26 results on '"Netzahuatl-Muñoz, Alma Rosa"'
Search Results
2. Chromium Recovery from Chromium-Loaded Cupressus lusitanica Bark in Two-Stage Desorption Processes.
- Author
-
Netzahuatl-Muñoz, Alma Rosa, Aranda-García, Erick, and Cristiani-Urbina, Eliseo
- Subjects
CHROMIUM ,CYPRESS ,DESORPTION ,OXIDATION states ,ENVIRONMENTAL risk - Abstract
Hexavalent chromium (Cr(VI)) contamination poses serious health and environmental risks. Chromium biosorption has been employed as an effective means of eradicating Cr(VI) contamination. However, research on chromium desorption from chromium-loaded biosorbents is scarce despite its importance in facilitating industrial-scale chromium biosorption. In this study, single- and two-stage chromium desorption from chromium-loaded Cupressus lusitanica bark (CLB) was conducted. Thirty eluent solutions were evaluated first; the highest single-stage chromium desorption efficiencies were achieved when eluent solutions of 0.5 M NaOH, 0.5 M H
2 SO4 , and 0.5 M H2 C2 O4 were used. Subsequently, two-stage kinetic studies of chromium desorption were performed. The results revealed that using 0.5 M NaOH solution in the first stage and 0.5 M H2 C2 O4 in the second stage enabled the recovery of almost all the chromium initially bound to CLB (desorption efficiency = 95.9–96.1%) within long (168 h) and short (3 h) desorption periods at each stage. This study clearly demonstrated that the oxidation state of the recovered chromium depends on the chemical nature and concentration of the eluent solution. The results suggest the possible regeneration of chromium-loaded CLB for its subsequent use in other biosorption/desorption cycles. [ABSTRACT FROM AUTHOR]- Published
- 2023
- Full Text
- View/download PDF
3. Biosorcion de colorante naranja acido 10 por biomasa de levadura aislada de suelo contaminado
- Author
-
Barreda-Reyes, Karen Lizbeth, Mendoza-Calderón, Eduardo Iván, Ortega-Regules, Ana Eugenia C., Martínez-de-Santos, María de Lourdes, and Netzahuatl-Muñoz, Alma Rosa C.
- Published
- 2015
4. Editorial 6(22) AyTBUAP. Sustancias poliméricas extracelulares microbianas con propiedades floculantes: una alternativa al empleo de copolímeros de acrilamida
- Author
-
Netzahuatl-Muñoz, Alma Rosa
- Subjects
flocculants ,water treatment ,acrylamide copolymers ,biopolymers ,EPS ,floculantes ,tratamiento de aguas ,copolímeros de acrilamida ,biopolímeros - Abstract
RESUMEN La operación de coagulación-floculación para la remoción de partículas suspendidas es muy utilizada en el tratamiento de aguas residuales. Entre los floculantes más empleados actualmente se encuentran los copolímeros de acrilamida, sin embargo, el uso extensivo de estas moléculas recalcitrantes podría ocasionar efectos indeseables en los ecosistemas. En estudios recientes se han reportado sustancias poliméricas extracelulares de origen microbiano con propiedades floculantes semejantes a los polímeros sintéticos. Estos hallazgos muestran el gran potencial de los polímeros microbianos en el área ambiental y la importancia de estudios adicionales que permitan su producción a gran escala. ABSTRACT The coagulation-flocculation operation for the removal of suspended particles is widely used in wastewater treatment. Among the flocculants most used today are acrylamide copolymers, however, the extensive use of these recalcitrant molecules could cause undesirable effects on ecosystems. Recent studies have reported extracellular polymeric substances of microbial origin with flocculating properties like synthetic polymers. These findings show the great potential of microbial polymers in the environmental area and the importance of additional studies that allow their large-scale production., {"references":["Xiong B, Loss RD, Shields D, Pawlik T, Hochreiter R, Zydney AL, et al. Polyacrylamide degradation and its implications in environmental systems. NPJ Clean Water. 2018;1(1):1-9.","Guezennec AG, Michel C, Bru K, Touze S, Desroche N, Mnif I, et al. Transfer and degradation of polyacrylamide-based flocculants in hydrosystems: a review. Environ Sci Pollut Res 2015; 22(9):6390-6406.","Kusnin N, Syed MA, Ahmad SA. Toxicity, pollution and biodegradation of acrylamide–a mini review. JOBIMMB 2015; 3(2):6-12.","Guzzo J, Guezennec AG. Degradation and transfer of polyacrylamide based flocculent in sludge and industrial and natural waters. Environ Sci Pollut Res, 2015; 22: 6387-6389.","Joshi SJ, Abed RM. Biodegradation of polyacrylamide and its derivatives. Environ Proces 2017; 4(2):463-476.","Costa R, Pereira JL, Gomes J, Gonçalves F, Hunkeler D, Rasteiro MG. The effects of acrylamide polyelectrolytes on aquatic organisms: relating toxicity to chain architecture. Chemosphere. 2014; 112:177-184.","Swift T, Swanson L, Bretherick A, Rimmer S. Measuring poly (acrylamide) flocculants in fresh water using inter-polymer complex formation. Environ Sci: Water Res Technol, 2015; 1(3):332-340.","Wang B, Wang SF, Lam SS, Sonne C, Yuan TQ, Song GY, et al. A review on production of lignin-based flocculants: Sustainable feedstock and low carbon footprint applications. Renew Sustain Energy Rev, 2020; 134:110384.","Lee CS, Robinson J, Chong MF. A review on application of flocculants in wastewater treatment. Process Saf Environ Prot, 2014; 92(6):489-508.","Yin Z, Chu R, Zhu L, Li S, Mo F, Hu D, et al. Application of chitosan-based flocculants to harvest microalgal biomass for biofuel production: A review. Renew Sustain Energy Rev, 2021; 145:111159.","Ajao V, Bruning H, Rijnaarts H, Temmink H. Natural flocculants from fresh and saline wastewater: comparative properties and flocculation performances. Chem Eng J, 2018; 349:622-632.","Nouha K, Kumar RS, Balasubramanian S, Tyagi RD. Critical review of EPS production, synthesis and composition for sludge flocculation. J Environ Sci, 2018; 66:225-245.","Bakar SN, Hasan HA, Abdullah SR, Kasan NA, Muhamad MH, Kurniawan SB. A review of the production process of bacteria-based polymeric flocculants. J Water Process Eng, 2021; 40:101915.","Lee DJ, Chang YR. Bioflocculants from isolated stains: A research update. J Taiwan Inst Chem Engrs, 2018; 87:211-215.","Salehizadeh H, Yan N. Recent advances in extracellular biopolymer flocculants. Biotechnol Adv, 2014; 32(8):1506-1522.","Xia X, Liang Y, Lan S, Li X, Xie Y, Yuan W. Production and flocculating properties of a compound biopolymer flocculant from corn ethanol wastewater. Bioresour Technol, 2018; 247:924-932.","Morales-Moran S, Sánchez-García E, Chávez-Gómez RI, Carrasco-Esparza NA, Aguayo-Acosta A, Hernández-Marín DA. Distribution of Triatoma (Meccus) phyllosoma and Triatoma (Meccus) longipennis as vectors of Trypanosoma Cruzi in the State of Aguascalientes, Mexico and Surroundings. Alianzas y Tendencias BUAP [Internet] 2021; 6(22):1–15.","Escobar-Muciño E, Búsqueda in silico de Inhibidores de Quorum Sensing y estudios preclínicos en Chromobacterium violaceum. Alianzas y Tendencias BUAP [Internet] 2021; 6(22):16–53.","Guevara-González IC, Carreño-López R, Caso-Vargas LR, Marín-Cevada V. Caracterización de cepas rizosféricas pertenecientes al género Paraburkholderia sp. aisladas de la sierra norte del Estado de Puebla. Alianzas y Tendencias BUAP [Internet]. 2021; 6(22):54–75.","Urda Romacho J, Fernández Martín JM, González Vaquero D, Torres Rodríguez M del C, Cantó Mangana J, Castro Vida MA. Análisis de las encuestas de satisfacción realizadas en consulta de farmacia hospitalaria. Comparación de resultados. Alianzas y Tendencias BUAP [Internet]. 2021; 6(22):76–88."]}
- Published
- 2021
- Full Text
- View/download PDF
5. Kinetic Study of the Effect of pH on Hexavalent and Trivalent Chromium Removal from Aqueous Solution by Cupressus lusitanica Bark
- Author
-
Netzahuatl-Muñoz, Alma Rosa, Guillén-Jiménez, Flor de María, Chávez-Gómez, Benjamín, Villegas-Garrido, Thelma Lilia, and Cristiani-Urbina, Eliseo
- Published
- 2012
- Full Text
- View/download PDF
6. Revisión sobre la ocurrencia de triclosán en aguas subterráneas y tendencias tecnológicas para su remoción
- Author
-
Netzahuatl-Muñoz, Alma Rosa and Rodríguez-Cuamatzi, Patricia
- Subjects
aguas subterráneas ,micro-contaminantes ,tratamientos avanzados de aguas residuales ,triclosán ,groundwater ,micropollutants ,triclosan ,wastewater advanced treatments - Abstract
