The aims of this paper are to study the efficacy of chitosan nanoparticles in stimulating specific antibody against A/H1N1 influenza antigen in mice. Chitosan nanoparticles (CSN) were characterized by TEM. The results showed that the average size of CSN was from 80nm to 106nm. The efficacy of A/H1N1 influenza vaccine loaded on the surface of CSN showed that loading efficiency of A/H1N1 influenza antigen on CSN was from 93.75 to 100%. Safe property of the vaccine were tested. In 10 days post vaccination, group of CSN 30 kDa and 300 kDa loaded A/H1N1 influenza antigen were the rate of immune response on mice to be 100% (9/9) higher than Al(OH)3 and other adjuvant. 100% mice in the experiment of all groups had immune response in 20 days post vaccination. The results also showed that HI titer of the group using CSN 300 kDa as an adjuvant increased significantly up to 3971 HIU, over three-fold higher than the Al(OH)3 adjuvant, chitosan (CS), and one hundredfold than the A/H1N1 antigen only. Stability of the vaccine formulation was investigated., {"references":["WHO. WHO Media Influenza Factsheet N0211. 2003;\nhttp:/www.who.int/mediacentre/factsheets/2003/fs211/en/.","WHO. 6th WHO Meeting on Evaluation of Pandemic Influenza Vaccines\nin Clinical Trials, February, 2010.","B. P. Arulanandam, M. O- Toole, D. W. Metzger. Intranasal interleukin-\n12 is a powerful adjuvant for protective mucosal immunity. Journal\nInfection Disease; 180: 940-949, 1999.","B. Guy, N. Pascal, A. Francon. Design, characterization and preclinicl\nefficacy of a cationic lipid adjuvant for influenza split vaccine. Vaccine,\nVol. 19: 1794-1805, 2001.","I. Bracci, I. Caniti & S. Puzelli. Type I IFN as a vaccine adjuvant for\nboth systemic and mucosal vaccination against influenza virus. Vaccine;\n24 (suppl.2):2: 56-57, 2006.","S. K. Song, Z. Moldoveanu & H. H. Nguyen. Intranasal immunization\nwith influenza virus and Korean misteloe lectin C (KML-C) induces\nheterosubtypic immunity in mice. Vaccine; 25: 6359-6366. 2007.","S. Y. Ko, H. J. Ko, W. S. Chang, S.H. Park, M. N. Kweon & C. Y.\nKang. Alpha-Galactosylceramide can act as a nasal vaccine adjuvant\ninducing protective immune responses against viral infection and tumor.\nJ. Immunol; 175: 3309-3317. 2005.","H. J. Youn, S. Y. Ko & K. A. Lee. A single intranasal immunization\nwith inactivated influenza virus and alpha-Galactosylceramide induces\nlong-term protective immunity without redirecting antigen to the\nrespiratory pathogens. Vaccine; 25: 5189-5198, 2007.","I. Illium, J. Gill, M. Hinchcliffe, A. N. Fisher & S. S. Davis. Chitosan as\na novel nasal delivery system for vaccines. Advanced drug delivery\nreview; 51: 81-96, 2001.\n[10] J. Huang, R. J. Garmise & T. M. Crowder. A novel dry powder\ninfluenza vaccine intranasal delivery technology: induction of systemic\nand mucosal immune response in rats. Vaccine; 23: 144-153. 2004.\n[11] M. Amidi, S. G. Romeijn, J. C. Verhoef, H. E. Junginger, L. Bungener,\nA. Huckriede, D. J. A. Crommelin & W. Jiskoot. N- Trimethyl chitosan\n(TMC) nanoparticles loaded subunit antigen for intranasal vaccination:\nBiological properties and immunogenicity in a mouse model. Vaccine;\n25: 144-153, 2007.\n[12] R.J. Garmise, H. F. Staats & A. J. Hickey. A novel dry powder\npreparation of whole inactivated influenza virus for nasal vaccination. e.\nDesign, characterization and preclinical efficacy of a cationic lipid\nadjuvant for influenza split vaccine. Vaccine; 19: 1794-1805, 2007.\n[13] R. M. N. V. Kumar. A review of chitin and chitosan applications.\nReactive & Funtion Polymer; 46, 1-27, 2000.\n[14] M. Rinaudo. Chitin and chitosan: properties and application, Progress in\npolymer science; 31, 603-632, 2006.