101 results on '"Nespolo RF"'
Search Results
2. Local adaptation of Dromiciops marsupials (Microbiotheriidae) from southern South America: Implications for species management facing climate change.
- Author
-
Quintero-Galvis JF, Saenz-Agudelo P, D'Elía G, and Nespolo RF
- Abstract
The two species of the microbiotheriid marsupial genus Dromiciops ( Dromiciops bozinovici : "Panchos's monito del monte" and Dromiciops gliroides : "monito del monte") exhibit a marked latitudinal genetic differentiation. Nevertheless, it is unclear whether this differentiation results from neutral processes or can be explained, to some extent, by local adaptation to different environmental conditions. Here, we used an SNP panel gathered by Rad-seq and searched for footprints of local adaptation (putative loci under selection) by exploring genetic associations with environmental variables in the two species of Dromiciops in Chilean and Argentinean populations. We applied three methods for detecting outlier SNPs and two genotype-environment associations approaches to quantify associations between allelic frequencies and environmental variables. Both species display strong genetic structure. D . bozinovici exhibited three distinct genetic groups, marking the first report of such structuring in this species using SNPs. In contrast, D . gliroides displayed four genetic clusters, consistent with previous studies. Both species exhibited an association of their genetic structure with environmental variables. D . bozinovici exhibited significant associations of allelic frequencies with elevation, precipitation during the warmest periods, and seasonality in the thermal regime. For D . gliroides , genetic variation appeared to be associated with more variables than D . bozinovici , including precipitation and temperature-related variables, isothermality, and elevation. All the outlier SNPs were mapped to the D . gliroides reference genome to explore if they fell within functionally known genes. These results represent a necessary first step toward identifying the genome regions that harbor genes associated with climate adaptations in Dromiciops . Notably, we identified genes involved in various functions, including carbohydrate synthesis (ALG8), muscle and neuronal regulation (MEF2D), and stress responses (PTGES3). Ultimately, this study contributes valuable insights that can inform targeted conservation strategies aimed at preserving the genetic diversity of Dromiciops in the face of environmental challenges., Competing Interests: The authors declare no competing interests., (© 2024 The Author(s). Ecology and Evolution published by John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
3. An integrative taxonomy approach reveals Saccharomyces chiloensis sp. nov. as a newly discovered species from Coastal Patagonia.
- Author
-
Peña TA, Villarreal P, Agier N, De Chiara M, Barría T, Urbina K, Villarroel CA, Santos ARO, Rosa CA, Nespolo RF, Liti G, Fischer G, and Cubillos FA
- Subjects
- Whole Genome Sequencing, Reproductive Isolation, Phylogeny, Saccharomyces genetics, Saccharomyces classification
- Abstract
Species delineation in microorganisms is challenging due to the limited markers available for accurate species assignment. Here, we applied an integrative taxonomy approach, combining extensive sampling, whole-genome sequence-based classification, phenotypic profiling, and assessment of interspecific reproductive isolation. Our work reveals the presence of a distinct Saccharomyces lineage in Nothofagus forests of coastal Patagonia. This lineage, designated Saccharomyces chiloensis sp. nov., exhibits 7% genetic divergence from its sister species S. uvarum, as revealed by whole-genome sequencing and population analyses. The South America-C (SA-C) coastal Patagonia population forms a unique clade closely related to a previously described divergent S. uvarum population from Oceania (AUS, found in Australia and New Zealand). Our species reclassification is supported by a low Ortho Average Nucleotide Identity (OANI) of 93% in SA-C and AUS relative to S. uvarum, which falls below the suggested species delineation threshold of 95%, indicating an independent evolutionary lineage. Hybrid spore viability assessment provided compelling evidence that SA-C and AUS are reproductively isolated from S. uvarum. In addition, we found unique structural variants between S. chiloensis sp. nov. lineages, including large-scale chromosomal translocations and inversions, together with a distinct phenotypic profile, emphasizing their intraspecies genetic distinctiveness. We suggest that S. chiloensis sp. nov diverged from S. uvarum in allopatry due to glaciation, followed by post-glacial dispersal, resulting in distinct lineages on opposite sides of the Pacific Ocean. The discovery of S. chiloensis sp. nov. illustrates the uniqueness of Patagonia's coastal biodiversity and underscores the importance of adopting an integrative taxonomic approach in species delineation to unveil cryptic microbial species. The holotype of S. chiloensis sp. nov. is CBS 18620T., Competing Interests: The authors have declared that no competing interests exist., (Copyright: © 2024 Peña et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2024
