305 results on '"Newsom, H"'
Search Results
2. Manganese-Rich Sandstones as an Indicator of Ancient Oxic Lake Water Conditions in Gale Crater, Mars
- Author
-
Gasda, P. J., Lanza, N. L., Meslin, P. Y., Lamm, S. N., Cousin, A., Anderson, R., Forni, O., Swanner, E., L’Haridon, J., Frydenvang, J., Thomas, N., Gwizd, S., Stein, N., Fischer, W. W., Hurowitz, J., Sumner, D., Rivera-Hernández, F., Crossey, L., Ollila, A., Essunfeld, A., Newsom, H. E., Clark, B., Wiens, R. C., Gasnault, O., Clegg, S. M., Maurice, S., Delapp, D., Reyes-Newell, A., Gasda, P. J., Lanza, N. L., Meslin, P. Y., Lamm, S. N., Cousin, A., Anderson, R., Forni, O., Swanner, E., L’Haridon, J., Frydenvang, J., Thomas, N., Gwizd, S., Stein, N., Fischer, W. W., Hurowitz, J., Sumner, D., Rivera-Hernández, F., Crossey, L., Ollila, A., Essunfeld, A., Newsom, H. E., Clark, B., Wiens, R. C., Gasnault, O., Clegg, S. M., Maurice, S., Delapp, D., and Reyes-Newell, A.
- Abstract
Manganese has been observed on Mars by the NASA Curiosity rover in a variety of contexts and is an important indicator of redox processes in hydrologic systems on Earth. Within the Murray formation, an ancient primarily fine-grained lacustrine sedimentary deposit in Gale crater, Mars, have observed up to 45× enrichment in manganese and up to 1.5× enrichment in iron within coarser grained bedrock targets compared to the mean Murray sediment composition. This enrichment in manganese coincides with the transition between two stratigraphic units within the Murray: Sutton Island, interpreted as a lake margin environment, and Blunts Point, interpreted as a lake environment. On Earth, lacustrine environments are common locations of manganese precipitation due to highly oxidizing conditions in the lakes. Here, we explore three mechanisms for ferromanganese oxide precipitation at this location: authigenic precipitation from lake water along a lake shore, authigenic precipitation from reduced groundwater discharging through porous sands along a lake shore, and early diagenetic precipitation from groundwater through porous sands. All three scenarios require highly oxidizing conditions and we discuss oxidants that may be responsible for the oxidation and precipitation of manganese oxides. This work has important implications for the habitability of Mars to microbes that could have used Mn redox reactions, owing to its multiple redox states, as an energy source for metabolism.
- Published
- 2024
3. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars
- Author
-
Grotzinger, JP, Gupta, S, Malin, MC, Rubin, DM, Schieber, J, Siebach, K, Sumner, DY, Stack, KM, Vasavada, AR, Arvidson, RE, Calef, F, Edgar, L, Fischer, WF, Grant, JA, Griffes, J, Kah, LC, Lamb, MP, Lewis, KW, Mangold, N, Minitti, ME, Palucis, M, Rice, M, Williams, RME, Yingst, RA, Blake, D, Blaney, D, Conrad, P, Crisp, J, Dietrich, WE, Dromart, G, Edgett, KS, Ewing, RC, Gellert, R, Hurowitz, JA, Kocurek, G, Mahaffy, P, McBride, MJ, McLennan, SM, Mischna, M, Ming, D, Milliken, R, Newsom, H, Oehler, D, Parker, TJ, Vaniman, D, Wiens, RC, and Wilson, SA
- Subjects
Climate ,Exhumation ,Lakes ,Mars ,Paleontology ,General Science & Technology - Abstract
The landforms of northern Gale crater on Mars expose thick sequences of sedimentary rocks. Based on images obtained by the Curiosity rover, we interpret these outcrops as evidence for past fluvial, deltaic, and lacustrine environments. Degradation of the crater wall and rim probably supplied these sediments, which advanced inward from the wall, infilling both the crater and an internal lake basin to a thickness of at least 75 meters. This intracrater lake system probably existed intermittently for thousands to millions of years, implying a relatively wet climate that supplied moisture to the crater rim and transported sediment via streams into the lake basin. The deposits in Gale crater were then exhumed, probably by wind-driven erosion, creating Aeolis Mons (Mount Sharp).
- Published
- 2015
4. A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars
- Author
-
Grotzinger, JP, Sumner, DY, Kah, LC, Stack, K, Gupta, S, Edgar, L, Rubin, D, Lewis, K, Schieber, J, Mangold, N, Milliken, R, Conrad, PG, DesMarais, D, Farmer, J, Siebach, K, Calef, F, Hurowitz, J, McLennan, SM, Ming, D, Vaniman, D, Crisp, J, Vasavada, A, Edgett, KS, Malin, M, Blake, D, Gellert, R, Mahaffy, P, Wiens, RC, Maurice, S, Grant, JA, Wilson, S, Anderson, RC, Beegle, L, Arvidson, R, Hallet, B, Sletten, RS, Rice, M, Bell, J, Griffes, J, Ehlmann, B, Anderson, RB, Bristow, TF, Dietrich, WE, Dromart, G, Eigenbrode, J, Fraeman, A, Hardgrove, C, Herkenhoff, K, Jandura, L, Kocurek, G, Lee, S, Leshin, LA, Leveille, R, Limonadi, D, Maki, J, McCloskey, S, Meyer, M, Minitti, M, Newsom, H, Oehler, D, Okon, A, Palucis, M, Parker, T, Rowland, S, Schmidt, M, Squyres, S, Steele, A, Stolper, E, Summons, R, Treiman, A, Williams, R, Yingst, A, Team, MSL Science, Kemppinen, Osku, Bridges, Nathan, Johnson, Jeffrey R, Cremers, David, Godber, Austin, Wadhwa, Meenakshi, Wellington, Danika, McEwan, Ian, Newman, Claire, Richardson, Mark, Charpentier, Antoine, Peret, Laurent, King, Penelope, Blank, Jennifer, Weigle, Gerald, Li, Shuai, Robertson, Kevin, Sun, Vivian, Baker, Michael, Edwards, Christopher, Farley, Kenneth, Miller, Hayden, Newcombe, Megan, Pilorget, Cedric, Brunet, Claude, Hipkin, Victoria, and Léveillé, Richard
- Subjects
Bays ,Carbon ,Exobiology ,Extraterrestrial Environment ,Geologic Sediments ,Hydrogen ,Hydrogen-Ion Concentration ,Iron ,Mars ,Nitrogen ,Oxidation-Reduction ,Oxygen ,Phosphorus ,Salinity ,Sulfur ,Water ,MSL Science Team ,General Science & Technology - Abstract
The Curiosity rover discovered fine-grained sedimentary rocks, which are inferred to represent an ancient lake and preserve evidence of an environment that would have been suited to support a martian biosphere founded on chemolithoautotrophy. This aqueous environment was characterized by neutral pH, low salinity, and variable redox states of both iron and sulfur species. Carbon, hydrogen, oxygen, sulfur, nitrogen, and phosphorus were measured directly as key biogenic elements; by inference, phosphorus is assumed to have been available. The environment probably had a minimum duration of hundreds to tens of thousands of years. These results highlight the biological viability of fluvial-lacustrine environments in the post-Noachian history of Mars.
