4 results on '"Newitt JT"'
Search Results
2. ActinoBase: tools and protocols for researchers working on Streptomyces and other filamentous actinobacteria.
- Author
-
Feeney MA, Newitt JT, Addington E, Algora-Gallardo L, Allan C, Balis L, Birke AS, Castaño-Espriu L, Charkoudian LK, Devine R, Gayrard D, Hamilton J, Hennrich O, Hoskisson PA, Keith-Baker M, Klein JG, Kruasuwan W, Mark DR, Mast Y, McHugh RE, McLean TC, Mohit E, Munnoch JT, Murray J, Noble K, Otani H, Parra J, Pereira CF, Perry L, Pintor-Escobar L, Pritchard L, Prudence SMM, Russell AH, Schniete JK, Seipke RF, Sélem-Mojica N, Undabarrena A, Vind K, van Wezel GP, Wilkinson B, Worsley SF, Duncan KR, Fernández-Martínez LT, and Hutchings MI
- Subjects
- Anti-Bacterial Agents, Actinobacteria genetics, Streptomyces genetics
- Abstract
Actinobacteria is an ancient phylum of Gram-positive bacteria with a characteristic high GC content to their DNA. The ActinoBase Wiki is focused on the filamentous actinobacteria, such as Streptomyces species, and the techniques and growth conditions used to study them. These organisms are studied because of their complex developmental life cycles and diverse specialised metabolism which produces many of the antibiotics currently used in the clinic. ActinoBase is a community effort that provides valuable and freely accessible resources, including protocols and practical information about filamentous actinobacteria. It is aimed at enabling knowledge exchange between members of the international research community working with these fascinating bacteria. ActinoBase is an anchor platform that underpins worldwide efforts to understand the ecology, biology and metabolic potential of these organisms. There are two key differences that set ActinoBase apart from other Wiki-based platforms: [1] ActinoBase is specifically aimed at researchers working on filamentous actinobacteria and is tailored to help users overcome challenges working with these bacteria and [2] it provides a freely accessible resource with global networking opportunities for researchers with a broad range of experience in this field.
- Published
- 2022
- Full Text
- View/download PDF
3. Soil, senescence and exudate utilisation: characterisation of the Paragon var. spring bread wheat root microbiome.
- Author
-
Prudence SM, Newitt JT, Worsley SF, Macey MC, Murrell JC, Lehtovirta-Morley LE, and Hutchings MI
- Abstract
Background: Conventional methods of agricultural pest control and crop fertilisation are unsustainable. To meet growing demand, we must find ecologically responsible means to control disease and promote crop yields. The root-associated microbiome can aid plants with disease suppression, abiotic stress relief, and nutrient bioavailability. The aim of the present work was to profile the community of bacteria, fungi, and archaea associated with the wheat rhizosphere and root endosphere in different conditions. We also aimed to use
13 CO2 stable isotope probing (SIP) to identify microbes within the root compartments that were capable of utilising host-derived carbon., Results: Metabarcoding revealed that community composition shifted significantly for bacteria, fungi, and archaea across compartments. This shift was most pronounced for bacteria and fungi, while we observed weaker selection on the ammonia oxidising archaea-dominated archaeal community. Across multiple soil types we found that soil inoculum was a significant driver of endosphere community composition, however, several bacterial families were identified as core enriched taxa in all soil conditions. The most abundant of these were Streptomycetaceae and Burkholderiaceae. Moreover, as the plants senesce, both families were reduced in abundance, indicating that input from the living plant was required to maintain their abundance in the endosphere. Stable isotope probing showed that bacterial taxa within the Burkholderiaceae family, among other core enriched taxa such as Pseudomonadaceae, were able to use root exudates, but Streptomycetaceae were not., Conclusions: The consistent enrichment of Streptomycetaceae and Burkholderiaceae within the endosphere, and their reduced abundance after developmental senescence, indicated a significant role for these families within the wheat root microbiome. While Streptomycetaceae did not utilise root exudates in the rhizosphere, we provide evidence that Pseudomonadaceae and Burkholderiaceae family taxa are recruited to the wheat root community via root exudates. This deeper understanding crop microbiome formation will enable researchers to characterise these interactions further, and possibly contribute to ecologically responsible methods for yield improvement and biocontrol in the future.- Published
- 2021
- Full Text
- View/download PDF
4. Biocontrol of Cereal Crop Diseases Using Streptomycetes.
- Author
-
Newitt JT, Prudence SMM, Hutchings MI, and Worsley SF
- Abstract
A growing world population and an increasing demand for greater food production requires that crop losses caused by pests and diseases are dramatically reduced. Concurrently, sustainability targets mean that alternatives to chemical pesticides are becoming increasingly desirable. Bacteria in the plant root microbiome can protect their plant host against pests and pathogenic infection. In particular, Streptomyces species are well-known to produce a range of secondary metabolites that can inhibit the growth of phytopathogens. Streptomyces are abundant in soils and are also enriched in the root microbiomes of many different plant species, including those grown as economically and nutritionally valuable cereal crops. In this review we discuss the potential of Streptomyces to protect against some of the most damaging cereal crop diseases, particularly those caused by fungal pathogens. We also explore factors that may improve the efficacy of these strains as biocontrol agents in situ, as well as the possibility of exploiting plant mechanisms, such as root exudation, that enable the recruitment of microbial species from the soil to the root microbiome. We argue that a greater understanding of these mechanisms may enable the development of protective plant root microbiomes with a greater abundance of beneficial bacteria, such as Streptomyces species.
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.