- Full Text
- View/download PDF
4. Wild Patagonian yeast improve the evolutionary potential of novel interspecific hybrid strains for lager brewing.
- Author
-
Molinet J, Navarrete JP, Villarroel CA, Villarreal P, Sandoval FI, Nespolo RF, Stelkens R, and Cubillos FA
- Subjects
- Saccharomyces genetics, Saccharomyces metabolism, Ethanol metabolism, Mitochondria genetics, Mitochondria metabolism, Genome, Fungal, Evolution, Molecular, Genetic Variation, Maltose metabolism, Mutation, Beer microbiology, Fermentation genetics, Saccharomyces cerevisiae genetics, Saccharomyces cerevisiae metabolism, Hybridization, Genetic
- Abstract
Lager yeasts are limited to a few strains worldwide, imposing restrictions on flavour and aroma diversity and hindering our understanding of the complex evolutionary mechanisms during yeast domestication. The recent finding of diverse S. eubayanus lineages from Patagonia offers potential for generating new lager yeasts with different flavour profiles. Here, we leverage the natural genetic diversity of S. eubayanus and expand the lager yeast repertoire by including three distinct Patagonian S. eubayanus lineages. We used experimental evolution and selection on desirable traits to enhance the fermentation profiles of novel S. cerevisiae x S. eubayanus hybrids. Our analyses reveal an intricate interplay of pre-existing diversity, selection on species-specific mitochondria, de-novo mutations, and gene copy variations in sugar metabolism genes, resulting in high ethanol production and unique aroma profiles. Hybrids with S. eubayanus mitochondria exhibited greater evolutionary potential and superior fitness post-evolution, analogous to commercial lager hybrids. Using genome-wide screens of the parental subgenomes, we identified genetic changes in IRA2, IMA1, and MALX genes that influence maltose metabolism, and increase glycolytic flux and sugar consumption in the evolved hybrids. Functional validation and transcriptome analyses confirmed increased maltose-related gene expression, influencing greater maltotriose consumption in evolved hybrids. This study demonstrates the potential for generating industrially viable lager yeast hybrids from wild Patagonian strains. Our hybridization, evolution, and mitochondrial selection approach produced hybrids with high fermentation capacity and expands lager beer brewing options., Competing Interests: The authors have declared that no competing interests exist., (Copyright: © 2024 Molinet et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2024
- Full Text
- View/download PDF
5. Climate change and population persistence in a hibernating marsupial.
- Author
-
Nespolo RF, Quintero-Galvis JF, Fontúrbel FE, Cubillos FA, Vianna J, Moreno-Meynard P, Rezende EL, and Bozinovic F
- Subjects
- Animals, Population Dynamics, Models, Biological, Ecosystem, Energy Metabolism, Climate Change, Marsupialia physiology, Hibernation, Seasons
- Abstract
Climate change has physiological consequences on organisms, ecosystems and human societies, surpassing the pace of organismal adaptation. Hibernating mammals are particularly vulnerable as winter survival is determined by short-term physiological changes triggered by temperature. In these animals, winter temperatures cannot surpass a certain threshold, above which hibernators arouse from torpor, increasing several fold their energy needs when food is unavailable. Here, we parameterized a numerical model predicting energy consumption in heterothermic species and modelled winter survival at different climate change scenarios. As a model species, we used the arboreal marsupial monito del monte (genus Dromiciops ), which is recognized as one of the few South American hibernators. We modelled four climate change scenarios (from optimistic to pessimistic) based on IPCC projections, predicting that northern and coastal populations ( Dromiciops bozinovici ) will decline because the minimum number of cold days needed to survive the winter will not be attained. These populations are also the most affected by habitat fragmentation and changes in land use. Conversely, Andean and other highland populations, in cooler environments, are predicted to persist and thrive. Given the widespread presence of hibernating mammals around the world, models based on simple physiological parameters, such as this one, are becoming essential for predicting species responses to warming in the short term.
- Published
- 2024
- Full Text
- View/download PDF
6. Domestication signatures in the non-conventional yeast Lachancea cidri .
- Author
-
Villarreal P, O'Donnell S, Agier N, Muñoz-Guzman F, Benavides-Parra J, Urbina K, Peña TA, Solomon M, Nespolo RF, Fischer G, Varela C, and Cubillos FA
- Subjects
- Humans, Domestication, Alcoholic Beverages, Translocation, Genetic, Saccharomyces cerevisiae genetics, Saccharomycetales genetics
- Abstract
Evaluating domestication signatures beyond model organisms is essential for a thorough understanding of the genotype-phenotype relationship in wild and human-related environments. Structural variations (SVs) can significantly impact phenotypes playing an important role in the physiological adaptation of species to different niches, including during domestication. A detailed characterization of the fitness consequences of these genomic rearrangements, however, is still limited in non-model systems, largely due to the paucity of direct comparisons between domesticated and wild isolates. Here, we used a combination of sequencing strategies to explore major genomic rearrangements in a Lachancea cidri yeast strain isolated from cider (CBS2950) and compared them to those in eight wild isolates from primary forests. Genomic analysis revealed dozens of SVs, including a large reciprocal translocation (~16 kb and 500 kb) present in the cider strain, but absent from all wild strains. Interestingly, the number of SVs was higher relative to single-nucleotide polymorphisms in the cider strain, suggesting a significant role in the strain's phenotypic variation. The set of SVs identified directly impacts dozens of genes and likely underpins the greater fermentation performance in the L. cidri CBS2950. In addition, the large reciprocal translocation affects a proline permease ( PUT4 ) regulatory region, resulting in higher PUT4 transcript levels, which agrees with higher ethanol tolerance, improved cell growth when using proline, and higher amino acid consumption during fermentation. These results suggest that SVs are responsible for the rapid physiological adaptation of yeast to a human-related environment and demonstrate the key contribution of SVs in adaptive fermentative traits in non-model species.IMPORTANCEThe exploration of domestication signatures associated with human-related environments has predominantly focused on studies conducted on model organisms, such as Saccharomyces cerevisiae , overlooking the potential for comparisons across other non-Saccharomyces species. In our research, employing a combination of long- and short-read data, we found domestication signatures in Lachancea cidri , a non-model species recently isolated from fermentative environments in cider in France. The significance of our study lies in the identification of large array of major genomic rearrangements in a cider strain compared to wild isolates, which underly several fermentative traits. These domestication signatures result from structural variants, which are likely responsible for the phenotypic differences between strains, providing a rapid path of adaptation to human-related environments., Competing Interests: The authors declare no conflict of interest.