\n[15] H. K. No, N. J . Park, S. H. Lee, S. P. Meyers. Antibacterial activity of\nchitosans and chitosan oligomers with different molecular weights.\nInternational Journal of Food Microbiology; 74, 65 - 72, 2002.\n[16] P. Sanpui, A. Murugadoss, P. V. Durga Prasad, S. S. Gosh, A.\nChattopadhyay. The antibacterial properties of a novel chitosan-Agnanoparticle.\nInternational Journal of Food Microbiology; 124, 142-\n146, 2008.\n[17] L. Qi, Z. Xu, X. Jiang, C. Hu & X. Zou. Preparation and antibacterial\nactivity of chitosan nanoparticles. Carbohydrate Research; 339, 2693-\n2700, 2004.\n[18] M. R. Avadi, A.M.M. Sadeghi, A. Tahzibi, K. Bayati, M. Pouladzadeh,\nM. Zohuriaan, M. Rafiee-Tehrani. Diethylmethyl chitosan as an\nantimicrobial agent: Synthesis, characterization and antibacterial effects.\nEuropean Polymer Journal; 40: 1355-1361, 2004.\n[19] K. Xing, X. G. Chen, Y.Y. Li, C.S. Liu, C.G. Liu, D.S. Cha, H.J. Park.\nAntibacterial activity of oleoyl-chitosan nanoparticles: A novel\nantibacterial dispersion system. Carbohydrate Polymer; 74: 114-120,\n2008.\n[20] F. C. MacLaughlin, R. J. Mumper, J. Wang, J. M. Tagliaferri, I. Gill, M.\nHinchcliffe, A.P. Rolland. Chitosan and depolymerized chitosan\noligomers as condensing carriers for in vivo plasmid delivery. Journal of\nControlled Release; 56: 259-272, 1998.\n[21] T. Kean, S. Roth & M. Thanou. Trimethylated chitosans as non-viral\ngene delivery vectors: Cytotoxicity and transfection efficiency. Journal\nof Controlled Release; 2005; 103: 643-653.\n[22] T. Kiang, J. Wen, H.W. Lim & K.W. Leong. The effect of the degree of\nchitosan deacetylation on the efficiency of gene transfection.\nBiomaterials; 25: 5293-5301, 2005.\n[23] Q. Gan, T. Wang, C. Cochrane & P. McCarron. Modulation of surface\ncharge, particle size and morphological properties of chitosan-TPP\nnanoparticles intended for gene delivery. Colloids and Surfaces B:\nBiointerfaces; 44: 65-73, 2005.\n[24] A. M. De Campos, A. Sanchez, M. J. Alonso. Chitosan nanoparticles: a\nnew vehicle for the improvement of the delivery of drugs to the ocular\nsurface. Application to cyclosporine A. International Journal of\nPharmaceutics; 224: 159-168, 2001.\n[25] M. H. El-Salbouri. Positively charged nanoparticles for improving the\noral bioavailability of cyclosporine A. International Journal of\nPharmaceutics; 249: 101-108, 2001.\n[26] J. Zhang, X. G. Chen, Y. Y. Li & C. S. Liu. Self-assembled\nnanoparticles based on hydrophobically modified chitosan as carriers for\ndoxorubicin. Nanomedicine: Nanotechnology, Biology, and Medicine; 3:\n258-265, 2007.\n[27] Q. Gan & T. Wang. Chitosan nanoparticles as protein delivery carrierssystematic\nexamination of fabrication conditions for efficient loading\nand release. Colloids and Surfaces B: Biointerfaces; 59: 24-34, 2007.\n[28] B. Sarmento, A. Ribeiro, F. Veiga & D. Ferreira. Development and\ncharacterization of new insulin containing polysaccharide nanoparticles.\nColloids and Surfaces B: Biointerfaces; 53: 193-202, 2006.\n[29] Y. Zheng. Nanoparticles based on the complex of chitosan with\npolyaspartic acid sodium salt: preparation, characterization and the use\nfor 5-fluorouracil delivery, European Journal of Pharmaceutic and\nBiopharmaceutics; 67: 621-631, 2007.\n[30] P. G. Seferia & M. L. Martinez. Immune stimulating activity of two new\nchitosan containing adjuvant formulation. Vaccine; 19: 661-668, 2001.\n[31] O. Borges, J. Tavares, A. de Sousa, G. Borchard, H. E. Junginger & A.\nCordeiro-da-Silva. Evaluation of the immune response following a short\noral vaccination schedule with hepatitis B antigen encapsulated into\nalginate-coated chitosan nanoparticles. European Journal of\nPharmaceutical Science; 32: 278-290, 2007.\n[32] D. A. Zaharoff, J. R. Connie, W. H. Kenneth, S. Jeffrey, W. G. John.\nChitosan solution enhances the immunoadjuvant properties of GM-CSF.