RESUMEN Debido a la importancia como fuente de abastecimiento de agua potable, las aguas subterráneas deben garantizar seguridad en cuanto a su composición química. Sin embargo, en años recientes una gran cantidad de micro-contaminantes orgánicos tóxicos no regulados se han detectado en aguas subterráneas. El triclosán (TCS) es una sustancia desinfectante que debido a sus propiedades tóxicas y alta movilidad en el medio ambiente ha sido una molécula indicadora de procesos contaminantes de origen antropogénico. El análisis de estudios de monitoreo de contaminación de aguas subterráneas con triclosán muestra que su presencia en estas fuentes de agua potable se encuentra principalmente en zonas urbanas y en menor medida en zonas rurales. Y fundamentalmente, se debe a tres problemáticas: 1) la infiltración de aguas residuales domésticas sin tratamiento, 2) la infiltración de aguas residuales domésticas tratadas en cuyo tren de tratamiento no se contemplan operaciones avanzadas para la eliminación de micro-contaminantes orgánicos y 3) la infiltración de lixiviados provenientes de rellenos sanitarios. Las tecnologías más prometedoras para la remoción de triclosán de sistemas acuosos con bajo contenido de materia orgánica son: oxidación y oxidación avanzada, adsorción y biosorción, remoción metabólica microbiana, transformación enzimática y fitofiltración. La mayoría de los estudios para la remoción de triclosán se han realizado a nivel de laboratorio poniendo énfasis tanto en la eficiencia del proceso como en el mecanismo de remoción del contaminante, estos estudios son de gran importancia para el diseño de sistemas de tratamiento de aguas residuales y naturales. ABSTRACT According to the importance of a source of drinking water supply, groundwater must guarantee safety in terms of its chemical composition. However, in recent years a large amount of unregulated toxic organic micro-pollutants has been detected in groundwater. Triclosan (TCS) is a disinfectant substance and indicator molecule for anthropogenic origin polluting processes due to its toxic properties and high mobility in the environment. Studies of monitoring analysis for groundwater contamination with triclosan shows that its presence in drinking water sources is mainly found in urban areas and, to a lesser extent, in rural areas. The presence of TCS is fundamentally due to three problems: 1) infiltration of untreated domestic wastewater, 2) infiltration of treated domestic wastewater in where, treatment process does not include advanced operations to eliminate organic micro-pollutants, and 3) infiltration of leachate from sanitary landfills. The most promising technologies for triclosan removal from aqueous systems with low organic matter content are advanced oxidation and oxidation, adsorption and biosorption, microbial metabolic removal, enzymatic transformation, and phytofiltration. Many of the studies for triclosan removal have been carried out at the laboratory level emphasizing both the efficiency of the process and the pollutant removal mechanism, these studies are of great importance for the design of wastewater and natural water treatment systems., {"references": ["United Nations. Resolution A/RES/64/292. United Nations General Assembly: 2010", "Office of the high commissioner for human rights. General Comment No. 15. The right to water. UN Committee on Economic, Social and Cultural Rights: 2002", "Schmoll O, Howard G, Chilton J, Chorus I, editors. Protecting groundwater for health: managing the quality of drinking-water sources. World Health Organization: 2006.", "CONAGUA. Estad\u00edsticas del agua en M\u00e9xico, edici\u00f3n 2018. SEMARNAT: Ciudad de M\u00e9xico 2018.", "Jadhav S.V., Bringas E., Yadav G.D., Rathod V.K., Ortiz I., Marathe K.V. Arsenic and fluoride contaminated groundwaters: a review of current technologies for contaminants removal. Journal of Environ Manage 2015; 162:306-25.", "Chatziefthimiou A.D., Metcalf J.S., Glover W.B., Banack S.A., Dargham S.R., Richer, R.A. Cyanobacteria and cyanotoxins are present in drinking water impoundments and groundwater wells in desert environments. Toxicon 2016; 114: 75-84.", "Alvarez P.J., Illman W.A. Bioremediation and natural attenuation: process fundamentals and mathematical models (Vol. 27). John Wiley & Sons: 2005", "World Health Organization. Guidelines for drinking-water quality (Vol. 1). World Health Organization: 2004.", "Secretar\u00eda de salud. Modificaci\u00f3n a la Norma Oficial Mexicana NOM-127-SSA1-1994. Salud ambiental, agua para uso y consumo humano. L\u00edmites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilizaci\u00f3n. Secretar\u00eda de Salud. Diario Oficial de la Federaci\u00f3n: Distrito Federal 2000.", "Lapworth D.J., Baran N., Stuart M.E., Ward RS. Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ Pollut 2012; 163: 287-303.", "Postigo C., Barcel\u00f3 D. Synthetic organic compounds and their transformation products in groundwater: occurrence, fate and mitigation. Sci Total Environ 2015; 503: 32-47.", "Gil M.J., Soto A.M., Usma J.I., Guti\u00e9rrez O.D. Contaminantes emergentes en aguas, efectos y posibles tratamientos. Producci\u00f3n + limpia 2012; 7(2): 52-73.", "Gogoi A., Mazumder P., Tyagi V.K., Chaminda G.T., An A.K., Kumar M. Occurrence and fate of emerging contaminants in water environment: A review. Ground Sustain Dev 2018; 6: 169-180.", "Lamastra L., Balderacchi M., Trevisan M. Inclusion of emerging organic contaminants in groundwater monitoring plans. MethodsX 2016; 3: 459-476.", "Stuart M., Lapworth D., Crane E., Hart A. Review of risk from potential emerging contaminants in UK groundwater. Sci Total Environ 2012; 416, 1-21.", "Gavrilescu M., Demnerov\u00e1 K., Aamand J., Agathos S., Fava F. Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. N Biotechnol 2015; 32(1): 147-156.", "Montes-Grajales D., Fennix-Agudelo M., Miranda-Castro W. Occurrence of personal care products as emerging chemicals of concern in water resources: A review. Sci Total Environ 2017; 595: 601-614.", "Noguera-Oviedo K., Aga D.S. Lessons learned from more than two decades of research on emerging contaminants in the environment. J Hazard Mater 2016; 316: 242-251.", "Kosek K., Luczkiewicz A., Fudala-Ksi\u0105\u017cek S., Jankowska K., Szopi\u0144ska M., Svahn O., et. al. (2020). Implementation of advanced micropollutants removal technologies in wastewater treatment plants (WWTPs)-Examples and challenges based on selected EU countries. Environ Sci Policy 2020; 112: 213-226.", "Bhargava H.N., Leonard P.A. Triclosan: applications and safety. Am J Infect Control 1996; 24(3): 209-218.", "Z\u00fa\u00f1iga Carrasco I.R., Caro Lozano J. Controversia por el uso de triclos\u00e1n en los productos antibacteriales de uso com\u00fan. Rev Latinoam Infect Pedi\u00e1tr 2017; 30(3): 93-96.", "Olaniyan L.W.B., Mkwetshana N., Okoh A.I. Triclosan in water, implications for human and environmental health. Springerplus 2016; 5(1): 1639.", "Juliano C., Magrini G. Cosmetic ingredients as emerging pollutants of environmental and health concern. A mini-review. Cosmetics 2017; 4(2): 11.", "Bedoux G., Roig B., Thomas O., Dupont V., Le Bot B. Occurrence and toxicity of antimicrobial triclosan and by-products in the environment. Environ Sci Pollut Res 2012; 19(4): 1044-1065.", "Nishi I., Kawakami T., Onodera, S. Monitoring of triclosan in the surface water of the Tone Canal, Japan. Bull Environ Contam Toxicol 2008; 80(2): 163-166.", "Dhillon G., Kaur S., Pulicharla R., Brar S., Cled\u00f3n M., Verma M., Surampalli R. Triclosan: current status, occurrence, environmental risks and bioaccumulation potential. Int J Environ Res Public Health 2015; 12(5): 5657-5684.", "von der Ohe P.C., Schmitt-Jansen M., Slobodnik J., Brack W. Triclosan\u2014the forgotten priority substance? Environ Sci Pollut Res 2012; 19(2): 585-591.", "Drury B., Scott J., Rosi-Marshall E.J., Kelly J.J. Triclosan exposure increases triclosan resistance and influences taxonomic composition of benthic bacterial communities. Environ Sci Technol 2013; 47(15): 8923-8930.", "Wang C.F., Tian Y. Reproductive endocrine-disrupting effects of triclosan: Population exposure, present evidence and potential mechanisms. Environ Pollut 2015; 206: 195-201.", "Braun J.M., Chen A., Hoofnagle A., Papandonatos G.D., Jackson-Browne M., Hauser R., et. al. Associations of early life urinary triclosan concentrations with maternal, neonatal, and child thyroid hormone levels. Horm Behav, 2018; 101: 77-84.", "Jackson-Browne M.S., Papandonatos G.D., Chen A., Yolton K., Lanphear B.P., Braun J.M. Early-life triclosan exposure and parent-reported behavior problems in 8-year-old children. Environ Int 2019; 1(128): 446-456", "Li Q., Yu J., Chen W., Ma X., Li G., Chen G., Deng J. Degradation of triclosan by chlorine dioxide: Reaction mechanism, 2,4- dichlorophenol accumulation and toxicity evaluation. Chemosphere 2018; 207: 449-456.", "Li H., Zhang X., Qiu Q., An Z., Qi Y., Huang D., et. al. 2, 4-Dichlorophenol induces apoptosis in primary hepatocytes of grass carp (Ctenopharyngodon idella) through mitochondrial pathway. Aquat Toxicol 2013; 140, 117-122.", "Chen X., Richard J., Liu Y., Dopp E., Tuerk J., Bester K., Ozonation products of triclosan in advanced wastewater treatment. Water Res 2012; 46: 2247-2256.", "Sol\u00e1-Guti\u00e9rrez C., Schr\u00f6der S., San-Rom\u00e1n M.F., Ortiz I. Critical review on the mechanistic photolytic and photocatalytic degradation of triclosan. J Environ Manage 2020; 260, 110101.", "Environmental Protection Agency. Polychlorinated Dibenzo-p-dioxins and Related Compounds Update: Impact on Fish Advisories. EPA-823-F-99-015. EPA: 1999", "International Agency for Research on Cancer. Polychlorinated dibenzo-para-dioxins and polychlorinated dibenzofurans. IARC monographs on the evaluation of carcinogenic risks to humans, 69. IARC: 1997.", "Rodriguez-Narvaez O.M., Peralta-Hernandez J.M., Goonetilleke A., Bandala E.R. Treatment technologies for emerging contaminants in water: A review. Chem Eng J 2017; 323: 361-380.", "Silva C.P., Jaria G., Otero M., Esteves V.I., Calisto V. Waste-based alternative adsorbents for the remediation of pharmaceutical contaminated waters: Has a step forward already been taken? Bioresour Technol 2018; 250: 888-901.", "Sophia A.C. Lima E.C. Removal of emerging contaminants from the environment by adsorption. Ecotoxicol Environ Saf 2018; 150: 1-17.", "Barrios-Estrada C., de Jes\u00fas Rostro-Alanis M., Mu\u00f1oz-Guti\u00e9rrez B.D., Iqbal H.M., Kannan S., Parra-Saldivar R. Emergent contaminants: endocrine disruptors and their laccase-assisted degradation\u2013a review. Sci Total Environ 2018; 612: 1516-1531.", "Glassmeyer S.T., Furlong E.T., Kolpin D.W., Batt A.L., Benson R., Boone J.S., et. al. Nationwide reconnaissance of contaminants of emerging concern in source and treated drinking waters of the United States. Sci Total Environ 2017; 581: 909-922.", "Rasheed T., Bilal M., Nabeel F., Adeel M., Iqbal H.M. Environmentally-related contaminants of high concern: Potential sources and analytical modalities for detection, quantification, and treatment. Environ Int 2019; 122: 52-66.", "Lee C.M., Hamm S.Y., Yun S.M., Oh J.E., Kim M., Kim H. Indication of groundwater contamination using acesulfame and other pollutants in a rural area of Korea. Water 2018; 10(12): 1731.", "Lapworth D.J., Baran N., Stuart M.E., Manamsa K., Talbot J. Persistent and emerging micro-organic contaminants in Chalk groundwater of England and France. Environ Pollut 2015; 203: 214-225.", "Lopez B., Ollivier P., Togola A., Baran N., Ghestem J.P. Screening of French groundwater for regulated and emerging contaminants. Sci Total Environ 2015; 518: 562-573.", "Turner R.D., Warne M.S.J., Dawes L.A., Thompson K., Will G.D. Greywater irrigation as a source of organic micro-pollutants to shallow groundwater and nearby surface water. Sci Total Environ 2019; 669: 570-578.", "Teijon G., Candela L., Tamoh K., Molina-D\u00edaz A., Fern\u00e1ndez-Alba A.R. Occurrence of emerging contaminants, priority substances (2008/105/CE) and heavy metals in treated wastewater and groundwater at Depurbaix facility (Barcelona, Spain). Sci Total Environ 2010; 408(17): 3584-3595.", "Brueller W., Inreiter N., Boegl T., Rubasch M., Saner S., Humer F., et. al. Occurrence of chemicals with known or suspected endocrine disrupting activity in drinking water, groundwater and surface water, Austria 2017/2018. Die Bodenkultur: J Land Manag, Food Environ 2018; 69(3): 155-173.", "Sorensen J.P.R., Lapworth D.J., Nkhuwa, D.C.W., Stuart M.E., Gooddy D.C., Bell R.A., et. al. Emerging contaminants in urban groundwater sources in Africa. Water Res 2015; 72: 51-63.", "Karnjanapiboonwong A., Suski J.G., Shah A.A., Cai Q., Morse A.N., Anderson T.A. Occurrence of PPCPs at a wastewater treatment plant and in soil and groundwater at a land application site. Water Air Soil Pollut 2011; 216(1-4): 257-273.", "Gibson R., Dur\u00e1n-\u00c1lvarez J.C., Estrada K.L., Ch\u00e1vez A., Cisneros B.J. Accumulation and leaching potential of some pharmaceuticals and potential endocrine disruptors in soils irrigated with wastewater in the Tula Valley, Mexico. Chemosphere. 2010; 81(11): 1437-1445.", "F\u00e9lix-Ca\u00f1edo T.E., Dur\u00e1n-\u00c1lvarez, J.C., Jim\u00e9nez-Cisneros, B. The occurrence and distribution of a group of organic micropollutants in Mexico City's water sources. Sci Total Environ 2013; 454: 109-118.", "Peng X., Ou W., Wang C., Wang Z., Huang Q., Jin J., Tan J. Occurrence and ecological potential of pharmaceuticals and personal care products in groundwater and reservoirs in the vicinity of municipal landfills in China. Sci Total Environ 2014; 490: 889-898.", "Yang Y.Y., Zhao J.L., Liu Y.S., Liu W.R., Zhang, Q.Q., Yao, L., et. al. Pharmaceuticals and personal care products (PPCPs) and artificial sweeteners (ASs) in surface and ground waters and their application as indication of wastewater contamination. Sci Total Environ 2018; 616: 816-823.", "Sharma B.M., Be\u010danov\u00e1 J., Scheringer M., Sharma A., Bharat G.K., Whitehead P.G., et.al. Health and ecological risk assessment of emerging contaminants (pharmaceuticals, personal care products, and artificial sweeteners) in surface and groundwater (drinking water) in the Ganges River Basin, India. Sci Total Environ 2019; 646: 1459-1467.", "Kapelewska J., Kotowska U., Karpi\u0144ska J., Kowalczuk D., Arciszewska A., & \u015awirydo A. Occurrence, removal, mass loading and environmental risk assessment of emerging organic contaminants in leachates, groundwaters and wastewaters. Microchem J 2018; 137: 292-301.", "Gao Q., Blum K.M., Gago-Ferrero P., Wiberg K., Ahrens L., Andersson PL. Impact of on-site wastewater infiltration systems on organic contaminants in groundwater and recipient waters. Sci Total Environ 2019; 651: 1670-1679.", "Palmiotto M., Castiglioni S., Zuccato E., Manenti A., Riva F., Davoli E. Personal care products in surface, ground and wastewater of a complex aquifer system, a potential planning tool for contemporary urban settings. J Environ Manage 2018; 214: 76-85.", "Loos R., Locoro G., Comero S., Contini S., Schwesig D., Werres F., et. al. Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water. Water Res 2010, 44(14), 4115-4126.", "Montagner C.C., Sodr\u00e9 F.F., Acayaba R.D., Vidal C., Campestrini I., Locatelli M.A., et. al. Ten Years-Snapshot of the Occurrence of Emerging Contaminants in Drinking, Surface and Ground Waters and Wastewaters from S\u00e3o Paulo State, Brazil. J. Braz. Chem. Soc 2019; 30(3): 614-632.", "Lee H.J., Kim K.Y., Hamm S.Y., Kim M., Kim H.K., Oh J.E. Occurrence and distribution of pharmaceutical and personal care products, artificial sweeteners, and pesticides in groundwater from an agricultural area in Korea. Sci Total Environ 2019; 659: 168-176.", "Tchobanoglous G., Stensel H.D., Tsuchihashi R., Burton F., Abu-Orf M., Bowden G., et. al. Waterwater Engineering: Treatment and Resource Recovery, Metcalf and Eddy Inc: 2014.", "Couto C.F., Lange L.C., Amaral M.C. 2019. Occurrence, fate and removal of pharmaceutically active compounds (PhACs) in water and wastewater treatment plants\u2014A review. J Water Process Eng 2019; 32: 100927.", "Di Marcantonio C., Chiavola A., Dossi S., Cecchini G., Leoni S., Frugis A., et. al. Occurrence, seasonal variations and removal of Organic Micropollutants in 76 Wastewater Treatment Plants. Process Saf Environ Prot 2020; 141: 61-72.", "Quan B., Li