- Published
- 2024
- Full Text
- View/download PDF
7. Modeling heterothermic fitness landscapes in a marsupial hibernator using changes in body composition.
- Author
-
Abarzúa T, Camus I, Ortiz F, Ñunque A, Cubillos FA, Sabat P, and Nespolo RF
- Subjects
- Humans, Animals, Mammals, Energy Metabolism, Body Composition, Marsupialia metabolism, Hibernation
- Abstract
Hibernation is an adaptive strategy that allows animals to enter a hypometabolic state, conserving energy and enhancing their fitness by surviving harsh environmental conditions. However, addressing the adaptive value of hibernation, at the individual level and in natural populations, has been challenging. Here, we applied a non-invasive technique, body composition analysis by quantitative magnetic resonance (qMR), to calculate energy savings by hibernation in a population of hibernating marsupials (Dromiciops gliroides). Using outdoor enclosures installed in a temperate rainforest, and measuring qMR periodically, we determined the amount of fat and lean mass consumed during a whole hibernation cycle. With this information, we estimated the daily energy expenditure of hibernation (DEE
H ) at the individual level and related to previous fat accumulation. Using model selection approaches and phenotypic selection analysis, we calculated linear (directional, β), quadratic (stabilizing or disruptive, γ) and correlational (ρ) coefficients for DEEH and fat accumulation. We found significant, negative directional selection for DEEH (βDEEH = - 0.58 ± 0.09), a positive value for fat accumulation (βFAT = 0.34 ± 0.07), and positive correlational selection between both traits (ρDEEH × FAT = 0.24 ± 0.07). Then, individuals maximizing previous fat accumulation and minimizing DEEH were promoted by selection, which is visualized by a bi-variate selection surface estimated by generalized additive models. At the comparative level, results fall within the isometric allometry known for hibernation metabolic rate in mammals. Thus, by a combination of a non-invasive technique for body composition analysis and semi-natural enclosures, we were characterized the heterothermic fitness landscape in a semi-natural population of hibernators., (© 2023. The Author(s).)- Published
- 2023
- Full Text
- View/download PDF
8. Torpor-responsive microRNAs in the heart of the Monito del monte, Dromiciops gliroides.
- Author
-
Breedon SA, Varma A, Quintero-Galvis JF, Gaitán-Espitia JD, Mejías C, Nespolo RF, and Storey KB
- Subjects
- Animals, Liver, Hibernation physiology, MicroRNAs genetics, MicroRNAs metabolism, Torpor, Marsupialia genetics, Marsupialia metabolism
- Abstract
The marsupial Monito del monte (Dromiciops gliroides) utilizes both daily and seasonal bouts of torpor to preserve energy and prolong survival during periods of cold and unpredictable food availability. Torpor involves changes in cellular metabolism, including specific changes to gene expression that is coordinated in part, by the posttranscriptional gene silencing activity of microRNAs (miRNA). Previously, differential miRNA expression has been identified in D. gliroides liver and skeletal muscle; however, miRNAs in the heart of Monito del monte remained unstudied. In this study, the expression of 82 miRNAs was assessed in the hearts of active and torpid D. gliroides, finding that 14 were significantly differentially expressed during torpor. These 14 miRNAs were then used in bioinformatic analyses to identify Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that were predicted to be most affected by these differentially expressed miRNAs. Overexpressed miRNAs were predicted to primarily regulate glycosaminoglycan biosynthesis, along with various signaling pathways such as Phosphoinositide-3-kinase/protein kinase B and transforming growth factor-β. Similarly, signaling pathways including phosphatidylinositol and Hippo were predicted to be regulated by the underexpression of miRNAs during torpor. Together, these results suggest potential molecular adaptations that protect against irreversible tissue damage and enable continued cardiac and vascular function despite hypothermia and limited organ perfusion during torpor., (© 2023 The Authors. BioFactors published by Wiley Periodicals LLC on behalf of International Union of Biochemistry and Molecular Biology.)
- Published
- 2023
- Full Text
- View/download PDF
9. Comparative population genetics of congeneric limpets across a biogeographic transition zone reveals common patterns of genetic structure and demographic history.
- Author
-
Peluso L, Broitman BR, Lardies MA, Nespolo RF, and Saenz-Agudelo P
- Subjects
- Animals, Climate, Demography, Genetic Structures, Genetic Variation genetics, Genetics, Population, Gastropoda genetics
- Abstract
The distribution of genetic diversity is often heterogeneous in space, and it usually correlates with environmental transitions or historical processes that affect demography. The coast of Chile encompasses two biogeographic provinces and spans a broad environmental gradient together with oceanographic processes linked to coastal topography that can affect species' genetic diversity. Here, we evaluated the genetic connectivity and historical demography of four Scurria limpets, S. scurra, S. variabilis, S. ceciliana and S. araucana, between ca. 19° S and 53° S in the Chilean coast using genome-wide SNPs markers. Genetic structure varied among species which was evidenced by species-specific breaks together with two shared breaks. One of the shared breaks was located at 22-25° S and was observed in S. araucana and S. variabilis, while the second break around 31-34° S was shared by three Scurria species. Interestingly, the identified genetic breaks are also shared with other low-disperser invertebrates. Demographic histories show bottlenecks in S. scurra and S. araucana populations and recent population expansion in all species. The shared genetic breaks can be linked to oceanographic features acting as soft barriers to dispersal and also to historical climate, evidencing the utility of comparing multiple and sympatric species to understand the influence of a particular seascape on genetic diversity., (© 2023 John Wiley & Sons Ltd.)