- Published
- 2014
5. The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description
- Author
-
Maurice, S., Wiens, R. C., Bernardi, P., Caïs, P., Robinson, S., Nelson, T., Gasnault, O., Reess, J.-M., Deleuze, M., Rull, F., Manrique, J.-A., Abbaki, S., Anderson, R. B., André, Y., Angel, S. M., Arana, G., Battault, T., Beck, P., Benzerara, K., Bernard, S., Berthias, J.-P., Beyssac, O., Bonafous, M., Bousquet, B., Boutillier, M., Cadu, A., Castro, K., Chapron, F., Chide, B., Clark, K., Clavé, E., Clegg, S., Cloutis, E., Collin, C., Cordoba, E. C., Cousin, A., Dameury, J.-C., D’Anna, W., Daydou, Y., Debus, A., Deflores, L., Dehouck, E., Delapp, D., De Los Santos, G., Donny, C., Doressoundiram, A., Dromart, G., Dubois, B., Dufour, A., Dupieux, M., Egan, M., Ervin, J., Fabre, C., Fau, A., Fischer, W., Forni, O., Fouchet, T., Frydenvang, J., Gauffre, S., Gauthier, M., Gharakanian, V., Gilard, O., Gontijo, I., Gonzalez, R., Granena, D., Grotzinger, J., Hassen-Khodja, R., Heim, M., Hello, Y., Hervet, G., Humeau, O., Jacob, X., Jacquinod, S., Johnson, J. R., Kouach, D., Lacombe, G., Lanza, N., Lapauw, L., Laserna, J., Lasue, J., Le Deit, L., Le Mouélic, S., Le Comte, E., Lee, Q.-M., Legett, IV, C., Leveille, R., Lewin, E., Leyrat, C., Lopez-Reyes, G., Lorenz, R., Lucero, B., Madariaga, J. M., Madsen, S., Madsen, M., Mangold, N., Manni, F., Mariscal, J.-F., Martinez-Frias, J., Mathieu, K., Mathon, R., McCabe, K. P., McConnochie, T., McLennan, S. M., Mekki, J., Melikechi, N., Meslin, P.-Y., Micheau, Y., Michel, Y., Michel, J. M., Mimoun, D., Misra, A., Montagnac, G., Montaron, C., Montmessin, F., Moros, J., Mousset, V., Morizet, Y., Murdoch, N., Newell, R. T., Newsom, H., Nguyen Tuong, N., Ollila, A. M., Orttner, G., Oudda, L., Pares, L., Parisot, J., Parot, Y., Pérez, R., Pheav, D., Picot, L., Pilleri, P., Pilorget, C., Pinet, P., Pont, G., Poulet, F., Quantin-Nataf, C., Quertier, B., Rambaud, D., Rapin, W., Romano, P., Roucayrol, L., Royer, C., Ruellan, M., Sandoval, B. F., Sautter, V., Schoppers, M. J., Schröder, S., Seran, H.-C., Sharma, S. K., Sobron, P., Sodki, M., Sournac, A., Sridhar, V., Standarovsky, D., Storms, S., Striebig, N., Tatat, M., Toplis, M., Torre-Fdez, I., Toulemont, N., Velasco, C., Veneranda, M., Venhaus, D., Virmontois, C., Viso, M., Willis, P., and Wong, K. W.
- Published
- 2021
- Full Text
- View/download PDF
6. Apatites in Gale Crater
- Author
-
Forni, O, Meslin, P.-Y, Drouet, C, Cousin, A, David, G, Mangold, N, Dehouck, E, Rampe, E. B, Gasnault, O, Nachon, M, Newsom, H, Blaney, D. L, Clegg, S. M, Ollila, A. M, Lasue, J, Maurice, S, and Wiens, R.C
- Subjects
Space Sciences (General) - Abstract
ChemCam is an active remote sensing instrument suite that has operated successfully on MSL since landing Aug. 6th, 2012. It uses laser pulses to remove dust and to analyze rocks up to 7 m away. Laser-induced breakdown spectroscopy (LIBS) obtains emission spectra of materials ablated from the samples in electronically excited states. The intensities of the emission lines scale with the abundances of the related element. ChemCam is sensitive to most major rock-forming elements as well as to a set of minor and trace elements such as F, Cl, Li, P, Sr, Ba, and Rb. The measured chemical composition can then be used to infer the mineralogical composition of the ablated material. Here, we report a summary of inferred apatite detections along the MSL traverse at Gale Crater. We present the geologic settings of these findings and derive some interpretations about the formation conditions of apatite in time and space.
- Published
- 2020
7. Characteristics of pebble and cobble-sized clasts along the Curiosity rover traverse from sol 100 to 750: Terrain types, potential sources, and transport mechanisms
- Author
-
Yingst, R.A., Cropper, K., Gupta, S., Kah, L.C., Williams, R.M.E., Blank, J., Calef, F., III, Hamilton, V.E., Lewis, K., Shechet, J., McBride, M., Bridges, N., Frias, J. Martinez, and Newsom, H.
- Published
- 2016
- Full Text
- View/download PDF
8. Housedon-Hill - A ChemCam/RMI mega mosaic to investigate distant features
- Author
-
Wiens, Roger, primary, Le Mouelic, S., additional, Gasnault, Olivier, additional, Rapin, William, additional, Bryk, A., additional, Dromart, G., additional, Caravaca, G., additional, Mangold, N., additional, and Newsom, H., additional
- Published
- 2020
- Full Text
- View/download PDF
9. ChemCam results from the Shaler outcrop in Gale crater, Mars
- Author
-
Anderson, Ryan, Bridges, J.C., Williams, A., Edgar, L., Ollila, A., Williams, J., Nachon, M., Mangold, N., Fisk, M., Schieber, J., Gupta, S., Dromart, G., Wiens, R., Le Mouélic, S., Forni, O., Lanza, N., Mezzacappa, A., Sautter, V., Blaney, D., Clark, B., Clegg, S., Gasnault, O., Lasue, J., Léveillé, R., Lewin, E., Lewis, K.W., Maurice, S., Newsom, H., Schwenzer, S.P., and Vaniman, D.
- Published
- 2015
- Full Text
- View/download PDF
10. Compositions of coarse and fine particles in martian soils at gale: A window into the production of soils
- Author
-
Cousin, A., Meslin, P.Y., Wiens, R.C., Rapin, W., Mangold, N., Fabre, C., Gasnault, O., Forni, O., Tokar, R., Ollila, A., Schröder, S., Lasue, J., Maurice, S., Sautter, V., Newsom, H., Vaniman, D., Le Mouélic, S., Dyar, D., Berger, G., Blaney, D., Nachon, M., Dromart, G., Lanza, N., Clark, B., Clegg, S., Goetz, W., Berger, J., Barraclough, B., and Delapp, D.
- Published
- 2015
- Full Text
- View/download PDF
11. CHEMCAM SULFUR ABUNDANCES IN THE KNOCKFARRIL HILL MEMBER, GALE CRATER MARS
- Author
-
Hoffman, M. E., Newsom, H. E., Clegg, S. M., Gasda, P. J., Lanza, N., Gasnault, O., Wiens, R. C., Delapp, D. M., Institute of Meteoritics [Albuquerque] (IOM), The University of New Mexico [Albuquerque], Los Alamos National Laboratory (LANL), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, and Lunar and Planetary Institute
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU]Sciences of the Universe [physics] ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] - Abstract
International audience
- Published
- 2023
12. Laboratory analyses for adsorption experiments of phosphoric acid species and phosphate rock standards for p characterization on mars by chemcam
- Author
-
Dimitracopoulos, F.D., Newsom, H. E., Gasda, P. J., Meslin, P. Y., Cerrato, J. M., Crossey, L. J., Lanza, N. L., Tutolo, B. M., Clegg, S. M., Gasnault, O., Delapp, D., The University of New Mexico [Albuquerque], Los Alamos National Laboratory (LANL), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), University of Calgary, and Lunar and Planetary Institute
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU]Sciences of the Universe [physics] ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] - Abstract
International audience
- Published
- 2023
13. CLIMATE CHANGE AND TOPOGRAPHY FOCUSED AEOLIAN EROSION IN GALE CRATER, MARS -TEN-YEARS OF MSL OBSERVATIONS
- Author
-
Newsom, H. E., Hoffman, M. E., Gallegos, Z. E., Williams, J. M., Los, S. A., Dimitracopoulos, F. D., Nellessen, M. A., Mason, D., Scuderi, L. A., Crossey, L. J., Gasda, P.J., Lanza, N., Gasnault, O., Kite, E. S., Dietrich, W. E., Institute of Meteoritics [Albuquerque] (IOM), The University of New Mexico [Albuquerque], Los Alamos National Laboratory (LANL), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), and Lunar and Planetary Institute
- Subjects
[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] - Abstract
International audience
- Published
- 2023
14. CHEMCAM OBSERVATIONS OF THE MARKER BAND, GALE CRATER, MARS
- Author
-
Gasda, P. J., Lanza, N., Rapin, W., Frydenvang, J., Goetz, W., Schwenzer, S. P., Dietrich, W. E., Weitz, C., Bryk, A., Kite, E., Lewis, K., Schieber, J., Fischer, W.W., Mondro, C., Johnson, J., Dehouck, E., Newsom, H. E., Essunfeld, A., Lasue, J., Gasnault, O., Clegg, S., Delapp, D., Los Alamos National Laboratory (LANL), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Institute of Meteoritics [Albuquerque] (IOM), The University of New Mexico [Albuquerque], and Lunar and Planetary Institute
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology - Abstract
International audience
- Published
- 2023
15. Geology and Origin of Taconite Crater on the Vera Rubin Ridge
- Author
-
Gabriel, T, Newsom, H, Wellington, D, and Calef, F. J
- Abstract
UNKNOWN
- Published
- 2019
16. Geology and Origin of Taconite Crater on the Vera Rubin Ridge
- Author
-
Calef, F. J, Wellington, D, Newsom, H, and Gabriel, T
- Published
- 2019
17. Correcting for variable laser-target distances of laser-induced breakdown spectroscopy measurements with ChemCam using emission lines of Martian dust spectra
- Author
-
Melikechi, N., Mezzacappa, A., Cousin, A., Lanza, N.L., Lasue, J., Clegg, S.M., Berger, G., Wiens, R.C., Maurice, S., Tokar, R.L., Bender, S., Forni, O., Breves, E.A., Dyar, M.D., Frydenvang, J., Delapp, D., Gasnault, O., Newsom, H., Ollila, A.M., Lewin, E., Clark, B.C., Ehlmann, B.L., Blaney, D., and Fabre, C.