X., Zhang H., Zhang C., Ming Y., Huang Y., et. al. Technology and principle of removing triclosan from aqueous media: A review. Chem Eng J 2019; 378: 122185.", "Arzate S., Pfister S., Oberschelp C., S\u00e1nchez-P\u00e9rez J.A. Environmental impacts of an advanced oxidation process as tertiary treatment in a wastewater treatment plant. Sci Total Environ 2019; 694: 133572.", "Bui X.T., Vo T.P.T., Ngo H.H., Guo W.S., Nguyen T.T. Multicriteria assessment of advanced treatment technologies for micropollutants removal at large-scale applications. Sci Total Environ 2016; 563: 1050-1067.", "Park K.Y., Choi S.Y., Lee S.H., Kweon J.H., Song J.H. Comparison of formation of disinfection by-products by chlorination and ozonation of wastewater effluents and their toxicity to Daphnia magna. Environ Pollut 2016; 215: 314-321.", "Orhon K.B., Orhon A.K., Dilek F.B., Yetis U. Triclosan removal from surface water by ozonation-kinetics and by-products formation. J Environ Manage 2017; 204: 327-336.", "Chen J., Qu R., Pan X., Wang Z. Oxidative degradation of triclosan by potassium permanganate: kinetics, degradation products, reaction mechanism, and toxicity evaluation. Water Res 2016; 103; 215-223.", "Gayaa U.I., Abdullaha A.H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. J Photochem Photobiol C Photochem Rev, 2008; 9: 1-12.", "Nev\u00e1rez-Mart\u00ednez M.C., Espinoza-Montero P.J., Quiroz-Ch\u00e1vez F.J., Ohtani B. Fotocat\u00e1lisis: inicio, actualidad y perspectivas a trav\u00e9s del TiO2. Avances en Qu\u00edmica 2015, 12(2-3), 45-59.", "Byrne C., Subramanian G., Pillai S.C. Recent advances in photocatalysis for environmental applications. J Environ Chem Eng 2018; 6(3): 3531-3555.", "Rueda-Marquez J.J., Levchuk I., Iba\u00f1ez P.F., Sillanp\u00e4\u00e4 M. A critical review on application of photocatalysis for toxicity reduction of real wastewaters. J Clean Prod 2020; 120694.", "Yu M., Wang J., Tang L., Feng C., Liu H., Zhang H., et. al Intimate coupling of photocatalysis and biodegradation for wastewater treatment: Mechanisms, recent advances and environmental applications. Water Res 2020; 115673.", "Kosera V.S., Cruz T.M., Chaves E.S., Tiburtius E.R. Triclosan degradation by heterogeneous photocatalysis using ZnO immobilized in biopolymer as catalyst. J Photochem Photobiol A Chem 2017, 344, 184-191.", "Constantin L.A., Nitoi I., Cristea N.I., Constantin M.A. Possible degradation pathways of triclosan from aqueous systems via TiO2 assisted photocatalyis. J Ind Eng Chem 2018; 58: 155-162.", "Cervantes R.N., Hammoudab S.B., Sillanp\u00e4\u00e4b M., Escobar B.V. Enhanced photocatalytic performance of zinc oxide nanostructures via photoirradiation hybridisation with grapheme oxide for the degradation of triclosan under visible light: Synthesis, characterisation and mechanistic study. Journal of Environ Chem Eng 2018; 6: 6554\u20136567.", "Peng J., Shi H., Li J., Wang L., Wang Z., Gao S. Bicarbonate enhanced removal of triclosan by copper (II) catalyzed Fenton-like reaction in aqueous solution. Chem Eng J 2016; 306: 484-491.", "Gao H., Chen J., Zhang Y., Zhou X. Sulfate radicals induced degradation of Triclosan in thermally activated persulfate system. Chem Eng J 2016; 306: 522-530.", "Yuval A., Eran F., Janin W., Oliver O., Yael D. Photodegradation of micropollutants using V-UV/UV-C processes; Triclosan as a model compound. Sci Total Enviro 2017; 601: 397-404.", "Wang S., Wang J. Activation of peroxymonosulfate by sludge-derived biochar for the degradation of triclosan in water and wastewater. Chem Eng J 2019; 356: 350-358.", "Ren Y.Z., Franke M., Anschuetz F., Ondruschka B., Ignaszak A., Braeutigam P. Sonoelectrochemical degradation of triclosan in water. Ultrason Sonochem 2014; 21(6): 2020-2025.", "Xin L., Sun Y., Feng J., Wang J., He D. Degradation of triclosan in aqueous solution by dielectric barrier discharge plasma combined with activated carbon fibers. Chemosphere 2016; 144: 855-863.", "Gao Y., Yue Q., Gao B., Li A. Insight into activated carbon from different kinds of chemical activating agents: A review. Sci Total Environ 2020; 141094.", "Mohan D., Pittman Jr C.U. Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water. J Hazard Mater 2016; 137(2): 762-811.", "Michalak I., Chojnacka K., Witek-Krowiak A. State of the art for the biosorption process\u2014a review. Appl Biochem Biotechnol 2013; 170(6): 1389-1416.", "Singh S., Kumar V., Datta S., Dhanjal D.S., Sharma K., Samuel J., Singh J. Current advancement and future prospect of biosorbents for bioremediation. Sci Total Environ 2020; 709; 135895.", "Viancelli A., Michelon W., Rogovski P., Cadamuro R.D., de Souza E.B., Fongaro G., et.al. A review on alternative bioprocesses for removal of emerging contaminants. Bioprocess Biosyst Eng 2020; in press.", "Zhou Y., Zhang L., Cheng Z. Removal of organic pollutants from aqueous solution using agricultural wastes: a review. J Mol Liq 2015; 212: 739-762.", "Netzahuatl-Mu\u00f1oz, A.R., Cristiani-Urbina, M.d.C., Cristiani-Urbina, E. Chromium biosorption from Cr (VI) aqueous solutions by Cupressus lusitanica bark: Kinetics, equilibrium and thermodynamic studies. PLoS One 2015; 10(9): e0137086.", "Volesky B. Sorption and biosorption, BV Sorbex. Inc: St. Lambert, Quebec 2003.", "Kaur H., Hippargi G., Pophali G.R., Bansiwal A. Biomimetic lipophilic activated carbon for enhanced removal of triclosan from water. J Colloid Interface Sci 2019; 535: 111-121.", "Katsigiannis A., Noutsopoulos C., Mantziaras J., Gioldasi M. Removal of emerging pollutants through granular activated carbon. Chem Eng J 2015; 280: 49-57.", "Sharipova A.A., Aidarova S.B., Bekturganova N.Y., Tleuova A., Kerimkulova M., Yessimova O., et.al. Triclosan adsorption from model system by mineral sorbent diatomite. Colloids Surf A Physicochem Eng Asp 2017; 532: 97-101.", "Tohidi F., Cai Z. Adsorption isotherms and kinetics for the removal of triclosan and methyl triclosan from wastewater using inactivated dried sludge. Process Biochem, 2016; 51(8): 1069-1077.", "Santaeufemia S., Abalde J., Torres E. Eco-friendly rapid removal of triclosan from seawater using biomass of a microalgal species: Kinetic and equilibrium studies. J Hazard Mater 2019; 369: 674-683.", "Tarpani R.R.Z., Azapagic A. Life cycle costs of advanced treatment techniques for wastewater reuse and resource recovery from sewage slu
- Published
- 2020
- Full Text
- View/download PDF
7. Remocion de cromo hexavalente y cromo total de soluciones acuosas por el raspon de la uva
- Author
-
Pineda-Camacho, Gabriela, Netzahuatl-Muñoz, Alma Rosa, and Cristiani-Urbina, Eliseo
- Published
- 2011
8. Evaluacion del tegumento de la nuez pecanera (Carya illinoensis) para la remocion de cromo hexavalente y cromo total de soluciones acuosas
- Author
-
Pineda-Camacho, Gabriela, Netzahuatl-Muñoz, Alma Rosa, and Cristiani-Urbina, Eliseo
- Published
- 2011
9. Aplicacion de la cascara de la nuez pecanera (Carya illinoensis) en la remocion de cromo, a partir de soluciones acuosas
- Author
-
Pineda-Camachd, Gabriela, Netzahuatl-Muñoz, Alma Rosa, and Cristiani-Urbina, Eliseo
- Published
- 2011
10. Hexavalent Chromium Removal by Candida sp. in a Concentric Draft-Tube Airlift Bioreactor
- Author
-
Guillén-Jiménez, Flor de María, Netzahuatl-Muñoz, Alma Rosa, Morales-Barrera, Liliana, and Cristiani-Urbina, Eliseo
- Published
- 2009
- Full Text
- View/download PDF
11. Pseudomonas putida estimula el crecimiento de maíz en función de la temperatura
- Author
-
Molina-Romero, Dalia, Morales-García, Yolanda Elizabeth, Hernández-Tenorio, Ana Laura, Castañeda-Lucio, Miguel, Netzahuatl-Muñoz, Alma-Rosa, and Muñoz-Rojas, Jesús
- Subjects
Pseudomonas putida ,Rizobacterias promotoras del crecimiento de plantas ,temperatura ,Plant growth promoting rhizobacteria ,temperature - Abstract