- Published
- 2023
- Full Text
- View/download PDF
10. Natural Variation in Diauxic Shift between Patagonian Saccharomyces eubayanus Strains.
- Author
-
Molinet J, Eizaguirre JI, Quintrel P, Bellora N, Villarroel CA, Villarreal P, Benavides-Parra J, Nespolo RF, Libkind D, and Cubillos FA
- Subjects
- Beer, Glucose, Chromatin, Saccharomyces cerevisiae genetics, Maltose metabolism
- Abstract
The study of natural variation can untap novel alleles with immense value for biotechnological applications. Saccharomyces eubayanus Patagonian isolates exhibit differences in the diauxic shift between glucose and maltose, representing a suitable model to study their natural genetic variation for novel strains for brewing. However, little is known about the genetic variants and chromatin regulators responsible for these differences. Here, we show how genome-wide chromatin accessibility and gene expression differences underlie distinct diauxic shift profiles in S. eubayanus. We identified two strains with a rapid diauxic shift between glucose and maltose (CL467.1 and CBS12357) and one strain with a remarkably low fermentation efficiency and longer lag phase during diauxic shift (QC18). This is associated in the QC18 strain with lower transcriptional activity and chromatin accessibility of specific genes of maltose metabolism and higher expression levels of glucose transporters. These differences are governed by the HAP complex, which differentially regulates gene expression depending on the genetic background. We found in the QC18 strain a contrasting phenotype to those phenotypes described in S. cerevisiae, where hap4Δ , hap5Δ , and cin5Δ knockouts significantly improved the QC18 growth rate in the glucose-maltose shift. The most profound effects were found between CIN5 allelic variants, suggesting that Cin5p could strongly activate a repressor of the diauxic shift in the QC18 strain but not necessarily in the other strains. The differences between strains could originate from the tree host from which the strains were obtained, which might determine the sugar source preference and the brewing potential of the strain. IMPORTANCE The diauxic shift has been studied in budding yeast under laboratory conditions; however, few studies have addressed the diauxic shift between carbon sources under fermentative conditions. Here, we study the transcriptional and chromatin structure differences that explain the natural variation in fermentative capacity and efficiency during diauxic shift of natural isolates of S. eubayanus. Our results show how natural genetic variants in transcription factors impact sugar consumption preferences between strains. These variants have different effects depending on the genetic background, with a contrasting phenotype to those phenotypes previously described in S. cerevisiae. Our study shows how relatively simple genetic/molecular modifications/editing in the lab can facilitate the study of natural variations of microorganisms for the brewing industry.
- Published
- 2022
- Full Text
- View/download PDF
11. Late Pleistocene-dated divergence between South Hemisphere populations of the non-conventional yeast L. cidri.
- Author
-
Villarreal P, Villarroel CA, O'Donnell S, Agier N, Quintero-Galvis JF, Peña TA, Nespolo RF, Fischer G, Varela C, and Cubillos FA
- Subjects
- Humans, Haplotypes, Australia, Phylogeny, Saccharomyces cerevisiae, Genetic Variation
- Abstract
Most organisms belonging to the Saccharomycotina subphylum have high genetic diversity and a vast repertoire of metabolisms and lifestyles. Lachancea cidri is an ideal yeast model for exploring the interplay between genetics, ecological function and evolution. Lachancea cidri diverged from the Saccharomyces lineage before the whole-genome duplication and is distributed across the South Hemisphere, displaying an important ecological success. We applied phylogenomics to investigate the genetic variation of L. cidri isolates obtained from Australia and South America. Our approach revealed the presence of two main lineages according to their geographic distribution (Aus and SoAm). Estimation of the divergence time suggests that SoAm and Aus lineages diverged near the last glacial maximum event during the Pleistocene (64-8 KYA). Interestingly, we found that the French reference strain is closely related to the Australian strains, with a recent divergence (405-51 YA), likely associated to human movements. Additionally, we identified different lineages within the South American population, revealing that Patagonia contains a similar genetic diversity comparable to that of other lineages in S. cerevisiae. These findings support the idea of a Pleistocene-dated divergence between South Hemisphere lineages, where the Nothofagus and Araucaria ecological niches likely favoured the extensive distribution of L. cidri in Patagonia., (© 2022 Society for Applied Microbiology and John Wiley & Sons Ltd.)
- Published
- 2022
- Full Text
- View/download PDF
12. Communal nesting is the optimal strategy for heat conservation in a social marsupial: lessons from biophysical models.
- Author
-
Nespolo RF, Peña I, Mejías C, Ñunque A, Altamirano T, and Bozinovic FF
- Subjects
- Animals, Hot Temperature, Basal Metabolism, Energy Metabolism physiology, Thermogenesis, Marsupialia physiology
- Abstract
Endothermy, understood as the maintenance of continuous and high body temperatures owing to the combination of metabolic heat production and an insulative cover, is severely challenged in small endotherms inhabiting cold environments. As a response, social clustering combined with nest use (=communal nesting) is a common strategy for heat conservation. To quantify the actual amount of energy that is saved by this strategy, we studied the social marsupial Dromiciops gliroides (monito del monte), an endemic species of the cold forests of southern South America. It is hypothesized that sociability in this marsupial was driven by cold conditions, but evidence supporting this hypothesis is unclear. Here, we used taxidermic models ('mannequins') to experimentally test the energetic benefits of clustering combined with nest use. To do this, we fitted and compared cooling curves of solitary and grouped mannequins, within and outside of a nest, at the typical winter ambient temperatures of their habitat (5°C). We found that the strategy that minimized euthermic cost of maintenance was the combination of nest use and clustering, thus supporting communal nesting as a social adaptation to cope with the cold. Considering the basal metabolic rate of monitos, our estimates suggest that the savings represents almost half of energy consumption per day (in resting conditions). This study shows how simple biophysical models could help to evaluate bioenergetic hypotheses for social behavior in cold-adapted endotherms., Competing Interests: Competing interests The authors declare no competing or financial interests., (© 2022. Published by The Company of Biologists Ltd.)