\nVaccine; 25: 8673-8686, 2007.\n[33] I. M. vander Lubben, J. C. Verhoef, G. Borchard, H. E. Junginger.\nChitosan and its derivatives in mucosal drug and vaccine delivery.\nEuropean Journal of Pharmaceutical Science; 14: 201-207, 2001.\n[34] A. Vila, A. Sanchez, K. Jane, I. Behrens, T. Kissel, J. L. V. Jato & M. J.\nAlonso. Low molecular weight chitosan nanoparticles as a new carrier\nfor nasal vaccine delivery in mice. European Journal of Pharmaceutics\nand Biopharmaceutics; 2004; 57: 123-131.\n[35] K. Khatri, A. K. Goyal, P. N. Gupta, N. Mishra & S. P. Vyas. Plasmid\nDNA loaded chitosan nanoparticles for nasal mucosal immunization\nagainst hepatitis B. International Journal of Pharmaceutics; 354: 235-\n241, 2008.\n[36] O. Borges, G. Borchard, A. de Sousa, H. E. Junginger & A. Cordeiro-da-\nSilva. Induction of lymphocytes activated maker CD69 following\nexposure to chitosan and alginate biopolymers. International Journal of\nPharmaceutics; 337: 254-264, 2008.\n[37] O. Borges, A. Cordeiro-da-Silva, J. Tavares, N. Santarem, A. Sousa, G.\nBorchard & H.E. Junginger. Immune response by nasal delivery of\nhepatitis B surface antigen and codelivery of a CpG ODN in alginate\ncoated chitosan nanoparticles. European Journal of Pharmaceutical and\nBiopharmaceutics; 69: 405-416, 2008.\n[38] Y. Yang, J. Chen, H. Li, Y. Wang, Z. Xie, M. Wu, H. Zang, Z. Zhao.\nPorcine interleukin-2 gene encapsulated in chitosan nanoparticles\nenhances immune response of mice to piglet paratyphoid vaccine.\nComparative Immunology, Microbiology & Infectious Diseases; 30: 19-\n32, 2007.\n[39] N. Hagennars, R. J. Verheul, I. Mooren, P. H. de Jong. Relationship\nbetween structure and adjuvanticity of N, N, N - Trimethyl chitosan\n(TMC) structural variants in a nasal influenza vaccine. Journal of\ncontrolled Release; 140:126-133, 2009.\n[40] D. Coucke, M. Schotsaert, C. Libert, E. Pringels, C. Vervaet, P.\nForeman, X. Saelens & J. P. Remon. Spray-dried powders of starch and\ncrosslinked poly (acrylic acid) as carriers for nasal delivery of\ninactivated influenza vaccine. Vaccine; 27: 1279-1286, 2009.\n[41] S. Shan, E. Poinern, T. Ellis, S. Fanwick, X. Le, J. Edward & J.T. Jiang.\nDevelopment of a Nano vaccine against wild bird H6N2 avian influenza\nvirus. Procedia in Vaccinology; 2: 40-43, 2010.\n[42] L.V. Hiep, M.T. Thanh, D. T. H. Van, V. T. P. Khanh & N. A. Dzung.\nChitosan as a hopeful adjuvant for H5N1 influenza vaccine. Journal\nChitin and Chitosan; 13(10): 6-8, 2008.\n[43] [43] WHO. Egg-based influenza vaccine manufacturing course manual,\n2009, Part II. Netherlands Vaccine Institute, Bilthoven, The Netherlands.\n[44] M. L. Killian. Haemaglutinine assay for Avian influenza Virus, In\nMethods in Molecular Biology, Vol. 436: Avian Influenza Virus 2008;\n47-56. Edited by Erica Spackman, Humana Press, Totowa, NY.\n[45] M. Huang, C. W. Fong, E. Khor & Y. Y. Lim. Transfection efficiency of\nchitosan vectors: effect of polymer molecular weight and degree of\ndeacetylation. Journal of Controlled Release; 106: 391-406, 2005.\n[46] VTTC. Quality Control of DPT Vaccines, chapter 6: Toxicity testing,\nRIVM, Netherland, 2000; 224-230.\n[47] V. Kunzi, J. M. Klap, M. K. Seiberling, C. Herzog, K. Hartmann, O.\nKusteiner, R. Kompier, R. Grimaldi, J. Goudsmit. Immunogenicity and\nsafety of low dose virosomal adjuvant influenza vaccine administered\nintradermally compared to intramuscular full dose administration.\nVaccine; 27: 3561-3567, 2009.\n[48] M. Nishino, D. Mizuno, T. Kimoto, W. Shinahara, A. Fukuta, T. Takei,\nK. Sumida, S. Kitamura, H. Shiota, H. Kido. Influenza vaccine with\nSurfacten: a modified pulmonary surfactant, induce systemic and\nmucosal immune responses without side effect in minipig. Vaccine; 27:\n5620-5627, 2009."]}