— Pseudomonas putida KT2440 is a bacterium able to colonize plant roots and degrade toxic compounds from environment. The aim of present work was to evaluate the ability of this bacterium to promote the growth of autochthonous blue maize under two conditions of temperature: 30 and 40 oC. In this work we observed that the evaluated bacterium promoted the growth of maize in dependency of the temperature of plant development, with higher stimulation at 40 oC. We propose that this bacterium could protect the development of plants under stress conditions provoked by higher temperatures prevalent in agricultural fields of tropical or arid areas. Keywords— Pseudomonas putida, Plant growth promoting rhizobacteria, temperature. Resumen— Pseudomonas putida KT2440 es una bacteria con la capacidad de degradar compuestos tóxicos para el ambiente y coloniza eficientemente a las raíces de las plantas. El objetivo del presente trabajo fue evaluar la habilidad de esta bacteria para promover el crecimiento de maíz azul bajo dos condiciones de temperatura: 30 y 40 oC. En este trabajo se observó que esta bacteria es capaz de estimular el crecimiento del maíz en dependencia de la temperatura de desarrollo de las plantas, habiendo una mejor estimulación a 40 oC. Se propone que esta bacteria podría proteger a las plantas de las condiciones de estrés generados por elevadas temperaturas que ocurren en campos agrícolas de zonas tropicales o áridas. Palabras claves—Pseudomonas putida, Rizobacterias promotoras del crecimiento de plantas, temperatura., {"references":["A. Baez-Rogelio, Y. E. Morales-García, V. Quintero-Hernández, and J. Muñoz-Rojas, \"Next generation of microbial inoculants for agriculture and bioremediation\", Microb. Biotechnol., Epub. Ahead of Print, doi: 10.1111/1751-7915.12448, October 2016.","L. A. Pazos-Rojas, V. Marín-Cevada, Y. E. Morales-García, Antonino Baez, M. A. Villalobos-López, M. Pérez-Santos, et al., \"Uso de microorganismos benéficos para reducir los daños causados por la revolución verde\", Rev. Iberoamer. Cienc., vol. XX, pp. xx–xx, December 2016. Aceptado para publicación.","B. Lugtemberg, and F. Kamilova, \"Plant-Growth-promoting rhizobacteria\", Annu. Rev. Microbiol., vol. 63, pp. 541–556, October 2009.","R. Vivanco-Calixto, D. Molina-Romero, Y. E. Morales-García, V. Quintero-Hernández, A. Munive-Hernández, A. Baez-Rogelio, et al., \"Reto agrobiotecnológico: inoculantes de segunda generación\". Alianzas y Tendencias BUAP [Internet]. 2016;1(1):1–10. Available from: https://www.aytbuap.mx/publicaciones#h.26a62fnd2t88","S. Dobbelaere, A. Croonenborghs, A. Thys, D. Ptacek, J. Vanderleyden, P. Dutto, et al., \"Responses of agronomically important crops to inoculation with Azospirillum\", Aust. J. Plant Physiol., vol. 28(9), pp. 871–879, September 2001.","J. E. Thies, P. W. Singlethon, and B. B. Bohlol, \"Influence of the size of indigenous rhizobial populations on establishment and symbiotic performance of introduced rhizobia on field-grown legumes\", Appl. Environ. Microbiol., vol., 57(1), pp. 19–28, January 1991.","Y. Bashan, L. E. de-Bashan, S. R. Prabhu, and J. P. Hernandez, \"Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998-2013)\", Plant Soil, vol. 378(1-2), pp. 1–33, May 2014.","J. Caballero-Mellado, and L. E. Fuentes-Ramírez, \"Bacterial biofertilizers\", in PGPR:Biocontrol and Biofertilization, vol. 1, Z.A. Siddiqui (ed.), Springer, Dordrecht, The Netherlands, 2004, pp. 143–172.","J. Muñoz-Rojas, and J. Caballero-Mellado, \"Population dynamics of Gluconacetobacter diazotrophicus in sugarcane cultivars and its effect on plant growth\", Microb. Ecol., vol. 46(4), pp. 454–464, December 2003.","P. Domínguez-Cuevas, J.-E. González-Pastor, S. Marquez, J.-L. Ramos, and V. de Lorenzo, \"Transcriptional tradeoff between metabolic and stress-response programs in Pseudomonas putida KT2440 cells exposed to toluene\", J. Biol. Chem., vol., 281(17), pp. 11981–11991, April 2006.","D. Benndorf, M. Thiersch, N. Loffhagen, C. Kunath, and H. Harms, \"Pseudomonas putida KT2440 responds specifically to chlorophenoxy herbicides and their initial metabolites\", Proteomics, vol., 6(11), pp. 3319–3329, June 2006.","C. Roma-Rodrígues, P. M. Santos, D. Benndorf, E. Rapp, and I. Sá-Correia, \"Response of Pseudomonas putida KT2440 to phenol at the level of membrane proteome\", J. Proteomics, vol., 73(8), pp. 1461–1478, June 2010.","D. Regenhardt, H. Heuer, S. Heim, D. U. Fernández, C. Strömpl, E. R. B. Moore, et al., \"Pedigree and taxonomic credentials of Pseudomonas putida strain KT2440\", Env. Microbiol., vol., 4(12), pp. 912–915, December 2002.","J. I. Jiménez, B. Miñambres, J. L. García, and E. Díaz, \"Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440\", Env. Microbiol., vol., 4(12), pp. 824–841, December 2002.","K. E. Nelson, C. Weinel, I. T. Paulsen, R. J. Dodson, H. Hilbert, V. A. P. Martins dos Santos, et al., \"Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440\", Environ. Microbiol., vol., 4(12), pp. 799–808, December 2002.","M. M. Bagdasarian, and K. N. Timmis, \"Host vector systems for gene cloning in Pseudomonas\", Curr. Top. Microbiol. Immunol., vol., 43(4), pp. 287–293, June 1982.","J. M. Alatorre-Cruz, M. R. Bustillos-Cristales, H. Gutierrez-Sánchez, Y. E. Morales-García, D. Molina-Romero, A. R. Netzahuatl-Muñoz, y J. Muñoz-Rojas, \"Estimulación del crecimiento de Echinocactus platyacanthus con bacterias PGPR\", Saberes Compartidos, Rev. Invest. Cient. Tecnol. Hum., 11(7), pp. 33–40.","L. Molina, C. Ramos, E. Duque, M. C. Ronchel, J. M. García, L. Wyke, et al., \"Survival of Pseudomonas putida KT2440 in soil and in the rhizosphere of plants under greenhouse and environmental conditions\", Soil Biol. Biochem., vol., 32(3), pp. 315–321, March 2000.","M. Fernández, J. L. Niqui-Arroyo, S. Conde, J. L. Ramos, and E. Duque, \"Enhanced tolerance of naphtalene and enhanced rhizoremediation performance for Pseudomonas putida KT2440 via the NAH7 catabolic plasmid\", Appl. Environ. Microbiol., vol., 78(15), pp. 5104–5110, August 2012.","M. A. Matilla, J. L. Ramos, P. H. A. M. Baker, R. Doombos, D. V. Badri, J. M. Vivanco, et al., \"Pseudomonas putida KT2440 causes induced systemic resistance and changes in Arabidopsis root exudation\", Enriron. Microbiol. Reports, vol., 2(3), pp. 381–388, June 2010.","C. Planchamp, G. Glauser, and B. Mauch-Mani, \"Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants\", Front. Plant Sci., vol., 5(179), pp. 1–10, January 2015.","D. Molina-Romero, M. R. Bustillos-Cristales, O. Rodríguez-Andrade, Y. E. Morales-García, Y. Santiago-Saenz, M. Castañeda-Lucio et al., \"Mecanismos de fitoestimulación por rizobacterias, aislamientos en América y potencial biotecnológico\", Biológicas, vol. 17(2), pp. 24–34, December 2015.","Y. E. Morales-García, D. Juárez-Hernández, C. Aragón-Hernández, M. A. Mascarúa-Esparza, M. R. Bustillos-Cristales, L. E. Fuentes-Ramírez, et al., \"Growth response of maize plantlets inoculated with Enterobacter sp. as a model for alternative agriculture\", Rev. Argent. Microbiol., vol. 43(4), p.p. 287–293, December 2011.","J. Muñoz-Rojas, P. Bernal, E. Duque, P. Godoy, A. Segura, and J. L. Ramos, \"Involvement of cyclopropane fatty acids in the response of Pseudomonas putida KT2440 to freeze-drying\", Appl. Environ. Microbiol., vol., 72(1), pp. 472–477, January 2006.","A. Corral-Lugo, Y. E. Morales-García, L. A. Pazos-Rojas, A. Ramírez-Valverde, R. D. Martínez-Contreras, and J. Muñoz-Rojas. Quantification of cultivable bacteria by the \"Massive Stamping Drop Plate\" method. Rev. Colomb Biotecnol., vol., 14(2), pp. 173-182, December 2012.","O. Rodríguez-Andrade, L. E. Fuentes-Ramírez, Y. E. Morales-García, D- Molina-Romero, M. R. Bustillos-Cristales, R. D. Martínez-Contreras, et al., \"The decrease in the population of Gluconacetobacter diazotrophicus in sugarcane after nitrogen fertilization is related to plant physiology in split root experiments\", Rev. Argent. Microbiol., vol. 47(4), pp. 335–343. December 2015.","R. Fernández-Suárez, L. A. Morales-Chávez, and A. Gálvez-Mariscal, \"Importance of Mexican maize landraces in the national diet. An essential review\", Rev. Fitotec. Mex., vol., 36(3), pp. 275–283, October 2013.","L. Lopez-Martínez, R. M. Oliart-Ros, G. Valerio-Alfaro, C.