- Published
- 2014
- Full Text
- View/download PDF
18. Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars
- Author
-
MSL Science Team, McLennan, S. M., Anderson, R. B., Bell, J. F., Bridges, J. C., Calef, F., Campbell, J. L., Clark, B. C., Clegg, S., Conrad, P., Cousin, A., Des Marais, D. J., Dromart, G., Dyar, M. D., Edgar, L. A., Ehlmann, B. L., Fabre, C., Forni, O., Gasnault, O., Gellert, R., Gordon, S., Grant, J. A., Grotzinger, J. P., Gupta, S., Herkenhoff, K. E., Hurowitz, J. A., King, P. L., Le Mouélic, S., Leshin, L. A., Léveillé, R., Lewis, K. W., Mangold, N., Maurice, S., Ming, D. W., Morris, R. V., Nachon, M., Newsom, H. E., Ollila, A. M., Perrett, G. M., Rice, M. S., Schmidt, M. E., Schwenzer, S. P., Stack, K., Stolper, E. M., Sumner, D. Y., Treiman, A. H., VanBommel, S., Vaniman, D. T., Vasavada, A., Wiens, R. C., and Yingst, R. A.
- Published
- 2014
19. A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars
- Author
-
MSL Science Team, Grotzinger, J. P., Sumner, D. Y., Kah, L. C., Stack, K., Gupta, S., Edgar, L., Rubin, D., Lewis, K., Schieber, J., Mangold, N., Milliken, R., Conrad, P. G., DesMarais, D., Farmer, J., Siebach, K., Calef, F., Hurowitz, J., McLennan, S. M., Ming, D., Vaniman, D., Crisp, J., Vasavada, A., Edgett, K. S., Malin, M., Blake, D., Gellert, R., Mahaffy, P., Wiens, R. C., Maurice, S., Grant, J. A., Wilson, S., Anderson, R. C., Beegle, L., Arvidson, R., Hallet, B., Sletten, R. S., Rice, M., Bell, J., Griffes, J., Ehlmann, B., Anderson, R. B., Bristow, T. F., Dietrich, W. E., Dromart, G., Eigenbrode, J., Fraeman, A., Hardgrove, C., Herkenhoff, K., Jandura, L., Kocurek, G., Lee, S., Leshin, L. A., Leveille, R., Limonadi, D., Maki, J., McCloskey, S., Meyer, M., Minitti, M., Newsom, H., Oehler, D., Okon, A., Palucis, M., Parker, T., Rowland, S., Schmidt, M., Squyres, S., Steele, A., Stolper, E., Summons, R., Treiman, A., Williams, R., and Yingst, A.
- Published
- 2014
20. Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars
- Author
-
MSL Science Team, Vaniman, D. T., Bish, D. L., Ming, D. W., Bristow, T. F., Morris, R. V., Blake, D. F., Chipera, S. J., Morrison, S. M., Treiman, A. H., Rampe, E. B., Rice, M., Achilles, C. N., Grotzinger, J. P., McLennan, S. M., Williams, J., Bell, J. F., Newsom, H. E., Downs, R. T., Maurice, S., Sarrazin, P., Yen, A. S., Morookian, J. M., Farmer, J. D., Stack, K., Milliken, R. E., Ehlmann, B. L., Sumner, D. Y., Berger, G., Crisp, J. A., Hurowitz, J. A., Anderson, R., Des Marais, D. J., Stolper, E. M., Edgett, K. S., Gupta, S., and Spanovich, N.
- Published
- 2014
21. ChemCam Investigation of the Last Four MSL Drill Sites in the Murray Formation, Gale Crater, Mars
- Author
-
Jackson, R. S, Wiens, R. C, Beegle, L. W, Rampe, E. B, Johnson, J. R, Forni, O, and Newsom, H. E
- Subjects
General - Abstract
This study utilizes ChemCam data for outcrop surfaces, drill hole walls, tailings, and dump piles in the Middle Murray Formation to investigate chemical variations with depth in the drill holes and pos-sible effects of the drilling and sample processing. This work is a continuation of similar work on drill sites at Yellowknife Bay [1], the Pahrump Hills [2], and the Stimson Formation [3].
- Published
- 2018
22. Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover
- Author
-
Wiens, R.C., Maurice, S., Lasue, J., Forni, O., Anderson, R.B., Clegg, S., Bender, S., Blaney, D., Barraclough, B.L., Cousin, A., Deflores, L., Delapp, D., Dyar, M.D., Fabre, C., Gasnault, O., Lanza, N., Mazoyer, J., Melikechi, N., Meslin, P.-Y., Newsom, H., Ollila, A., Perez, R., Tokar, R.L., and Vaniman, D.
- Published
- 2013
- Full Text
- View/download PDF
23. Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars
- Author
-
Meslin, P.-Y., Gasnault, O., Forni, O., Schröder, S., Cousin, A., Berger, G., Clegg, S. M., Lasue, J., Maurice, S., Sautter, V., Le Mouélic, S., Wiens, R. C., Fabre, C., Goetz, W., Bish, D., Mangold, N., Ehlmann, B., Lanza, N., Harri, A.-M., Anderson, R., Rampe, E., McConnochie, T. H., Pinet, P., Blaney, D., Léveillé, R., Archer, D., Barraclough, B., Bender, S., Blake, D., Blank, J. G., Bridges, N., Clark, B. C., DeFlores, L., Delapp, D., Dromart, G., Dyar, M. D., Fisk, M., Gondet, B., Grotzinger, J., Herkenhoff, K., Johnson, J., Lacour, J.-L., Langevin, Y., Leshin, L., Lewin, E., Madsen, M. B., Melikechi, N., Mezzacappa, A., Mischna, M. A., Moores, J. E., Newsom, H., Ollila, A., Perez, R., Renno, N., Sirven, J.-B., Tokar, R., de la Torre, M., d'Uston, L., Vaniman, D., and Yingst, A.
- Published
- 2013
- Full Text
- View/download PDF
24. Martian Fluvial Conglomerates at Gale Crater
- Author
-
Williams, R. M. E., Grotzinger, J. P., Dietrich, W. E., Gupta, S., Sumner, D. Y., Wiens, R. C., Mangold, N., Malin, M. C., Edgett, K. S., Maurice, S., Forni, O., Gasnault, O., Ollila, A., Newsom, H. E., Dromart, G., Palucis, M. C., Yingst, R. A., Anderson, R. B., Herkenhoff, K. E., Le Mouélic, S., Goetz, W., Madsen, M. B., Koefoed, A., Jensen, J. K., Bridges, J. C., Schwenzer, S. P., Lewis, K. W., Stack, K. M., Rubin, D., Kah, L. C., Bell, J. F., Farmer, J. D., Sullivan, R., Van Beek, T., Blaney, D. L., Pariser, O., and Deen, R. G.
- Published
- 2013
- Full Text
- View/download PDF
25. The origin and timing of fluvial activity at Eberswalde crater, Mars
- Author
-
Mangold, N., Kite, E.S., Kleinhans, M.G., Newsom, H., Ansan, V., Hauber, E., Kraal, E., Quantin, C., and Tanaka, K.