- Published
- 2022
- Full Text
- View/download PDF
13. Isometric scaling of hibernation: when trees do not let the forest be seen.
- Author
-
Nespolo RF, Mejias C, and Bozinovic F
- Subjects
- Forests, Research Design, Trees, Hibernation
- Published
- 2022
- Full Text
- View/download PDF
14. Incomplete lineage sorting and phenotypic evolution in marsupials.
- Author
-
Feng S, Bai M, Rivas-González I, Li C, Liu S, Tong Y, Yang H, Chen G, Xie D, Sears KE, Franco LM, Gaitan-Espitia JD, Nespolo RF, Johnson WE, Yang H, Brandies PA, Hogg CJ, Belov K, Renfree MB, Helgen KM, Boomsma JJ, Schierup MH, and Zhang G
- Subjects
- Animals, Australia, Evolution, Molecular, Genetic Speciation, Genome, Phenotype, Phylogeny, Marsupialia genetics
- Abstract
Incomplete lineage sorting (ILS) makes ancestral genetic polymorphisms persist during rapid speciation events, inducing incongruences between gene trees and species trees. ILS has complicated phylogenetic inference in many lineages, including hominids. However, we lack empirical evidence that ILS leads to incongruent phenotypic variation. Here, we performed phylogenomic analyses to show that the South American monito del monte is the sister lineage of all Australian marsupials, although over 31% of its genome is closer to the Diprotodontia than to other Australian groups due to ILS during ancient radiation. Pervasive conflicting phylogenetic signals across the whole genome are consistent with some of the morphological variation among extant marsupials. We detected hundreds of genes that experienced stochastic fixation during ILS, encoding the same amino acids in non-sister species. Using functional experiments, we confirm how ILS may have directly contributed to hemiplasy in morphological traits that were established during rapid marsupial speciation ca. 60 mya., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2022 Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
15. Body Composition and Energy Savings by Hibernation: Lessons from the South American Marsupial Dromiciops gliroides .
- Author
-
Mejías C, Navedo JG, Sabat P, Franco LM, Bozinovic F, and Nespolo RF
- Subjects
- Animals, Body Composition, Body Temperature, Energy Metabolism, Mammals, South America, Hibernation, Marsupialia metabolism, Torpor
- Abstract
AbstractHibernation (i.e., seasonal or multiday torpor) has been described in mammals from five continents and represents an important adaptation for energy economy. However, direct quantifications of energy savings by hibernation are challenging because of the complexities of estimating energy expenditure in the field. Here, we applied quantitative magnetic resonance to determine body fat and body composition in hibernating Dromiciops gliroides (monito del monte). During an experimental period of 31 d in winter, fat was significantly reduced by 5.72 ± 0.45 g, and lean mass was significantly reduced by 2.05 ± 0.14 g. This fat and lean mass consumption is equivalent to a daily energy expenditure of hibernation (DEE
H ) of 8.89 ± 0.6 kJ d-1 , representing 13.4% of basal metabolic rate, with a proportional contribution of fat and lean mass consumption to DEEH of 81% and 18%, respectively. During the deep heterothermic bouts of monitos, body temperature remained 0.41°C ± 0.2°C above ambient temperature, typical of hibernators. Animals shut down metabolism and passively cool down to a critical defended temperature of 5.0°C ± 0.1°C, where they begin thermoregulation in torpor. Using temperature data loggers, we obtained an empirical estimation of minimum thermal conductance of 3.37 ± 0.19 J g-1 h-1 °C-1 , which is 107% of the expectation by allometric equations. With this, we parameterized body temperature/ambient temperature time series to calculate torpor parameters and metabolic rates in euthermia and torpor. Whereas the acute metabolic fall in each torpor episode is about 96%, the energy saved by hibernation is 88% (compared with the DEE of active animals), which coincides with values from the literature at similar body mass. Thus, estimating body composition provides a simple method to measure the energy saved by hibernation in mammals.- Published
- 2022
- Full Text
- View/download PDF
16. Why bears hibernate? Redefining the scaling energetics of hibernation.
- Author
-
Nespolo RF, Mejias C, and Bozinovic F
- Subjects
- Animals, Energy Metabolism, Mammals, Hibernation, Ursidae
- Abstract
Hibernation is a natural state of suspended animation that many mammals experience and has been interpreted as an adaptive strategy for saving energy. However, the actual amount of savings that hibernation represents, and particularly its dependence on body mass (the 'scaling') has not been calculated properly. Here, we estimated the scaling of daily energy expenditure of hibernation (DEE
H ), covering a range of five orders of magnitude in mass. We found that DEEH scales isometrically with mass, which means that a gram of hibernating bat has a similar metabolism to that of a gram of bear, 20 000 times larger. Given that metabolic rate of active animals scales allometrically, the point where these scaling curves intersect with DEEH represents the mass where energy savings by hibernation are zero. For BMR, these zero savings are attained for a relatively small bear (approx. 75 kg). Calculated on a per cell basis, the cellular metabolic power of hibernation was estimated to be 1.3 × 10-12 ± 2.6 × 10-13 W cell-1 , which is lower than the minimum metabolism of isolated mammalian cells. This supports the idea of the existence of a minimum metabolism that permits cells to survive under a combination of cold and hypoxia.- Published