-H. Lee, K. L. Parkin, and H. S. García, \"Antioxidant activity, phenolic compounds and anthocyanins content of eighteen strains of Mexican maize\", LWT Food Sci. Technol., vol., 42(6), pp. 1187–1192, July 2009.","Y. Salinas-Moreno, C. García-Salinas, B. Coutiño-Estrada, and V. A. Vidal-Martínez, \"Variabilidad en contenido y tipo de antocianinas en granos de color azul/morado de poblaciones mexicanas de maíz\", Rev. Fototec. Mex., 36(3-A), pp. 285–294. October 2013.","A. Von Felten, G. Défago, and M. Maurhofer, \"Quantification of Pseudomonas fluorescens strains F113, CHA0 and Pf153 in the rhizosphere of maize by strain-specific real-time PCR unaffected by the variability of DNA extraction efficiency\", J. Microbiol. Methods, vol., 81(2), pp. 108–115, May 2010.","S. Saia, V. Rappa, P. Ruisi, M. Abenavoli, F. Sunseri, D. Giambalvo, et al., \"Soil inoculation with symbiotic microorganisms promotes plant growth and nutrient transporter genes expression in durum wheat\", Front. Plant Sci., vol., 6, pp. 1–10, October 2015.","X. Sheng, L. Sun, Z. Huang, L. He, W. Zhang, and Z. Chen, \"Promotion of growth and Cu accumulation of bio-energy crop (Zea mays) by bacteria: implications for energy plant biomass production and phytoremediation\", J. Environ. Manage, vol., 103, pp. 58–64, July 2012.","I. Ahmad, M. J. Akhtar, H. N. Asghar, U. Ghafoor, and M. Shahid, \"Differential effects of plant growth-promoting rhizobacteria on maize growth and cadmium uptake\", J. Plant Growth Regul., vol., 35(2), pp. 303–315, June 2016.","B. R. Glick, \"Plant growth-promoting bacteria: mechanisms and applications\", Scientifica, vol., 2012(ID963401), pp. 1–15, September 2012.","M. A. Molina, J. L. Ramos, and M. Espinosa-Urgel, \"A two-partner secretion system is involved in seed and root colonization and iron uptake by Pseudomonas putida KT2440\", Environ. Microbiol., vol., 8(4), pp. 639–647, April 2006.","A. H. A. Parret, and R. De Mot, \"Bacteria killing their own kind: novel bacteriocins of Pseudomonas and other ɣ-proteobacteria\", Trends Microbiol., vol., 10(3), pp. 107–112, March 2002.","P. Bernal, L. P. Allsopp, A. Filloux, and M. A. Llamas, \"The Pseudomonas putida T6SS is a plant warden against phytopatogens\", ISME J., vol., 3, pp. 1–16, January 2017.","M. A. Matilla, P. Pizarro-Tobias, A. Roca, M. Fernández, E. Duque, L. Molina, et al., \"Complete genome of the plant growth-promoting rhizobacterium Pseudomonas putida BIRD-1\", J. Bacteriol., vol., 193(5), pp. 1290, March 2011.","A. Pandey, P. Trivedi, B. Kumar, and L. M. S. Palni, \"Characterization of phosphate solubilizing and antagonistic strain of Pseudomonas putida (Bo) isolated from a sub-alpine location in the Indian Central Himalaya\", Curr. Microbiol., vol., 53(2), pp. 102–107, August 2006.","M. I. Ramos-González, M. J. Campos, and J. L. Ramos, \"Analysis of Pseudomonas putida KT2440 gene expression in the maize rhizosphere: in vitro expression technology capture and identification of root-activated promoters\", J. Bacteriol., vol., 187(12), pp. 4033–4041, June 2005.","L. Yuste, A. B. Hervás, I. Canosa, R. Tobes, J. I. Jiménez, J. Nogales, et al., \"Growth phase-dependent expression of the Pseudomonas putida KT2440 transcriptional machinery analysed with a genome-wide DNA microarray\", Env. Microbiol., vol., 8(1), pp. 165-177, January 2006."]}
- Published
- 2017
- Full Text
- View/download PDF
12. Batch and fed-batch cultures for the treatment of whey with mixed yeast cultures
- Author
-
Cristiani-Urbina, Eliseo, Netzahuatl-Muñoz, Alma Rosa, Manriquez-Rojas, Francisco J, Juárez-Ramı́rez, Cleotilde, Ruiz-Ordaz, Nora, and Galı́ndez-Mayer, Juvencio
- Published
- 2000
- Full Text
- View/download PDF
13. Corncob as an effective, eco-friendly, and economic biosorbent for removing the azo dye Direct Yellow 27 from aqueous solutions
- Author
-
Berber-Villamar, Nayda Karina, primary, Netzahuatl-Muñoz, Alma Rosa, additional, Morales-Barrera, Liliana, additional, Chávez-Camarillo, Griselda Ma., additional, Flores-Ortiz, César Mateo, additional, and Cristiani-Urbina, Eliseo, additional
- Published
- 2018
- Full Text
- View/download PDF
14. Adsorptive Removal of Acid Blue 80 Dye from Aqueous Solutions by Cu-TiO2
- Author
-
Puentes-Cárdenas, Ingrid Johanna, primary, Chávez-Camarillo, Griselda Ma., additional, Flores-Ortiz, César Mateo, additional, Cristiani-Urbina, María del Carmen, additional, Netzahuatl-Muñoz, Alma Rosa, additional, Salcedo-Reyes, Juan Carlos, additional, Pedroza-Rodríguez, Aura Marina, additional, and Cristiani-Urbina, Eliseo, additional
- Published
- 2016
- Full Text
- View/download PDF
15. Estimulación del crecimiento de Echinocactus platyacanthus con bacterias PGPR
- Author
-
Alatorre-Cruz, Julia María, Bustillos-Cristales María del Rocío, Gutiérrez Sánchez, Héctor, Morales-García, Yolanda Elizabeth, Molina-Romero, Dalia, Netzahuatl-Muñoz, Alma Rosa, and Muñoz-Rojas, Jesús
- Subjects
E. plathyacanthus ,Tehuacán ,biósfera ,bacterias benéficas ,tolerancia a la desecación - Abstract
Echinocactus platyacanthus es una cactácea globosa, endémica de México, forma parte de la flora de la Reserva de la Biósfera "Tehuacán-Cuicatlán". Actualmente este cactus se encuentra amenazado debido a sus diversos usos, entre los cuales destaca la elaboración de un dulce. El crecimiento de la planta es muy lento, puede llegar a alcanzar una edad de 200 a 500 años, por este motivo es importante plantear estrategias que aseguren su desarrollo y supervivencia. Una alternativa podría ser el uso de bacterias benéficas para el cactus, por esta razón en el trabajo presente se exploró la capacidad de 10 cepas bacterianas para estimular el crecimiento de E. platyacanthus bajo condiciones de cámara de cultivo. Cinco de las 10 cepas exploradas resultaron efectivas para otorgar incrementos de altura y diámetro del cactus en referencia a controles, por lo que estas cepas podrían acoplarse a E. platyacanthus para asegurar su crecimiento en su ambiente natural., {"references":["Bashan, Y., Puente, M.E., Salazar, B., de Bashan, L.E., Bacilio, M., Hernandez, J.P., et al. (2005) Reforestacion de tierras erosionadas en el desierto: El papel de las bacterias promotoras de crecimiento en plantas y la materia orgánica. Suelos Ecuatoriales 35: 70–77.","Bashan, Y., Rojas, A., and Puente, M.E. (1999) Improved establishment and development of three cactus species inoculated with Azospirillum brasilense transplanted into disturbed urban desert soil. Can. J. Microbiol. 45: 441–451.","Beneduzi, A., Ambrosini, A., and Passaglia, L.M.P. (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet. Mol. Biol. 35: 1044– 1051.","Bustillos-Cristales, R., Fuentes-Ramírez, L.E., Muñoz-Rojas, J., Sánchez-Saavedra, A., Téllez-Torres, G.J., and Florencia-Torres, L.E. (2007) Promoción de crecimiento de cactáceas en riesgo , por bacterias metilotróficas. In, XII Congreso Nacional de Bioingeniería y Biotecnología., p. 1.","Caballero-Mellado, J. (2001) El género Azospirillum. In, Martínez-Romero,E. and MartínezRomero,J. (eds), Microbios en Línea. Universidad Autónoma de México, Cuernavaca, México, pp. 1–10.","del Castillo, R.F. and Trujillo, S. (1991) Ethnobotany of Ferocactus histrix and Echinocactus platyacanthus (Cactaceae) in the semiarid central Mexico: past, present and future. Econ. Bot. 45: 495–502.","Corral-Lugo, A., Morales-García, Y.E., Pazos-Rojas, L.A., Ramírez-Valverde, A., Martínez-Contreras, R.D., and Muñoz-Rojas, J. (2012) Cuantificación de bacterias cultivables mediante el método de \"goteo en placa por sellado (o estampado) masivo.\" Rev. Colomb. Biotecnol. 14: 147–156.","Jiménez-Sierra, C., Mandujano, M.C., and Eguiarte, L.E. (2007) Are populations of the candy barrel cactus (Echinocactus platyacanthus) in the desert of Tehuacán, Mexico at risk? Population projection matrix and life table response analysis. Biol. Conserv. 135: 278–292.","Morales-García, Y.E., Juárez-Hernández, D., Aragón-Hernández, C., Mascarua-Esparza, M.A., Bustillos-Cristales, M.R., Fuentes-Ramírez, L.E., et al. (2011) Growth response of maize plantlets inoculated with Enterobacter spp., as a model for alternative agriculture. Rev. Argent. Microbiol. 43: 287–293.","Segura, A., Rodríguez-Conde, S., Ramos, C., and Ramos, J.L. (2009) Bacterial responses and interactions with plants during rhizoremediation. Microb. Biotechnol. 2: 452–464."]}
- Published
- 2013
- Full Text
- View/download PDF
16. Chromium Biosorption from Cr(VI) Aqueous Solutions by Cupressus lusitanica Bark: Kinetics, Equilibrium and Thermodynamic Studies
- Author
-
Netzahuatl-Muñoz, Alma Rosa, primary, Cristiani-Urbina, María del Carmen, additional, and Cristiani-Urbina, Eliseo, additional