- Published
- 2012
- Full Text
- View/download PDF
26. Report of the COSPAR mars special regions colloquium
- Author
-
Kminek, G., Rummel, J.D., Cockell, C.S., Atlas, R., Barlow, N., Beaty, D., Boynton, W., Carr, M., Clifford, S., Conley, C.A., Davila, A.F., Debus, A., Doran, P., Hecht, M., Heldmann, J., Helbert, J., Hipkin, V., Horneck, G., Kieft, T.L., Klingelhoefer, G., Meyer, M., Newsom, H., Ori, G.G., Parnell, J., Prieur, D., Raulin, F., Schulze-Makuch, D., Spry, J.A., Stabekis, P.E., Stackebrandt, E., Vago, J., Viso, M., Voytek, M., Wells, L., and Westall, F.
- Published
- 2010
- Full Text
- View/download PDF
27. Fluids During Diagenesis and Sulfate Vein Formation in Sediments at Gale Crater, Mars
- Author
-
Schwenzer, S. P, Bridges, J. C, Weins, R. C, Conrad, P. G, Kelley, S. P, Leveille, R, Mangold, N, Martin-Torres, J, McAdam, A, Newsom, H, Zorzano, M. P, Rapin, W, Spray, J, Treiman, A. H, Westall, F, Fairen, A. G, and Meslin, P.-Y
- Subjects
Lunar And Planetary Science And Exploration - Abstract
We model the fluids involved in the alteration processes recorded in the Sheep bed Member mudstones of Yellowknife Bay (YKB), Gale crater, Mars, as revealed by the Mars Science Laboratory Curiosity rover investigations. We compare the Gale crater waters with fluids modeled for shergottites, nakhlites, and the ancient meteorite ALH 84001, as well as rocks analyzed by the Mars Exploration rovers, and with terrestrial ground and surface waters. The aqueous solution present during sediment alteration associated with phyllosilicate formation at Gale was high in Na, K, and Si; had low Mg, Fe, and Al concentrations relative to terrestrial ground waters such as the Deccan Traps and other modeled Mars fluids; and had near neutral to alkaline pH. Ca and S species were present in the 10(exp -3) to 10(exp -2) concentration range. A fluid local to Gale crater strata produced the alteration products observed by Curiosity and subsequent evaporation of this ground water- type fluid formed impure sulfate- and silica-rich deposits veins or horizons. In a second, separate stage of alteration, partial dissolution of this sulfate-rich layer in Yellowknife Bay,or beyond, led to the pure sulfate veins observed in YKB. This scenario is analogous to similar processes identified at a terrestrial site in Triassic sediments with gypsum veins of the Mercia Mudstone Group in Watchet Bay, UK.
- Published
- 2016
- Full Text
- View/download PDF
28. Calibration of the Fluorine, Chlorine and Hydrogen Content of Apatites With the ChemCam LIBS Instrument
- Author
-
Meslin, P.-Y, Cicutto, L, Forni, O, Drouet, C, Rapin, W, Nachon, M, Cousin, A, Blank, J. G, McCubbin, F. M, Gasnault, O, Newsom, H, Mangold, N, Schroeder, S, Sautter, V, Maurice, S, and Wiens, R. C
- Subjects
Lunar And Planetary Science And Exploration - Abstract
Determining the composition of apatites is important to understand the behavior of volatiles during planetary differentiation. Apatite is an ubiquitous magmatic mineral in the SNC meteorites. It is a significant reservoir of halogens in these meteorites and has been used to estimate the halogen budget of Mars. Apatites have been identified in sandstones and pebbles at Gale crater by ChemCam, a Laser-Induced Breakdown Spectroscometer (LIBS) instrument onboard the Curiosity rover. Their presence was inferred from correlations between calcium, fluorine (using the CaF molecular band centered near 603 nm, whose detection limit is much lower that atomic or ionic lines and, in some cases, phosphorus (whose detection limit is much larger). An initial quantification of fluorine, based on fluorite (CaF2)/basalt mixtures and obtained at the LANL laboratory, indicated that the excess of F/Ca (compared to the stoichiometry of pure fluorapatites) found on Mars in some cases could be explained by the presence of fluorite. Chlorine was not detected in these targets, at least above a detection limit of 0.6 wt% estimated from. Fluorapatite was later also detected by X-ray diffraction (with CheMin) at a level of approx.1wt% in the Windjana drill sample (Kimberley area), and several points analyzed by ChemCam in this area also revealed a correlation between Ca and F. The in situ detection of F-rich, Cl-poor apatites contrasts with the Cl-rich, F-poor compositions of apatites found in basaltic shergottites and in gabbroic clasts from the martian meteorite NWA 7034, which were also found to be more Cl-rich than apatites from basalts on Earth, the Moon, or Vesta. The in situ observations could call into question one of the few possible explanations brought forward to explain the SNC results, namely that Mars may be highly depleted in fluorine. The purpose of the present study is to refine the calibration of the F, Cl, OH and P signals measured by the ChemCam LIBS instrument, initiated for F, for Cl in soils, for P, and estimate their limit of detection. For this purpose, different types of apatites and mixtures of basalt powder and apatites were analyzed using ChemCam Engineering Qualification Model (EQM) at IRAP, Toulouse. The present abstract presents the initial results from the laboratory analyses. Differences between the response function of the EQM and the Flight Model of ChemCam are still to be refined to apply these new results to the Martian dataset.
- Published
- 2016
29. MARTIAN GEOLOGY: Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars
- Author
-
Grotzinger, J. P., Gupta, S., Malin, M. C., Rubin, D. M., Schieber, J., Siebach, K., Sumner, D. Y., Stack, K. M., Vasavada, A. R., Arvidson, R. E., III, Calef F., Edgar, L., Fischer, W. F., Grant, J. A., Griffes, J., Kah, L. C., Lamb, M. P., Lewis, K. W., Mangold, N., Minitti, M. E., Palucis, M., Rice, M., Williams, R. M. E., Yingst, R. A., Blake, D., Blaney, D., Conrad, P., Crisp, J., Dietrich, W. E., Dromart, G., Edgett, K. S., Ewing, R. C., Gellert, R., Hurowitz, J. A., Kocurek, G., Mahaffy, P., McBride, M. J., McLennan, S. M., Mischna, M., Ming, D., Milliken, R., Newsom, H., Oehler, D., Parker, T. J., Vaniman, D., Wiens, R. C., and Wilson, S. A.
- Published
- 2015
- Full Text
- View/download PDF
30. Fluorine and Lithium at the Kimberley Outcrop, Gale Crater
- Author
-
Forni, O, Vaniman, D. T, Le Deit, L, Clegg, S. M, Lanza, N. L, Lasue, J, Bish, D. L, Mangold, N, Wiens, R. C, Meslin, P.-Y, Gasnault, O, Maurice, S, Cousin, A, Toplis, M. J, Newsom, H, and Rampe, E. B
- Subjects
Lunar And Planetary Science And Exploration - Abstract
ChemCam is an active remote sensing instrument which has operated successfully on MSL since landing in August, 2012. Its laser pulses remove dust and to profile through weathering coatings of rocks up to 7 m away. Laser-induced breakdown spectroscopy (LIBS) produces emission spectra of materials ablated from the samples in electronically excited states. As the plasma cools, elements can recombine and molecular emission lines are observed. Recent experiments have shown that some of these molecular emissions can be much brighter than the associated atomic lines, especially when halo-gens and rare earth elements are present. We observed these molecular emissions in some of the ChemCam spectra and report the first detection of chlorine and fluorine with ChemCam. It is also the first time ever that fluorine has been detected on the surface of Mars. Among all the F-bearing observations, one third are observed in the Kimberley outcrop. We will dis-cuss the potential mineralogies related to these observations as well as the related elemental correlations and propose interpretations.
