In recent years, the scientific community has been gathering increasingly more insight on the dynamics that are at play in metabolic and inflammatory disorders many of which are diet-related. These rapidly growing conditions are reaching epidemic proportions, bringing new challenges to clinicians and researchers. The specific roles and modulating properties that beneficial/probiotic bacteria hold in the context of the gut ecosystem seem to be a key strategy to avert such imbalances. Currently, Akkermansia muciniphila has emerged as a potential next generation probiotic (NGP) given its demonstrated potential in prevention and treatment of inflammatory/cardio-metabolic disorders. The challenges of this non-conventional native gut bacterium lie mainly on its sensitivity to aerobic environments and low pH conditions. Based on these rationales, this thesis aims to explore freeze-dried formulations involving protective agents such as antioxidants, prebiotics and bulking agents, and microencapsulation as technological strategies to increase A. muciniphila viability throughout gastrointestinal (GI) passage and stability under aerobic storage. Firstly, a comprehensive phenotypic characterization involving A. muciniphila DSM 22959 strain was conducted. In this analysis well-known staining and morphological traits namely Gram-negative and coccobacillary-shape were confirmed; furthermore, myristoleic and pentadecanoic acids were demonstrated to be the major membrane fatty acids in A. muciniphila. In addition, their colonies were morphologically characterized as being small, circular and translucent. Exposure to ambient air revealed that A. muciniphila survived up to 60 hours in an aerobic atmosphere at 37ºC. In addition, the adhesion properties of A. muciniphila to gut epithelium were proven, using Caco-2 and HT29-MTX cell lines as in vitro models. Upon phenotypic characterization, freeze-dried formulations and encapsulation methods were explored as technological strategies to enhance viability and stability of A. muciniphila when submitted to both GI transit and aerobic storage. Overall, A. muciniphila achieved high numbers in freeze-dried powders of the formulation containing inulin (10 % w/v), riboflavin (16.5 mM) and glutathione (0.2 % w/v). In addition, this formulation matrix contained higher number of viable cells than the starch counterpart (10.2 vs 6.3 log CFU g-1), yet the addition of starch to the formulation conferred higher stability during aerobic storage. Nevertheless, in both freeze-dried formulations A. muciniphila displayed a higher susceptibility to GI transit and aerobic storage than non-formulated cells. In an attempt to reduce sensitivity to GI and aerobic storage conditions, A. muciniphila was encapsulated, by emulsification/internal gelation method, in a Na-alginate (4 % w/v), calcium carbonate (CaCO3; 500 mM) and denatured whey protein isolate (DWPI; 10 % w/v) matrix. Akkermansia muciniphila was efficiently encapsulated (95.8 ± 0.01 %) via such microencapsulation method, where microcapsules size diameter was smaller than 100 μm. Moreover, encapsulated A. muciniphila demonstrated high resistance to GI conditions and aerobic storage since their viability only decreased 1 log cycle after simulated GI tract exposure presenting a high stability after 7 days of refrigerated aerobic storage. In conclusion, Na-alginate:CaCO3:DWPI microcapsules reveal a better strategy to protect A. muciniphila against detrimental gastrointestinal transit and aerobic storage conditions. Nos últimos anos, a comunidade científica tem vindo a reunir um maior conhecimento das dinâmicas que estão na base dos distúrbios metabólicos e inflamatórios, muitos dos quais relacionados com a alimentação. O intenso crescimento destes distúrbios está a atingir proporções epidémicas, trazendo novos desafios aos clínicos e investigadores. As funções moduladoras e as propriedades específicas que as bactérias benéficas/probióticas possuem no contexto do ecossistema intestinal, parecem ser a chave para prevenir tais perturbações. Atualmente, Akkermansia muciniphila tem emergido como um “probiótico do futuro ou de nova geração" (“Next Generation Probiotics” – NGP), dado o seu potencial na prevenção e tratamento de distúrbios inflamatórios/cardio-metabólicos. Os desafios envolvendo esta bactéria probiótica residem principalmente na sua sensibilidade à atmosfera aeróbia e baixo pH. Por estas razões, esta tese tem como objetivo explorar formulações liofilizadas envolvendo agentes protetores tais como antioxidantes, prebióticos e agentes de volume bem como a microencapsulação como estratégias tecnológicas para aumentar a viabilidade da A. muciniphila face à passagem no trato gastrointestinal (GI) e promover a sua estabilidade durante o armazenamento aeróbio. Primeiramente, uma caracterização fenotípica da estirpe A. muciniphila DSM 22959 foi efetuada. Nesta análise, características morfológicas e a coloração face à técnica de Gram, confirmam a sua natureza Gram-negativa e morfologia cocobacilar. Além disso, foi demonstrado que os ácidos miristoleico e pentadecanóico são os principais ácidos gordos presentes na membrana de A. muciniphila. Adicionalmente, as suas colónias foram caracterizadas como sendo pequenas, circulares e translúcidas. A exposição ao ar ambiente revelou a capacidade de sobrevivência de A. muciniphila até 60 horas em atmosfera aeróbia, a 37 ºC. Apesar da tendência de declínio na viabilidade, a A. muciniphila foi capaz de sobreviver à atmosfera aeróbia durante 60 h. Também, as propriedades de adesão desta bactéria ao epitélio intestinal foram comprovadas usando duas linhagens epiteliais, nomeadamente Caco-2 e HT29-MTX. Após caracterização fenotípica, formulações liofilizadas e um método de encapsulação foram explorados como estratégias tecnológicas para promover a viabilidade e estabilidade de A. muciniphila quando expostas ao trato GI e armazenamento aeróbio. No geral, obtiveram-se valores elevados nos liofilizados com a formulação contendo inulina (10 % m/v), riboflavina (16.5 mM) e glutationa (0.2 % m/v) do que no seu liofilizado homólogo com amido (10.2 vs 6.3 log UFC g-1). Além disso, a adição de amido à formulação conferiu maior estabilidade durante o armazenamento aeróbico. No entanto, em ambas as formulações A. muciniphila demonstrou maior suscetibilidade ao trato GI e ao armazenamento aeróbio do que na sua forma não-formulada. Numa tentativa de reduzir a sensibilidade face ao trato GI e armazenamento aeróbio, A. muciniphila foi encapsulada através do método de emulsificação/gelificação interna, numa matriz contendo alginato-Na (4 % m/v), CaCO3 (500 mM) e isolado de proteína de soro de leite desnaturado (DWPI; 10 % m/v). Akkermansia muciniphila foi eficientemente encapsulada (95.8 ± 0.01 %), em que o diâmetro das microcápsulas foi menor do que 100 μm. Para além disso, A. muciniphila encapsulada demonstrou elevada resistência às condições GI e ao armazenamento aeróbio, uma vez que a sua viabilidade apenas decresceu um ciclo logarítmico após exposição simulada ao trato GI apresentando elevada estabilidade após 7 dias de armazenamento aeróbio, a 4ºC. Em suma, as microcápsulas de alginato-Na:CaCO3:DWPI revelaram ser a melhor estratégia na proteção de A. muciniphila contra as condições desfavoráveis do trato GI e de armazenamento em aerobiose. Mestrado em Microbiologia