1. Does the Zebra Finch Mating Song Circuit Use Spike Times Efficiently?
- Author
-
Newton Tr, Wilten Nicola, and Claudia Clopath
- Subjects
Synfire chain ,Computer science ,Encoding (memory) ,Biological neural network ,Code (cryptography) ,Spike (software development) ,Algorithm ,Zebra finch ,Electronic circuit ,Coding (social sciences) - Abstract
Precise and reliable spike times are thought to subserve multiple possible functions, including improving the accuracy of encoding stimuli or behaviours relative to other coding schemes. Indeed, repeating sequences of spikes with sub-millisecond precision exist in nature, such as the synfire chain of spikes in area HVC of the zebra-finch mating-song circuit. Here, we analyzed what impact precise and reliable spikes have on the encoding accuracy for both the zebra-finch and more generic neural circuits using computational modelling. Our results show that neural circuits can use precisely timed spikes to encode signals with a higher-order accuracy than a conventional rate code. Circuits with precisely timed and reliably emitted spikes increase their encoding accuracy linearly with network size, which is the hallmark signature of an efficient code. This qualitatively differs from circuits that employ a rate code which increase their encoding accuracy with the square-root of network size. However, this improved scaling is dependent on the spikes becoming more accurate and more reliable with larger networks. Finally, we discuss how to test this scaling relationship in the zebra mating song circuit using both neural data and song-spectrogram-based recordings while taking advantage of the natural fluctuation in HVC network size due to neurogenesis. The zebra-finch mating-song circuit may represent the most likely candidate system for the use of spike-timing-based, efficient coding strategies in nature.
- Published
- 2021