- Published
- 2015
31. SuperCam on the Perseverance Rover for Exploration of Jezero Crater: Remote LIBS, VISIR, Raman, and Time-Resolved Luminescence Spectroscopies Plus Micro-Imaging and Acoustics
- Author
-
Wiens, Roger C., Maurice, Sylvestre, Gasnault, O., Anderson, Ryan B., Beyssac, Olivier, Bonal, L., Clegg, Samuel M., DeFlores, Lauren, Dromart, G, Fischer, W. W., Forni, Olivier, Grotzinger, J. P., Johnson, J. R., Martinez-Frias, J., Mangold, Nicolas, McLennan, S., Montmessin, Franck, Rull, Fernando, Sharma, Shiv K., Cousin, Agnès, Pilleri, Paolo, Sautter, V, Lewin, E, Cloutis, E., Poulet, F., Bernard, Sylvain, McConnochie, T., Lanza, N., Newsom, H., Ollila, A., Leveille, R., Le Mouelic, S., Lasue, J, Melikechi, N., Meslin, P-Y, Grasset, O, Angel, S. M., Fouchet, T., Beck, Pierre, Bousquet, Bruno, Fabre, C., Pinet, P., Benzerara, K., Montagnac, Gilles, Arana, Gorka, Castro, Kepa, Laserna, Javier, Madariaga, Juan Manuel, Manrique, Jose Antonio, Lopez, G., Lorenz, R., Mimoun, D., Acosta-Maeda, T., Alvarez, C., Dehouck, E., Delory, G., Doressoundiram, A., Francis, R., Frydenvang, J., Gabriel, T. S. J., Jacob, Xavier, Madsen, M. B., Moros, J., Murdoch, N, Newell, Raymond T., Porter, J. M., Quantin-Nataf, C., Rapin, William, Schröder, Susanne, Sobron, Pablo, Toplis, M., Brown, A.J., Veneranda, M., Chide, Baptiste, Legett, Carey, Royer, Clement, Stott, A., Vogt, David, Robinson, Scott H., DeLapp, D., Clave, E., Connell, S., Essunfeld, A., Gallegos, Z., Garcia-Florentino, C., Gibbons, E., Huidobro, J., Kelly, E., Kalucha, H., Ruiz, P., Torre-Fdez, Imanol, Shkolyar, Svetlana, Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Los Alamos National Laboratory (LANL), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), United States Geological Survey (USGS), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), California Institute of Technology (CALTECH), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Instituto de Geociencias [Madrid] (IGEO), Universidad Complutense de Madrid = Complutense University of Madrid [Madrid] (UCM)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Stony Brook University [SUNY] (SBU), State University of New York (SUNY), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Universidad de Valladolid [Valladolid] (UVa), University of Hawai‘i [Mānoa] (UHM), Université Grenoble Alpes (UGA), University of Winnipeg, Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), NASA Goddard Space Flight Center (GSFC), The University of New Mexico [Albuquerque], McGill University = Université McGill [Montréal, Canada], University of Massachusetts [Lowell] (UMass Lowell), University of Massachusetts System (UMASS), University of South Carolina [Columbia], Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Pôle Planétologie du LESIA, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Lorraine (UL), Universidad del Pais Vasco / Euskal Herriko Unibertsitatea [Espagne] (UPV/EHU), Universidad de Málaga [Málaga] = University of Málaga [Málaga], Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Université de Lyon, University of Copenhagen = Københavns Universitet (UCPH), University of Hawai'i [Honolulu] (UH), Deutsches Zentrum für Luft- und Raumfahrt (DLR), Search for Extraterrestrial Intelligence Institute (SETI), Plancius Research LLC, University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU), Cardon, Catherine, Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)-Universidad Complutense de Madrid = Complutense University of Madrid [Madrid] (UCM), Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), University of Málaga, and University of Copenhagen = Københavns Universitet (KU)
- Subjects
[SDU.ASTR.IM] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,[SDU]Sciences of the Universe [physics] ,Mars2020 SuperCam Perseverance Mars Planetenforschung Spektroskopie Kamera Laser ,ComputingMilieux_MISCELLANEOUS ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] - Abstract
International audience
- Published
- 2021
- Full Text
- View/download PDF
32. The SuperCam Instrument Suite on the Mars 2020 Rover:Science Objectives and Mast-Unit Description
- Author
-
Maurice, S., Wiens, R. C., Bernardi, P., Caïs, P., Robinson, S., Nelson, T., Gasnault, O., Reess, J. M., Deleuze, M., Rull, F., Manrique, J. A., Abbaki, S., Anderson, R. B., André, Y., Angel, S. M., Arana, G., Battault, T., Beck, P., Benzerara, K., Bernard, S., Berthias, J. P., Beyssac, O., Bonafous, M., Bousquet, B., Boutillier, M., Cadu, A., Castro, K., Chapron, F., Chide, B., Clark, K., Clavé, E., Clegg, S., Cloutis, E., Collin, C., Cordoba, E. C., Cousin, A., Dameury, J. C., D’Anna, W., Daydou, Y., Debus, A., Deflores, L., Dehouck, E., Delapp, D., De Los Santos, G., Donny, C., Doressoundiram, A., Dromart, G., Dubois, B., Dufour, A., Dupieux, M., Egan, M., Ervin, J., Fabre, C., Fau, A., Fischer, W., Forni, O., Fouchet, T., Frydenvang, J., Gauffre, S., Gauthier, M., Gharakanian, V., Gilard, O., Gontijo, I., Gonzalez, R., Granena, D., Grotzinger, J., Hassen-Khodja, R., Heim, M., Hello, Y., Hervet, G., Humeau, O., Jacob, X., Jacquinod, S., Johnson, J. R., Kouach, D., Lacombe, G., Lanza, N., Lapauw, L., Laserna, J., Lasue, J., Le Deit, L., Le Mouélic, S., Le Comte, E., Lee, Q. M., Legett, C., Leveille, R., Lewin, E., Leyrat, C., Lopez-Reyes, G., Lorenz, R., Lucero, B., Madariaga, J. M., Madsen, S., Madsen, M., Mangold, N., Manni, F., Mariscal, J. F., Martinez-Frias, J., Mathieu, K., Mathon, R., McCabe, K. P., McConnochie, T., McLennan, S. M., Mekki, J., Melikechi, N., Meslin, P.-Y., Micheau, Y., Michel, Y., Michel, J. M., Mimoun, D., Misra, A., Montagnac, G., Montaron, C., Montmessin, F., Moros, J., Mousset, V., Morizet, Y., Murdoch, N., Newell, R. T., Newsom, H., Nguyen Tuong, N., Ollila, A. M., Orttner, G., Oudda, L., Pares, L., Parisot, J., Parot, Y., Pérez, R., Pheav, D., Picot, L., Pilleri, P., Pilorget, C., Pinet, P., Pont, G., Poulet, F., Quantin-Nataf, C., Quertier, B., Rambaud, D., Rapin, W., Romano, P., Roucayrol, L., Royer, C., Ruellan, M., Sandoval, B. F., Sautter, V., Schoppers, M. J., Schröder, S., Seran, H. C., Sharma, S. K., Sobron, P., Sodki, M., Sournac, A., Sridhar, V., Standarovsky, D., Storms, S., Striebig, N., Tatat, M., Toplis, M., Torre-Fdez, I., Toulemont, N., Velasco, C., Veneranda, M., Venhaus, D., Virmontois, C., Viso, M., Willis, P., Wong, K. W., Maurice, S., Wiens, R. C., Bernardi, P., Caïs, P., Robinson, S., Nelson, T., Gasnault, O., Reess, J. M., Deleuze, M., Rull, F., Manrique, J. A., Abbaki, S., Anderson, R. B., André, Y., Angel, S. M., Arana, G., Battault, T., Beck, P., Benzerara, K., Bernard, S., Berthias, J. P., Beyssac, O., Bonafous, M., Bousquet, B., Boutillier, M., Cadu, A., Castro, K., Chapron, F., Chide, B., Clark, K., Clavé, E., Clegg, S., Cloutis, E., Collin, C., Cordoba, E. C., Cousin, A., Dameury, J. C., D’Anna, W., Daydou, Y., Debus, A., Deflores, L., Dehouck, E., Delapp, D., De Los Santos, G., Donny, C., Doressoundiram, A., Dromart, G., Dubois, B., Dufour, A., Dupieux, M., Egan, M., Ervin, J., Fabre, C., Fau, A., Fischer, W., Forni, O., Fouchet, T., Frydenvang, J., Gauffre, S., Gauthier, M., Gharakanian, V., Gilard, O., Gontijo, I., Gonzalez, R., Granena, D., Grotzinger, J., Hassen-Khodja, R., Heim, M., Hello, Y., Hervet, G., Humeau, O., Jacob, X., Jacquinod, S., Johnson, J. R., Kouach, D., Lacombe, G., Lanza, N., Lapauw, L., Laserna, J., Lasue, J., Le Deit, L., Le Mouélic, S., Le Comte, E., Lee, Q. M., Legett, C., Leveille, R., Lewin, E., Leyrat, C., Lopez-Reyes, G., Lorenz, R., Lucero, B., Madariaga, J. M., Madsen, S., Madsen, M., Mangold, N., Manni, F., Mariscal, J. F., Martinez-Frias, J., Mathieu, K., Mathon, R., McCabe, K. P., McConnochie, T., McLennan, S. M., Mekki, J., Melikechi, N., Meslin, P.-Y., Micheau, Y., Michel, Y., Michel, J. M., Mimoun, D., Misra, A., Montagnac, G., Montaron, C., Montmessin, F., Moros, J., Mousset, V., Morizet, Y., Murdoch, N., Newell, R. T., Newsom, H., Nguyen Tuong, N., Ollila, A. M., Orttner, G., Oudda, L., Pares, L., Parisot, J., Parot, Y., Pérez, R., Pheav, D., Picot, L., Pilleri, P., Pilorget, C., Pinet, P., Pont, G., Poulet, F., Quantin-Nataf, C., Quertier, B., Rambaud, D., Rapin, W., Romano, P., Roucayrol, L., Royer, C., Ruellan, M., Sandoval, B. F., Sautter, V., Schoppers, M. J., Schröder, S., Seran, H. C., Sharma, S. K., Sobron, P., Sodki, M., Sournac, A., Sridhar, V., Standarovsky, D., Storms, S., Striebig, N., Tatat, M., Toplis, M., Torre-Fdez, I., Toulemont, N., Velasco, C., Veneranda, M., Venhaus, D., Virmontois, C., Viso, M., Willis, P., and Wong, K. W.
