV 4666 (HEMATIM), Université de Picardie Jules Verne (UPJV)-CHU Amiens-Picardie-Institut National de la Santé et de la Recherche Médicale (INSERM), Hématopoïèse normale et pathologique, Université Paris-Sud - Paris 11 (UP11)-Institut Gustave Roussy (IGR)-Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris-Sud - Paris 11 (UP11), Centre de Recherche des Cordeliers (CRC (UMR_S_1138 / U1138)), École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université Paris Cité (UPCité), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Service d'Oncologie Médicale [Institut Hospitalier Franco-Britannique], Division of Medical Oncology - Institut Hospitalier Franco-Britannique, CHU Amiens-Picardie, Hôpital Claude Huriez [Lille], CHU Lille, Service d'hématologie biologique, Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Groupe Hospitalier Saint Louis - Lariboisière - Fernand Widal [Paris], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Laboratoire d'Hématologie [CHU Amiens], and DESSAIVRE, Louise
The Gluthation peroxidase (GPX) enzymes are part of the protective system against lipid peroxydation that includes prevention of oxydation and reduction of already oxidized lipid through enzymatic reactions catalyzed by GSH. GPX4 is one of the five GPX able to incorporate selenium. It is also the only GPX able to directly reduce in the membrane the oxidized fatty acids and cholesterol. Recent reports identified GPX4 as the central inhibitor of ferroptosis, a process during which iron-induced peroxydation of membrane lipids causes a specific cell death that can be reverted by lipophilic antioxydants or by iron chelators. GPX4 has recently been involved during mice erythropoiesis: GPX4-/-mice present a hemolytic anemia and a high apoptotic rate in spleen erythroid progenitors. Although transcriptomics and proteomics found it expressed in human erythroid precursors, its role during human erythropoiesis has not been described. Using an in-vitroerythroid differentiation protocol from CD34+cells obtained from apheresis, we confirmed that GPX4 expression was induced at RNA and protein level during differentiation. RSL3, a specific GPX4 inhibitor, didn't affect early steps of erythropoiesis (i.eclonogenic potential and progenitor amplification) nor the early maturation of erythroid precursors (assessed by sequential CD49d/CD235/CD71 staining) but led to a significant decrease in the enucleation rate as assessed by Hoechst staining using flow cytometry (74%±9 DMSO versus 35%±6 RSL3, p Using Western Blot, we observed that RSL3 exposure induced a strong GPX4 depletion in erythroid progenitors while it didn't affect GPX1, another member of the GPX family expressed in erythroid cells. In order to confirm that enucleation defect was related to GPX4 knockdown, we used an Sh-RNA strategy that allowed a 62%±6 GPX4 decrease at RNA level and a 46%±5 at protein level. We observed a significant defect in terminal enucleation in the cells transduced with shGPX4-lentiviruses in comparison with sh-Scramble (59%±5 Sh-Scr versus 39%±6 Sh-Gpx4, p We investigated then whether GPX4-knock-down affected quantitatively or qualitatively the membrane lipid content, which was shown to be involved in the enucleation process. Addition of Cholesterol to RSL3 in the medium partially restored the enucleation rate. However, lipidomics failed to show any significant difference in the total membrane lipid content (and particularly in the cholesterol content) after RSL3 exposure in comparison to DMSO. Since cholesterol is particularly abundant in the lipid rafts, we investigated whether the lipid distribution was qualitatively altered within the cell membrane. We observed a disruption of membrane lipid rafts when cells were exposed to RSL3, as shown by a 60%±12 decrease in the mean cholera toxin fluorescence intensity. GPX4 presence in lipid rafts was confirmed using immunofluorescence showing their co-localization at cell surface in human primary erythroblasts. Since lipid rafts play a role in the contractile ring that separates pyrenocyte from reticulocyte, we evaluated the myosin-light chain phosphorylation using flow cytometry and Western Blot and found it drastically decreased in GPX4-knockdown conditions. In summary, we identified GPX4 as a new actor of human terminal erythroid differentiation, independently to its function in ferroptosis control. We described its interaction at cell surface with lipid rafts that are required for the assembly of the contractile ring and cytokinesis leading to the nucleus extrusion. Disclosures No relevant conflicts of interest to declare.