- Published
- 2015
- Full Text
- View/download PDF
17. Adsorptive Removal of Acid Blue 80 Dye from Aqueous Solutions by Cu-TiO2.
- Author
-
Puentes-Cárdenas, Ingrid Johanna, Chávez-Camarillo, Griselda Ma., Flores-Ortiz, César Mateo, Cristiani-Urbina, María del Carmen, Netzahuatl-Muñoz, Alma Rosa, Salcedo-Reyes, Juan Carlos, Pedroza-Rodríguez, Aura Marina, and Cristiani-Urbina, Eliseo
- Subjects
DYES & dyeing ,AQUEOUS solutions ,COPPER compounds ,TITANIUM dioxide ,ADSORPTION (Chemistry) ,EQUILIBRIUM ,THERMODYNAMICS - Abstract
The adsorption performance of a Cu-TiO
2 composite for removing acid blue 80 (AB80) dye from aqueous solutions was investigated in terms of kinetics, equilibrium, and thermodynamics. The effect of operating variables, such as solution pH, initial dye concentration, contact time, and temperature, on AB80 adsorption was studied in batch experiments. AB80 adsorption increased with increasing contact time, initial dye concentration, and temperature and with decreasing solution pH. Modeling of adsorption kinetics showed good agreement of experimental data with the pseudo-second-order kinetics model. The experimental equilibrium data for AB80 adsorption were evaluated for compliance with different two-parameter, three-parameter, and four-parameter isotherm models. The Langmuir isotherm model best described the AB80 adsorption equilibrium data. The thermodynamic data revealed that the AB80 adsorption process was endothermic and nonspontaneous. Kinetics, equilibrium, and thermodynamic results indicate that Cu-TiO2 adsorbs AB80 by a chemical sorption reaction. [ABSTRACT FROM AUTHOR]- Published
- 2016
- Full Text
- View/download PDF
18. Kinetic Study of the Effect of pH on Hexavalent and Trivalent Chromium Removal from Aqueous Solution by Cupressus lusitanica Bark
- Author
-
Netzahuatl-Muñoz, Alma Rosa, primary, Guillén-Jiménez, Flor de María, additional, Chávez-Gómez, Benjamín, additional, Villegas-Garrido, Thelma Lilia, additional, and Cristiani-Urbina, Eliseo, additional
- Published
- 2011
- Full Text
- View/download PDF
19. HEXAVALENT CHROMIUM REDUCTION AND CHROMIUM BIOSORPTION BY Prunus serotina BARK.
- Author
-
Netzahuatl-Muñoz, Alma Rosa, Morales-Barrera, Liliana, Cristiani-Urbina, María del Carmen, and Cristiani-Urbina, Eliseo
- Abstract
The capacity of Prunus serotina bark lo remove hexa-valent chromium [Cr(VI)] and total chromium from acidic aqueous solutions was investigated. P. serotina bark exhibited high Cr(VI) removal capacity (93.61 mg g
-1 ) as well as total chromium removal capacity (69.93 mg g-1 ). The mechanism of Cr(VI) removal by P. serotina bark implies two simultaneous processes: 1) the reduction of Cr(VI) to Cr(IU) in the presence of P. serotina bark in an aqueous acidic solution, and 2) the biosorption of chromium ions. The kinetic model that satisfactorily described the chromium biosorption process from the Cr(VI) solution was the pseudo second-order model. The experimental results suggest that P. serotina bark biosorbed chromium ions predominantly by a chemical sorption phenomenon. The results of this work underline that P. serotina bark may be used as an effective and low-cost biomaterial for the removal of both Cr(VI) and total chromium from polluted water and wastewater. [ABSTRACT FROM AUTHOR]- Published
- 2012
20. EVALUACIÓN DE LA CÁSCARA DEL AGUACATE PARA LA REMOCIÓN DE CROMO HEXAVALENTE Y CROMO TOTAL DE SOLUCIONES ACUOSAS.
- Author
-
Netzahuatl-Muñoz, Alma Rosa, Pineda-Camacho, Gabriela, Barragán-Huerta, Blanca Estela, and Cristiani-Urbina, Eliseo
- Subjects
- *
CHEMICAL kinetics , *COMPOSITION of avocados , *HEXAVALENT chromium , *AQUEOUS solutions , *ANALYTICAL chemistry , *CHEMISTRY experiments - Abstract
The main purpose of this work was to evaluate the hexavalent chromium [Cr(VI)] and total chromium removal from aqueous solutions by the Hass avocado shell. It was found that the avocado shell was capable of decreasing the Cr(VI) and total chromium concentrations quickly in the first 24 h of contact time; thereafter, the concentrations continued decreasing but at a lower rate. At all tested contact times, the Cr(VI) removal capacity was higher than the total chromium removal capacity, which suggest that the avocado sell reduced part of the Cr(VI) initially present in the aqueous solution to trivalent chromium [Cr(III)]. The highest Cr(VI) and total chromium removal capacities were reached at 120 h of contact time, with values of 101.81 and 63.88 mg g-1, respectively. The opposite behavior was observed with the volumetric rates of Cr(VI) and total chromium removal. The biosorption system of chromium ions using avocado shell as biosorbent followed the pseudo-second order kinetic model, which suggests that the rate-limiting step was a chemical sorption which involved valance forces through the sharing or exchange of electrons between avocado shell biomass and chromium ions, complexation, coordination and/or chelation. Based on the results, it is concluded that avocado shell could be potentially useful for the removal of Cr(VI) and total chromium from aqueous solutions. [ABSTRACT FROM AUTHOR]
- Published
- 2010
21. REMOCIÓN DE CROMO HEXAVALENTE Y CROMO TOTAL POR LA CORTEZA DE Pyrus communis.
- Author
-
Netzahuatl-Muñoz, Alma Rosa, Pineda-Camacho, Gabriela, Barragán-Huerta, Blanca Estela, and Cristiani-Urbina, Eliseo
- Subjects
- *
CHEMICAL kinetics , *HEXAVALENT chromium , *ANALYTICAL chemistry , *AQUEOUS solutions , *PEARS , *HEAVY metal toxicology - Abstract
The main aim of this work was to evaluate the hexavalent chromium [Cr(VI)] and total chromium removal by Pyrus communis bark. It was found that during the first 24 h of contact the Pyrus communis bark was capable of diminishing the concentration of Cr(VI) and total chromium from the initial 102 mg l-1 to 20.43 and 39.63 mg l-1, respectively. Subsequently, chromium concentrations continued to diminish slowly until, after 120 h, they reached values of 0.91 mg Cr(VI) l-1 and 31.26 mg total chromium l-1. Along the experimental time, trivalent chromium [Cr(III)] was detected in the aqueous solution which caused that residual total chromium concentration was higher than residual Cr(VI) concentration. These results indicate that Pyrus communis bark reduced at least some of the Cr(VI) initially added to the aqueous solution to Cr(III). Cr(VI) and total chromium removal capacities increased progressively as the contact time increased, reaching capacity values of 101.09 and 70.74 mg g-1, respectively, at 120 h of contact time. In contrast, volumetric rates of Cr(VI) and total chromium removal decreased with the increasing of contact time. Pseudo-second order model described the chromium biosorption kinetics by Pyrus communis bark, which suggests that the kinetic mechanism of total chromium removal is chemisorption. It is concluded that Pyrus communis bark removed chromium from aqueous solutions by means of two different mechanisms: bioreduction and biosorption. [ABSTRACT FROM AUTHOR]