- Abstract
On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2–7 m, while providing data at sub-mm to mm scales. We report on SuperCam’s science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.
- Published
- 2021
33. The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description
- Author
-
Maurice, S., Wiens, R. C., Saccoccio, M., Barraclough, B., Gasnault, O., Forni, O., Mangold, N., Baratoux, D., Bender, S., Berger, G., Bernardin, J., Berthé, M., Bridges, N., Blaney, D., Bouyé, M., Caïs, P., Clark, B., Clegg, S., Cousin, A., Cremers, D., Cros, A., DeFlores, L., Derycke, C., Dingler, B., Dromart, G., Dubois, B., Dupieux, M., Durand, E., d’Uston, L., Fabre, C., Faure, B., Gaboriaud, A., Gharsa, T., Herkenhoff, K., Kan, E., Kirkland, L., Kouach, D., Lacour, J.-L., Langevin, Y., Lasue, J., Le Mouélic, S., Lescure, M., Lewin, E., Limonadi, D., Manhès, G., Mauchien, P., McKay, C., Meslin, P.-Y., Michel, Y., Miller, E., Newsom, H. E., Orttner, G., Paillet, A., Parès, L., Parot, Y., Pérez, R., Pinet, P., Poitrasson, F., Quertier, B., Sallé, B., Sotin, C., Sautter, V., Séran, H., Simmonds, J. J., Sirven, J.-B., Stiglich, R., Striebig, N., Thocaven, J.-J., Toplis, M. J., and Vaniman, D.
- Published
- 2012
- Full Text
- View/download PDF
34. Ceramic ChemCam Calibration Targets on Mars Science Laboratory
- Author
-
Vaniman, D., Dyar, M. D., Wiens, R., Ollila, A., Lanza, N., Lasue, J., Rhodes, J. M., Clegg, S., and Newsom, H.
- Published
- 2012
- Full Text
- View/download PDF
35. Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars
- Author
-
McLennan, S. M., Anderson, R. B., Bell, J. F., III, Bridges, J. C., Calef, F., III, Campbell, J. L., Clark, B. C., Clegg, S., Conrad, P., Cousin, A., Des Marais, D. J., Dromart, G., Dyar, M. D., Edgar, L. A., Ehlmann, B. L., Fabre, C., Forni, O., Gasnault, O., Gellert, R., Gordon, S., Grant, J. A., Grotzinger, J. P., Gupta, S., Herkenhoff, K. E., Hurowitz, J. A., King, P. L., Le Mouélic, S., Leshin, L. A., Léveillé, R., Lewis, K. W., Mangold, N., Maurice, S., Ming, D. W., Morris, R. V., Nachon, M., Newsom, H. E., Ollila, A. M., Perrett, G. M., Rice, M. S., Schmidt, M. E., Schwenzer, S. P., Stack, K., Stolper, E. M., Sumner, D. Y., Treiman, A. H., VanBommel, S., Vaniman, D. T., Vasavada, A., Wiens, R. C., and Yingst, R. A.
- Published
- 2014
36. Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars
- Author
-
Vaniman, D. T., Bish, D. L., Ming, D. W., Bristow, T. F., Morris, R. V., Blake, D. F., Chipera, S. J., Morrison, S. M., Treiman, A. H., Rampe, E. B., Rice, M., Achilles, C. N., Grotzinger, J. P., McLennan, S. M., Williams, J., Bell, J. F., III, Newsom, H. E., Downs, R. T., Maurice, S., Sarrazin, P., Yen, A. S., Morookian, J. M., Farmer, J. D., Stack, K., Milliken, R. E., Ehlmann, B. L., Sumner, D. Y., Berger, G., Crisp, J. A., Hurowitz, J. A., Anderson, R., Des Marais, D. J., Stolper, E. M., Edgett, K. S., Gupta, S., and Spanovich, N.
- Published
- 2014
37. Microscopic Views of Martian Soils and Evidence for Incipient Diagenesis
- Author
-
Goetz, W, Madsen, M. B, Bridges, N, Clark, B, Edgett, K. S, Fisk, M, Grotzinger, J. P, Hviid, S. F, Meslin, P.-Y, Ming, D. W, Newsom, H, Sullivan, R, Vaniman, D, and Wiens, R
- Subjects
Lunar And Planetary Science And Exploration - Abstract
Mars landed missions returned im-ages at increasingly higher spatial resolution (Table 1). These images help to constrain the microstructure of Martian soils, i.e. the grain-by-grain association of chemistry and mineralogy with secondary properties, such as albedo, color, magnetic properties, and mor-phology (size, shape, texture). The secondary charac-teristics are controlled by mineralogical composition as well as the geo-setting (transport and weathering modes, e.g. water supply, pH, atmospheric properties, exposure to radiation, etc.). As of today this association is poorly constrained. However, it is important to un-derstand soil-forming processes on the surface of Mars. Here we analyze high-resolution images of soils re-turned by different landed missions. Eventually these images must be combined with other types of data (chemistry and mineralogy at small spatial scale) to nail down the microstructure of Martian soils.
- Published
- 2014
38. Terrain Physical Properties Derived from Orbital Data and the First 360 Sols of Mars Science Laboratory Curiosity Rover Observations in Gale Crater
- Author
-
Arvidson, R. E, Bellutta, P, Calef, F, Fraeman, A. A, Garvin, James B, Gasnault, O, Grant, J. A, Grotzinger, J. P, Hamilton, V. E, Heverly, M, Iagnemma, K. A, Johnson, J. R, Lanza, N, Le Mouelic, S, Mangold, N, Ming, D. W, Mehta, M, Morris, R. V, Newsom, H. E, Renno, N, Rubin, D, Scheiber, J, Sletten, R, Stein, N. T, Thuillier, F, Vasavada, A. R, Vizcaino, J, and Wiens, R. C
- Subjects
Lunar And Planetary Science And Exploration - Abstract
Physical properties of terrains encountered by the Curiosity rover during the rst 360 sols of operations have been inferred from analysis of the scour zones produced by Sky Crane Landing System engine plumes, wheel touch down dynamics, pits produced by Chemical Camera (ChemCam) laser shots, rover wheel traverses over rocks, the extent of sinkage into soils, and the magnitude and sign of rover-based slippage during drives. Results have been integrated with morphologic, mineralogic, and thermophysical properties derived from orbital data, and Curiosity-based measurements, to understand the nature and origin of physical properties of traversed terrains. The hummocky plains (HP) landing site and traverse locations consist ofmoderately to well-consolidated bedrock of alluvial origin variably covered by slightly cohesive, hard-packedbasaltic sand and dust, with both embedded and surface-strewn rock clasts. Rock clasts have been addedthrough local bedrock weathering and impact ejecta emplacement and form a pavement-like surface in whichonly small clasts (5 to 10 cm wide) have been pressed into the soil during wheel passages. The beddedfractured (BF) unit, site of Curiositys rst drilling activity, exposes several alluvial-lacustrine bedrock unitswith little to no soil cover and varying degrees of lithication. Small wheel sinkage values (1 cm) for both HPand BF surfaces demonstrate that compaction resistance countering driven-wheel thrust has been minimaland that rover slippage while traversing across horizontal surfaces or going uphill, and skid going downhill,have been dominated by terrain tilts and wheel-surface material shear modulus values.