- 2022
- Full Text
- View/download PDF
17. A Saccharomyces eubayanus haploid resource for research studies.
- Author
-
Molinet J, Urbina K, Villegas C, Abarca V, Oporto CI, Villarreal P, Villarroel CA, Salinas F, Nespolo RF, and Cubillos FA
- Subjects
- Beer, Fermentation, Haploidy, Saccharomyces genetics, Saccharomyces cerevisiae genetics
- Abstract
Since its identification, Saccharomyces eubayanus has been recognized as the missing parent of the lager hybrid, S. pastorianus. This wild yeast has never been isolated from fermentation environments, thus representing an interesting candidate for evolutionary, ecological and genetic studies. However, it is imperative to develop additional molecular genetics tools to ease manipulation and thus facilitate future studies. With this in mind, we generated a collection of stable haploid strains representative of three main lineages described in S. eubayanus (PB-1, PB-2 and PB-3), by deleting the HO gene using CRISPR-Cas9 and tetrad micromanipulation. Phenotypic characterization under different conditions demonstrated that the haploid derivates were extremely similar to their parental strains. Genomic analysis in three strains highlighted a likely low frequency of off-targets, and sequencing of a single tetrad evidenced no structural variants in any of the haploid spores. Finally, we demonstrate the utilization of the haploid set by challenging the strains under mass-mating conditions. In this way, we found that S. eubayanus under liquid conditions has a preference to remain in a haploid state, unlike S. cerevisiae that mates rapidly. This haploid resource is a novel set of strains for future yeast molecular genetics studies., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
18. Rapid selection response to ethanol in Saccharomyces eubayanus emulates the domestication process under brewing conditions.
- Author
-
Mardones W, Villarroel CA, Abarca V, Urbina K, Peña TA, Molinet J, Nespolo RF, and Cubillos FA
- Subjects
- Hybridization, Genetic, Ethanol metabolism, Fermentation, Saccharomyces genetics
- Abstract
Although the typical genomic and phenotypic changes that characterize the evolution of organisms under the human domestication syndrome represent textbook examples of rapid evolution, the molecular processes that underpin such changes are still poorly understood. Domesticated yeasts for brewing, where short generation times and large phenotypic and genomic plasticity were attained in a few generations under selection, are prime examples. To experimentally emulate the lager yeast domestication process, we created a genetically complex (panmictic) artificial population of multiple Saccharomyces eubayanus genotypes, one of the parents of lager yeast. Then, we imposed a constant selection regime under a high ethanol concentration in 10 replicated populations during 260 generations (6 months) and compared them with propagated controls exposed solely to glucose. Propagated populations exhibited a selection differential of 60% in growth rate in ethanol, mostly explained by the proliferation of a single lineage (CL248.1) that competitively displaced all other clones. Interestingly, the outcome does not require the entire time-course of adaptation, as four lineages monopolized the culture at generation 120. Sequencing demonstrated that de novo genetic variants were produced in all propagated lines, including SNPs, aneuploidies, INDELs and translocations. In addition, the different propagated populations showed correlated responses resembling the domestication syndrome: genomic rearrangements, faster fermentation rates, lower production of phenolic off-flavours and lower volatile compound complexity. Expression profiling in beer wort revealed altered expression levels of genes related to methionine metabolism, flocculation, stress tolerance and diauxic shift, likely contributing to higher ethanol and fermentation stress tolerance in the evolved populations. Our study shows that experimental evolution can rebuild the brewing domestication process in 'fast motion' in wild yeast, and also provides a powerful tool for studying the genetics of the adaptation process in complex populations., (© 2021 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Ltd.)
- Published
- 2022
- Full Text
- View/download PDF
19. The ecology and evolution of the monito del monte, a relict species from the southern South America temperate forests.
- Author
-
Fontúrbel FE, Franco LM, Bozinovic F, Quintero-Galvis JF, Mejías C, Amico GC, Vazquez MS, Sabat P, Sánchez-Hernández JC, Watson DM, Saenz-Agudelo P, and Nespolo RF
- Abstract
The arboreal marsupial monito del monte (genus Dromiciops , with two recognized species) is a paradigmatic mammal. It is the sole living representative of the order Microbiotheria, the ancestor lineage of Australian marsupials. Also, this marsupial is the unique frugivorous mammal in the temperate rainforest, being the main seed disperser of several endemic plants of this ecosystem, thus acting as keystone species. Dromiciops is also one of the few hibernating mammals in South America, spending half of the year in a physiological dormancy where metabolism is reduced to 10% of normal levels. This capacity to reduce energy expenditure in winter contrasts with the enormous energy turnover rate they experience in spring and summer. The unique life history strategies of this living Microbiotheria, characterized by an alternation of life in the slow and fast lanes, putatively represent ancestral traits that permitted these cold-adapted mammals to survive in this environment. Here, we describe the ecological role of this emblematic marsupial, summarizing the ecophysiology of hibernation and sociality, updated phylogeographic relationships, reproductive cycle, trophic relationships, mutualisms, conservation, and threats. This marsupial shows high densities, despite presenting slow reproductive rates, a paradox explained by the unique characteristics of its three-dimensional habitat. We finally suggest immediate actions to protect these species that may be threatened in the near future due to habitat destruction and climate change., Competing Interests: The authors have no conflicts of interest to declare., (© 2022 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.)
- Published
- 2022
- Full Text
- View/download PDF
20. Genomic diversity and demographic history of the Dromiciops genus (Marsupialia: Microbiotheriidae).
- Author
-
Quintero-Galvis JF, Saenz-Agudelo P, Amico GC, Vazquez S, Shafer ABA, and Nespolo RF
- Subjects
- Animals, Biological Evolution, Demography, Genomics, Phylogeny, Marsupialia genetics
- Abstract
Three orders represent the South American fauna of marsupials. Of these, Microbiotheria was until recently known as a monotypic genus with the only surviving species Dromiciops gliroides (monito del monte). The recent proposal of a new Dromiciops species (Dromiciops bozinovici), together with new information on the origin and diversification of living microbioterians has changed the prevailing paradigm around the evolutionary history of these emblematic marsupials. Here, we used a RADseq approach to test for evidence of admixture and past or current gene flow among both species of Dromiciops and evaluate the genetic structure within D. gliroides. We analyzed 127 samples of Dromiciops distributed across the known distribution range of both species. We also inferred the joint demographic history of these lineages, thus corroborating the status of D. bozinovici as a distinct species. Demographic history reconstruction indicated that D. bozinovici diverged from D. gliroides around 4my ago and has remained isolated and demographically stable ever since. In contrast, D. gliroides is subdivided into three subclades that experienced recent expansions and moderate gene flow among them (mostly from north to south). Furthermore, genetic distances among populations within D. gliroides were significantly correlated with geographic distances. These results suggest that some of the D. gliroides populations would have survived in glacial refuges, with posterior expansions after ice retreat. Our results have important implications for the systematics of the genus and have profound conservation consequences for the new species, especially considering the fragmentation level of the temperate rainforest., (Copyright © 2022. Published by Elsevier Inc.)