- Published
- 2010
22. REMOVAL OF HEXAVALENT AND TOTAL CHROMIUM FROM AQUEOUS SOLUTIONS BY Schinus molle BARK.
- Author
-
Netzahuatl-Muñoz, Alma Rosa, Aranda-García, Erick, del Carmen Cristiani-Urbina, Maria, Barragán-Huerta, Blanca Estela, Villegas-Garrido, Thelma Lilia, and Cristiani-Urbina, Eliseo
- Abstract
The main purpose of this work was to evaluate the potential of Schinus molle bark to remove hexavalent chromium [Cr(VI)] and total chromium from aqueous solutions. Results showed that Schinus molle bark removed Cr(VI) by two different mechanisms: chromium biosorption and bioreduction of Cr(VI) to Cr(III). The capacity for removing Cr(VI) and total chromium gradually increased as the contact time proceeded, reaching values of 97.56 and 73.18 mg g' respectively, after 120 h. The opposite behavior was observed concerning the volumetric rates of Cr(VI) and total chromium removal. The pseudo-second order model adequately described the kinetic process of chromium biosorption by Schinus molle bark, which suggests that this process chiefly occurs as a result of chemisorption. [ABSTRACT FROM AUTHOR]
- Published
- 2010
23. REMOCIÓN DE CROMO HEXAVALENTE Y CROMO TOTAL POR LA CORTEZA DE Pyrus communis.
- Author
-
Netzahuatl-Muñoz, Alma Rosa, Pineda-Camacho, Gabriela, Barragán-Huerta, Blanca Estela, and Cristiani-Urbina, Eliseo
- Subjects
- *
CHROMIUM removal (Water purification) , *HEXAVALENT chromium , *PEAR research , *UTILIZATION of bark , *ADSORPTION (Chemistry) , *BIOCHEMICAL research - Abstract
The main aim of this work was to evaluate the hexavalent chromium [Cr(VI)] and total chromium removal by Pyrus communis bark. It was found that during the first 24 h of contact the Pyrus communis bark was capable of diminishing the concentration of Cr(VI) and total chromium from the initial 102 mg l-1 to 20.43 and 39.63 mg l-1, respectively. Subsequently, chromium concentrations continued to diminish slowly until, after 120 h, they reached values of 0.91 mg Cr(VI) l-1 and 31.26 mg total chromium l-1. Along the experimental time, trivalent chromium [Cr(III)] was detected in the aqueous solution which caused that residual total chromium concentration was higher than residual Cr(VI) concentration. These results indicate that Pyrus communis bark reduced at least some of the Cr(VI) initially added to the aqueous solution to Cr(III). Cr(VI) and total chromium removal capacities increased progressively as the contact time increased, reaching capacity values of 101.09 and 70.74 mg g-1, respectively, at 120 h of contact time. In contrast, volumetric rates of Cr(VI) and total chromium removal decreased with the increasing of contact time. Pseudo-second order model described the chromium biosorption kinetics by Pyrus communis bark, which suggests that the kinetic mechanism of total chromium removal is chemisorption. It is concluded that Pyrus communis bark removed chromium from aqueous solutions by means of two different mechanisms: bioreduction and biosorption. [ABSTRACT FROM AUTHOR]
- Published
- 2009
24. EVALUACIÓN DE LA CÁSCARA DEL AGUACATE PARA LA REMOCIÓN DE CROMO HEXAVALENTE Y CROMO TOTAL DE SOLUCIONES ACUOSAS.
- Author
-
Netzahuatl-Muñoz, Alma Rosa, Pineda-Camacho, Gabriela, Barragán-Huerta, Blanca Estela, and Cristiani-Urbina, Eliseo
- Subjects
- *
AVOCADO , *HEXAVALENT chromium , *AQUEOUS solutions , *HEXAVALENT chromium & the environment , *ADSORPTIVE separation - Abstract
The main purpose of this work was to evaluate the hexavalent chromium [Cr(VI)] and total chromium removal from aqueous solutions by the Hass avocado shell. It was found that the avocado shell was capable of decreasing the Cr(VI) and total chromium concentrations quickly in the first 24 h of contact time; thereafter, the concentrations continued decreasing but at a lower rate. At all tested contact times, the Cr(VI) removal capacity was higher than the total chromium removal capacity, which suggest that the avocado sell reduced part of the Cr(VI) initially present in the aqueous solution to trivalent chromium [Cr(III)]. The highest Cr(VI) and total chromium removal capacities were reached at 120 h of contact time, with values of 101.81 and 63.88 mg g-1, respectively. The opposite behavior was observed with the volumetric rates of Cr(VI) and total chromium removal. The biosorption system of chromium ions using avocado shell as biosorbent followed the pseudo-second order kinetic model, which suggests that the rate-limiting step was a chemical sorption which involved valance forces through the sharing or exchange of electrons between avocado shell biomass and chromium ions, complexation, coordination and/or chelation. Based on the results, it is concluded that avocado shell could be potentially useful for the removal of Cr(VI) and total chromium from aqueous solutions. [ABSTRACT FROM AUTHOR]
- Published
- 2009
25. Hexavalent Chromium Removal by Candida sp. in a Concentric Draft-Tube Airlift Bioreactor.
- Author
-
de María Guillén-Jiménez, Flor, Netzahuatl-Muñoz, Alma Rosa, Morales-Barrera, Liliana, and Cristiani-Urbina, Eliseo
- Subjects
HEXAVALENT chromium & the environment ,CANDIDA ,BIOREACTORS ,VOLUMETRIC analysis ,INDUSTRIAL waste purification ,AERATED package treatment systems ,CELL growth ,YEAST ,BIOMASS - Abstract
The main purpose of this work was to conduct a kinetic study on cell growth and hexavalent chromium [Cr(VI)] removal by Candida sp. FGSFEP in a concentric draft-tube airlift bioreactor. The yeast was batch-cultivated in a 5.2-l airlift bioreactor containing culture medium with an initial Cr(VI) concentration of 1.5 mM. The maximum specific growth rate of Candida sp. FGSFEP in the airlift bioreactor was 0.0244 h
−1 , which was 71.83% higher than that obtained in flasks. The yeast strain was capable of reducing 1.5 mM Cr(VI) completely and exhibited a high volumetric rate [1.64 mg Cr(VI) l−1 h−1 ], specific rate [0.95 mg Cr(VI) g−1 biomass h−1 ] and capacity [44.38 mg Cr(VI) g−1 biomass] of Cr(VI) reduction in the airlift bioreactor, with values higher than those obtained in flasks. Therefore, culture of Candida sp. FGSFEP in a concentric draft-tube airlift bioreactor could be a promising technological alternative for the aerobic treatment of Cr(VI)-contaminated industrial effluents. [ABSTRACT FROM AUTHOR]- Published
- 2009
- Full Text
- View/download PDF
26. Adsorptive Removal of Acid Blue 80 Dye from Aqueous Solutions by Cu-TiO2.
- Author
-
Puentes-Cárdenas, Ingrid Johanna, Chávez-Camarillo, Griselda Ma., Flores-Ortiz, César Mateo, Cristiani-Urbina, María del Carmen, Netzahuatl-Muñoz, Alma Rosa, Salcedo-Reyes, Juan Carlos, Pedroza-Rodríguez, Aura Marina, and Cristiani-Urbina, Eliseo
- Subjects
- *
DYES & dyeing , *AQUEOUS solutions , *COPPER compounds , *TITANIUM dioxide , *ADSORPTION (Chemistry) , *EQUILIBRIUM , *THERMODYNAMICS - Abstract
The adsorption performance of a Cu-TiO2 composite for removing acid blue 80 (AB80) dye from aqueous solutions was investigated in terms of kinetics, equilibrium, and thermodynamics. The effect of operating variables, such as solution pH, initial dye concentration, contact time, and temperature, on AB80 adsorption was studied in batch experiments. AB80 adsorption increased with increasing contact time, initial dye concentration, and temperature and with decreasing solution pH. Modeling of adsorption kinetics showed good agreement of experimental data with the pseudo-second-order kinetics model. The experimental equilibrium data for AB80 adsorption were evaluated for compliance with different two-parameter, three-parameter, and four-parameter isotherm models. The Langmuir isotherm model best described the AB80 adsorption equilibrium data. The thermodynamic data revealed that the AB80 adsorption process was endothermic and nonspontaneous. Kinetics, equilibrium, and thermodynamic results indicate that Cu-TiO2 adsorbs AB80 by a chemical sorption reaction. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.