- Published
- 2014
- Full Text
- View/download PDF
39. Extraformational sediment recycling on Mars
- Author
-
Yingst, R. A., Edgett, Kenneth S., Banham, Steven G., Bennett, Kristen A., Edgar, Lauren A., Edwards, Christopher S., Fairén, Alberto G., Fedo, Christopher M., Fey, Deirdra M., Garvin, James B., Grotzinger, J., Gupta, Sanjeev, Henderson, Marie J., House, Christopher H., Mangold, Nicolas, McLennan, Scott M., Newsom, H., Rowland, S.K., Siebach, Kirsten L., Thompson, L., VanBommel, Scott J., Wiens, Roger C., Williams, R. M. E., Yingst, R. A., Edgett, Kenneth S., Banham, Steven G., Bennett, Kristen A., Edgar, Lauren A., Edwards, Christopher S., Fairén, Alberto G., Fedo, Christopher M., Fey, Deirdra M., Garvin, James B., Grotzinger, J., Gupta, Sanjeev, Henderson, Marie J., House, Christopher H., Mangold, Nicolas, McLennan, Scott M., Newsom, H., Rowland, S.K., Siebach, Kirsten L., Thompson, L., VanBommel, Scott J., Wiens, Roger C., and Williams, R. M. E.
- Abstract
Extraformational sediment recycling (old sedimentary rock to new sedimentary rock) is a fundamental aspect of Earth's geological record; tectonism exposes sedimentary rock, whereupon it is weathered and eroded to form new sediment that later becomes lithified. On Mars, tectonism has been minor, but two decades of orbiter instrument-based studies show that some sedimentary rocks previously buried to depths of kilometers have been exposed, by erosion, at the surface. Four locations in Gale crater, explored using the National Aeronautics and Space Administration's Curiosity rover, exhibit sedimentary lithoclasts in sedimentary rock: At Marias Pass, they are mudstone fragments in sandstone derived from strata below an erosional unconformity; at Bimbe, they are pebble-sized sandstone and, possibly, laminated, intraclast-bearing, chemical (calcium sulfate) sediment fragments in conglomerates; at Cooperstown, they are pebble-sized fragments of sandstone within coarse sandstone; at Dingo Gap, they are cobble-sized, stratified sandstone fragments in conglomerate derived from an immediately underlying sandstone. Mars orbiter images show lithified sediment fans at the termini of canyons that incise sedimentary rock in Gale crater; these, too, consist of recycled, extraformational sediment. The recycled sediments in Gale crater are compositionally immature, indicating the dominance of physical weathering processes during the second known cycle. The observations at Marias Pass indicate that sediment eroded and removed from craters such as Gale crater during the Martian Hesperian Period could have been recycled to form new rock elsewhere. Our results permit prediction that lithified deltaic sediments at the Perseverance (landing in 2021) and Rosalind Franklin (landing in 2023) rover field sites could contain extraformational recycled sediment.
- Published
- 2020
40. Origin and composition of three heterolithic boulder- and cobble-bearing deposits overlying the Murray and Stimson formations, Gale Crater, Mars
- Author
-
Wiens, Roger C., Edgett, Kenneth S., Stack, K., Dietrich, William E., Bryk, Alexander B., Mangold, Nicolas, Bedford, Candice, Gasda, Patrick, Fairén, Alberto G., Thompson, L., Johnson, Jeff, Gasnault, Olivier, Clegg, Sam, Cousin, Agnes, Forni, Olivier, Frydenvang, J., Lanza, Nina, Maurice, Sylvestre, Newsom, H., Payré, Valerie, Rivera-Hernandez, Frances, Vasavada, Ashwin R., Wiens, Roger C., Edgett, Kenneth S., Stack, K., Dietrich, William E., Bryk, Alexander B., Mangold, Nicolas, Bedford, Candice, Gasda, Patrick, Fairén, Alberto G., Thompson, L., Johnson, Jeff, Gasnault, Olivier, Clegg, Sam, Cousin, Agnes, Forni, Olivier, Frydenvang, J., Lanza, Nina, Maurice, Sylvestre, Newsom, H., Payré, Valerie, Rivera-Hernandez, Frances, and Vasavada, Ashwin R.
- Abstract
Heterolithic, boulder-containing, pebble-strewn surfaces occur along the lower slopes of Aeolis Mons (“Mt. Sharp”) in Gale crater, Mars. They were observed in HiRISE images acquired from orbit prior to the landing of the Curiosity rover. The rover was used to investigate three of these units named Blackfoot, Brandberg, and Bimbe between sols 1099 and 1410. These unconsolidated units overlie the lower Murray formation that forms the base of Mt. Sharp, and consist of pebbles, cobbles and boulders. Blackfoot also overlies portions of the Stimson formation, which consists of eolian sandstone that is understood to significantly postdate the dominantly lacustrine deposition of the Murray formation. Blackfoot is elliptical in shape (62 × 26 m), while Brandberg is nearly circular (50 × 55 m), and Bimbe is irregular in shape, covering about ten times the area of the other two. The largest boulders are 1.5–2.5 m in size and are interpreted to be sandstones. As seen from orbit, some boulders are light-toned and others are dark-toned. Rover-based observations show that both have the same gray appearance from the ground and their apparently different albedos in orbital observations result from relatively flat sky-facing surfaces. Chemical observations show that two clasts of fine sandstone at Bimbe have similar compositions and morphologies to nine ChemCam targets observed early in the mission, near Yellowknife Bay, including the Bathurst Inlet outcrop, and to at least one target (Pyramid Hills, Sol 692) and possibly a cap rock unit just north of Hidden Valley, locations that are several kilometers apart in distance and tens of meters in elevation. These findings may suggest the earlier existence of draping strata, like the Stimson formation, that would have overlain the current surface from Bimbe to Yellowknife Bay. Compositionally these extinct strata could be related to the Siccar Point group to which the Stimson formation belongs. Dark, massive sandstone blocks at Bimbe are
- Published
- 2020
41. Ceramic ChemCam Calibration Targets on Mars Science Laboratory
- Author
-
Vaniman, D., primary, Dyar, M. D., additional, Wiens, R., additional, Ollila, A., additional, Lanza, N., additional, Lasue, J., additional, Rhodes, J. M., additional, Clegg, S., additional, and Newsom, H., additional
- Published
- 2012
- Full Text
- View/download PDF
42. The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description
- Author
-
Maurice, S., primary, Wiens, R. C., additional, Saccoccio, M., additional, Barraclough, B., additional, Gasnault, O., additional, Forni, O., additional, Mangold, N., additional, Baratoux, D., additional, Bender, S., additional, Berger, G., additional, Bernardin, J., additional, Berthé, M., additional, Bridges, N., additional, Blaney, D., additional, Bouyé, M., additional, Caïs, P., additional, Clark, B., additional, Clegg, S., additional, Cousin, A., additional, Cremers, D., additional, Cros, A., additional, DeFlores, L., additional, Derycke, C., additional, Dingler, B., additional, Dromart, G., additional, Dubois, B., additional, Dupieux, M., additional, Durand, E., additional, d’Uston, L., additional, Fabre, C., additional, Faure, B., additional, Gaboriaud, A., additional, Gharsa, T., additional, Herkenhoff, K., additional, Kan, E., additional, Kirkland, L., additional, Kouach, D., additional, Lacour, J.-L., additional, Langevin, Y., additional, Lasue, J., additional, Le Mouélic, S., additional, Lescure, M., additional, Lewin, E., additional, Limonadi, D., additional, Manhès, G., additional, Mauchien, P., additional, McKay, C., additional, Meslin, P.-Y., additional, Michel, Y., additional, Miller, E., additional, Newsom, H. E., additional, Orttner, G., additional, Paillet, A., additional, Parès, L., additional, Parot, Y., additional, Pérez, R., additional, Pinet, P., additional, Poitrasson, F., additional, Quertier, B., additional, Sallé, B., additional, Sotin, C., additional, Sautter, V., additional, Séran, H., additional, Simmonds, J. J., additional, Sirven, J.-B., additional, Stiglich, R., additional, Striebig, N., additional, Thocaven, J.-J., additional, Toplis, M. J., additional, and Vaniman, D., additional
- Published
- 2012
- Full Text
- View/download PDF
43. Erratum to: Ceramic ChemCam Calibration Targets on Mars Science Laboratory
- Author
-
Vaniman, D., primary, Dyar, M. D., additional, Wiens, R., additional, Ollila, A., additional, Lanza, N., additional, Lasue, J., additional, Rhodes, J. M., additional, Clegg, S., additional, and Newsom, H., additional
- Published
- 2012
- Full Text
- View/download PDF
44. Assessments of Potential Rock Coatings at Rocknest, Gale Crater with ChemCam
- Author
-
Blaney, D. L, Anderson, R, Berger, G, Bridges, J, Bridges, N, Clark, B, Clegg, S, Ehlman, B, Goetz, W, King, P, Lanza, N, Mangold, N, Meslin, P.-Y, and Newsom, H
- Subjects
Lunar And Planetary Science And Exploration - Abstract
Many locations on Mars have low color contrast between the rocks and soils due to the rocks being "dusty"--basically having a surface that is spectrally similar to Martian soil. In general this has been interpreted as soil and/or dust clinging to the rock though either mechanical or electrostic processes. However, given the apparent mobility of thin films of water forming cemented soils on Mars and at Gale Crater, the possibility exists that some of these "dusty" surfaces may actually be coatings formed by thin films of water locally mobilizing soil/air fall material at the rock interface. This type of coating was observed by Spirit during an investigation of the rock Mazatzal which showed enhanced salts above "normal soil" and an enhancement of nano phase iron oxide that was ~ 10 micronmeters thick. We decided to use ChemCam to investigate the possibility of similar rock coatings forming at the Rocknest site at Gale Crater.