- Published
- 2022
- Full Text
- View/download PDF
21. Identification of new ethanol-tolerant yeast strains with fermentation potential from central Patagonia.
- Author
-
Villarreal P, Quintrel PA, Olivares-Muñoz S, Ruiz JJ, Nespolo RF, and Cubillos FA
- Subjects
- Beer, Fermentation, Yeasts, Ethanol, Wine analysis
- Abstract
The quest for new wild yeasts has increasingly gained attention because of their potential ability to provide unique organoleptic characters to fermented beverages. In this sense, Patagonia offers a wide diversity of ethanol-tolerant yeasts and stands out as a bioprospecting alternative. This study characterized the genetic and phenotypic diversity of yeast isolates obtained from Central Chilean Patagonia and analyzed their fermentation potential under different fermentative conditions. We recovered 125 colonies from Nothofagus spp. bark samples belonging to five yeast species: Saccharomyces eubayanus, Saccharomyces uvarum, Lachancea cidri, Kregervanrija delftensis, and Hanseniaspora valbyensis. High-throughput microcultivation assays demonstrated the extensive phenotypic diversity among Patagonian isolates, where Saccharomyces spp and L. cidri isolates exhibited the most outstanding fitness scores across the conditions tested. Fermentation performance assays under wine, mead, and beer conditions demonstrated the specific potential of the different species for each particular beverage. Saccharomyces spp. were the only isolates able to ferment beer wort. Interestingly, we found that L. cidri is a novel candidate species to ferment wine and mead, exceeding the fermentation capacity of a commercial strain. Unlike commercial strains, we found that L. cidri does not require nutritional supplements for efficient mead fermentation. In addition, L. cidri produces succinic and acetic acids, providing a distinct profile to the final fermented product. This work demonstrates the importance of bioprospecting efforts in Patagonia to isolate novel wild yeast strains with extraordinary biotechnological potential for the fermentation industry., (© 2021 John Wiley & Sons, Ltd.)
- Published
- 2022
- Full Text
- View/download PDF
22. A Mesocosm Experiment in Ecological Physiology: The Modulation of Energy Budget in a Hibernating Marsupial under Chronic Caloric Restriction.
- Author
-
Nespolo RF, Fontúrbel FE, Mejias C, Contreras R, Gutierrez P, Oda E, Sabat P, Hambly C, Speakman JR, and Bozinovic F
- Subjects
- Animals, Basal Metabolism, Caloric Restriction, Energy Metabolism, Seasons, Hibernation, Marsupialia, Torpor
- Abstract
AbstractDuring the past 60 years, mammalian hibernation (i.e., seasonal torpor) has been interpreted as a physiological adaptation for energy economy. However, direct field comparisons of energy expenditure and torpor use in hibernating and active free-ranging animals are scarce. Here, we followed the complete hibernation cycle of a fat-storing hibernator, the marsupial Dromiciops gliroides , in its natural habitat. Using replicated mesocosms, we experimentally manipulated energy availability and measured torpor use, hibernacula use, and social clustering throughout the entire hibernation season. Also, we measured energy flow using daily food intake, daily energy expenditure (DEE), and basal metabolic rate (BMR) in winter. We hypothesized that when facing chronic caloric restriction (CCR), a hibernator should maximize torpor frequency to compensate for the energetic deficit, compared with individuals fed ad lib. (controls). However, being torpid at low temperatures could increase other burdens (e.g., cost of rewarming, freezing risks). Our results revealed that CCR animals, compared with control animals, did not promote heat conservation strategies (i.e., clustering and hibernacula use). Instead, they gradually increased torpor frequency and reduced DEE and, as a consequence, recovered weight at the end of the season. Also, CCR animals consumed food at a rate of 50.8 kJ d
-1 , whereas control animals consumed food at a rate of 98.4 kJ d-1 . Similarly, the DEE of CCR animals in winter was 47.3 ± 5.64 kJ d-1 , which was significantly lower than control animals ( DEE = 88.0 ± 5.84 kJ d-1 ). However, BMR and lean mass of CCR and control animals did not vary significantly, suggesting that animals maintained full metabolic capacities. This study shows that the use of torpor can be modulated depending on energy supply, thus optimizing energy budgeting. This plasticity in the use of heterothermy as an energy-saving strategy would explain the occurrence of this marsupial in a broad latitudinal and altitudinal range. Overall, this study suggests that hibernation is a powerful strategy to modulate energy expenditure in mammals from temperate regions.- Published
- 2022
- Full Text
- View/download PDF
23. The biogeography of Dromiciops in southern South America: Middle Miocene transgressions, speciation and associations with Nothofagus.