- Published
- 2013
45. Identification and Description of a Silicic Volcaniclastic Layer in Gale Crater, Mars, Using Active Neutron Interrogation
- Author
-
Czarnecki, S., primary, Hardgrove, C., additional, Gasda, P. J., additional, Gabriel, T. S. J., additional, Starr, M., additional, Rice, M. S., additional, Frydenvang, J., additional, Wiens, R. C., additional, Rapin, W., additional, Nikiforov, S., additional, Lisov, D., additional, Litvak, M., additional, Calef, F., additional, Gengl, H., additional, Newsom, H., additional, Thompson, L., additional, and Nowicki, S., additional
- Published
- 2020
- Full Text
- View/download PDF
46. Calibration of the MSL/ChemCam/LIBS Remote Sensing Composition Instrument
- Author
-
Wiens, R. C, Maurice S, Bender, S, Barraclough, B. L, Cousin, A, Forni, O, Ollila, A, Newsom, H, Vaniman, D, Clegg, S, Lasue, J. A, Blaney, D, DeFlores, L, and Morris, R. V
- Subjects
Lunar And Planetary Science And Exploration - Abstract
The ChemCam instrument suite on board the 2011 Mars Science Laboratory (MSL) Rover, Curiosity, will provide remote-sensing composition information for rock and soil samples within seven meters of the rover using a laser-induced breakdown spectroscopy (LIBS) system, and will provide context imaging with a resolution of 0.10 mradians using the remote micro-imager (RMI) camera. The high resolution is needed to image the small analysis footprint of the LIBS system, at 0.2-0.6 mm diameter. This fine scale analytical capability will enable remote probing of stratigraphic layers or other small features the size of "blueberries" or smaller. ChemCam is intended for rapid survey analyses within 7 m of the rover, with each measurement taking less than 6 minutes. Repeated laser pulses remove dust coatings and provide depth profiles through weathering layers, allowing detailed investigation of rock varnish features as well as analysis of the underlying pristine rock composition. The LIBS technique uses brief laser pulses greater than 10 MW/square mm to ablate and electrically excite material from the sample of interest. The plasma emits photons with wavelengths characteristic of the elements present in the material, permitting detection and quantification of nearly all elements, including the light elements H, Li, Be, B, C, N, O. ChemCam LIBS projects 14 mJ of 1067 nm photons on target and covers a spectral range of 240-850 nm with resolutions between 0.15 and 0.60 nm FWHM. The Nd:KGW laser is passively cooled and is tuned to provide maximum power output from -10 to 0 C, though it can operate at 20% degraded energy output at room temperature. Preliminary calibrations were carried out on the flight model (FM) in 2008. However, the detectors were replaced in 2009, and final calibrations occurred in April-June, 2010. This presentation describes the LIBS calibration and characterization procedures and results, and details plans for final analyses during rover system thermal testing, planned for early March.
- Published
- 2011
47. Exploring Martian Impact Craters: Why They are Important for the Search for Life
- Author
-
Schwenzer, S. P, Abramov, O, Allen, C. C, Clifford, S, Filiberto, J, Kring, D. A, Lasue, J, McGovern, P. J, Newsom, H. E, Treiman, A. H, Vaniman, D. T, Wiens, R. C, and Wittmann, A
- Subjects
Lunar And Planetary Science And Exploration - Abstract
Fluvial features and evidence for aqueous alteration indicate that Mars was wet, at least partially and/or periodically, in the Noachian. Also, impact cratering appears to have been the dominant geological process [1] during that epoch. Thus, investigation of Noachian craters will further our understanding of this geologic process, its effects on the water-bearing Martian crust, and any life that may have been present at the time. Impact events disturbed and heated the water- and/or ice-bearing crust, likely initiated long-lived hydrothermal systems [2-4], and formed crater lakes [5], creating environments suitable for life [6]. Thus, Noachian impact craters are particularly important exploration targets because they provide a window into warm, water-rich environments of the past which were possibly conducive to life. In addition to the presence of lake deposits, assessment of the presence of hydrothermal deposits in the walls, floors and uplifts of craters is important in the search for life on Mars. Impact craters are also important for astrobiological exploration in other ways. For example, smaller craters can be used as natural excavation pits, and so can provide information and samples that would otherwise be inaccessible (e.g., [7]). In addition, larger (> ~75 km) craters can excavate material from a potentially habitable region, even on present-day Mars, located beneath a >5-km deep cryosphere.
- Published
- 2010
48. Analysis of Calcium Sulfate-Cemented Sandstones and Veins Along the MSL Traverse, Gale Crater, Mars
- Author
-
Baker, A. M., Ganter, G. E., Nellessen, M. A., Newsom, H. E., Jackson, R. S., Nachon, M., Rivera-Hernandez, F., William Rapin, Wiens, R. C., Frydenvang, J., Gasda, P., Lanza, N., Ollila, A., Clegg, S., Gasnault, O., Maurice, S., Y Meslin, P., Cousin, A., Rapin, W., Lasue, J., Forni, O., Haridon, J. L., Blaney, D., Payre, V., Mangold, N., Ledeit, L., Anderson, R., Institute of Meteoritics [Albuquerque] (IOM), The University of New Mexico [Albuquerque], Los Alamos National Laboratory (LANL), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), and Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology - Abstract
International audience; We have confirmed the likely presence of Ca-S cement (interpenetrating a silicate matrix) in many ChemCam analyses using the typical 25 dust free shots on each target point to assess homogeneity of targets that are a mixture of Ca-S and silicate.
- Published
- 2019
49. Formation and Evolution of the Multi-Stage Peace Vallis Alluvial Fan System, Gale Crater, Mars
- Author
-
Gallegos, Z. G., Newsom, H. E., Scuderi, L. A., Wiens, R. C., Grant, J. A., Gasnault, O., Le Mouélic, S., Johnstone, S. E., Escarcega, K., Edge, E., Institute of Meteoritics [Albuquerque] (IOM), The University of New Mexico [Albuquerque], Los Alamos National Laboratory (LANL), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), and Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology - Abstract
International audience; The Peace Vallis alluvial fan is now recognized through this study as a complex, multi-stage system (Hesperian-Amazonian) with the investigation of rover-based ChemCam RMI imagery and orbital data.
- Published
- 2019
50. Probable Chondritic Fragments Detected by ChemCam in Gale Crater
- Author
-
Lasue, J., Meslin, P. Y., Sautter, V., Maroger, I., Krämer Ruggiu, L., Bridges, J. C., Lewin, E., Wiens, R. C., Beck, P., Cousin, A., Forni, O., Gasnault, O., Goetz, W., Johnson, J. R., Le Mouélic, S., Nachon, M., Newsom, H., Maurice, S., Wellington, D. F., Los Alamos National Laboratory (LANL), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géodynamique UMR6112 (LPG), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Université d'Angers (UA), Institute of Meteoritics [Albuquerque] (IOM), The University of New Mexico [Albuquerque], Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), and Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology - Abstract
International audience; ChemCam identified two fragments with elevated Ni (>1wt.%) and MgO ( 20-30wt.%) and an Mg/Si ratio consistent with ordinary chondrites.
- Published
- 2019
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.