- Author
-
Quintero-Galvis JF, Saenz-Agudelo P, Celis-Diez JL, Amico GC, Vazquez S, Shafer ABA, and Nespolo RF
- Subjects
- Animals, Chile, DNA, Mitochondrial genetics, Ecosystem, Phylogeny, Phylogeography, Marsupialia
- Abstract
The current distribution of the flora and fauna of southern South America is the result of drastic geological events that occurred during the last 20 million years, including marine transgressions, glaciations and active vulcanism. All these have been associated with fragmentation, isolation and subsequent expansion of the biota, south of 35°S, such as the temperate rainforest. This forest is mostly dominated by Nothofagus trees and is the habitat of the relict marsupial monito del monte, genus Dromiciops, sole survivor of the order Microbiotheria. Preliminary analyses using mtDNA proposed the existence of three main Dromiciops lineages, distributed latitudinally, whose divergence was initially attributed to recent Pleistocene glaciations. Using fossil-calibrated dating on nuclear and mitochondrial genes, here we reevaluate this hypothesis and report an older (Miocene) biogeographic history for the genus. We performed phylogenetic reconstructions using sequences from two mitochondrial DNA and four nuclear DNA genes in 159 specimens from 31 sites across Chile and Argentina. Our phylogenetic analysis resolved three main clades with discrete geographic distributions. The oldest and most differentiated clade corresponds to that of the northern distribution (35.2°S to 39.3°S), which should be considered a distinct species (D. bozinovici, sensu D'Elía et al. 2016). According to our estimations, this species shared a common ancestor with D. gliroides (southern clades) about ~13 million years ago. Divergence time estimates for the southern clades (39.6°S to 42.0°S) ranged from 9.57 to 6.5 Mya. A strong genetic structure was also detected within and between clades. Demographic analyses suggest population size stability for the northern clade (D. bozinovici), and recent demographic expansions for the central and southern clades. All together, our results suggest that the diversification of Dromiciops were initiated by the Middle Miocene transgression (MMT), the massive marine flooding that covered several lowlands of the western face of Los Andes between 37 and 48°S. The MMT resulted from an increase in global sea levels at the Miocene climatic optimum, which shaped the biogeographic origin of several species, including Nothofagus forests, the habitat of Dromiciops., (Copyright © 2021 Elsevier Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
24. Heterothermy as the Norm, Homeothermy as the Exception: Variable Torpor Patterns in the South American Marsupial Monito del Monte ( Dromiciops gliroides ).
- Author
-
Nespolo RF, Mejías C, Espinoza A, Quintero-Galvis J, Rezende EL, Fontúrbel FE, and Bozinovic F
- Abstract
Hibernation (i.e., multiday torpor) is considered an adaptive strategy of mammals to face seasonal environmental challenges such as food, cold, and/or water shortage. It has been considered functionally different from daily torpor, a physiological strategy to cope with unpredictable environments. However, recent studies have shown large variability in patterns of hibernation and daily torpor ("heterothermic responses"), especially in species from tropical and subtropical regions. The arboreal marsupial "monito del monte" ( Dromiciops gliroides ) is the last living representative of the order Microbiotheria and is known to express both short torpor episodes and also multiday torpor depending on environmental conditions. However, only limited laboratory experiments have documented these patterns in D. gliroides . Here, we combined laboratory and field experiments to characterize the heterothermic responses in this marsupial at extreme temperatures. We used intraperitoneal data loggers and simultaneous measurement of ambient and body temperatures ( T
A and TB , respectively) for analyzing variations in the thermal differential, in active and torpid animals. We also explored how this differential was affected by environmental variables ( TA , natural photoperiod changes, food availability, and body mass changes), using mixed-effects generalized linear models. Our results suggest that: (1) individuals express short bouts of torpor, independently of TA and even during the reproductive period; (2) seasonal torpor also occurs in D. gliroides , with a maximum bout duration of 5 days and a mean defended TB of 3.6 ± 0.9°C (one individual controlled TB at 0.09°C, at sub-freezing TA ); (3) the best model explaining torpor occurrence (Akaike information criteria weight = 0.59) discarded all predictor variables except for photoperiod and a photoperiod by food interaction. Altogether, these results confirm that this marsupial expresses a dynamic form of torpor that progresses from short torpor to hibernation as daylength shortens. These data add to a growing body of evidence characterizing tropical and sub-tropical heterothermy as a form of opportunistic torpor, expressed as daily or seasonal torpor depending on environmental conditions., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Nespolo, Mejías, Espinoza, Quintero-Galvis, Rezende, Fontúrbel and Bozinovic.)- Published
- 2021
- Full Text
- View/download PDF
25. The Torpid State: Recent Advances in Metabolic Adaptations and Protective Mechanisms † .
- Author
-
Giroud S, Habold C, Nespolo RF, Mejías C, Terrien J, Logan SM, Henning RH, and Storey KB
- Abstract
Torpor and hibernation are powerful strategies enabling animals to survive periods of low resource availability. The state of torpor results from an active and drastic reduction of an individual's metabolic rate (MR) associated with a relatively pronounced decrease in body temperature. To date, several forms of torpor have been described in all three mammalian subclasses, i.e., monotremes, marsupials, and placentals, as well as in a few avian orders. This review highlights some of the characteristics, from the whole organism down to cellular and molecular aspects, associated with the torpor phenotype. The first part of this review focuses on the specific metabolic adaptations of torpor, as it is used by many species from temperate zones. This notably includes the endocrine changes involved in fat- and food-storing hibernating species, explaining biomedical implications of MR depression. We further compare adaptive mechanisms occurring in opportunistic vs. seasonal heterotherms, such as tropical and sub-tropical species. Such comparisons bring new insights into the metabolic origins of hibernation among tropical species, including resistance mechanisms to oxidative stress. The second section of this review emphasizes the mechanisms enabling heterotherms to protect their key organs against potential threats, such as reactive oxygen species, associated with the torpid state. We notably address the mechanisms of cellular rehabilitation and protection during torpor and hibernation, with an emphasis on the brain, a central organ requiring protection during torpor and recovery. Also, a special focus is given to the role of an ubiquitous and readily-diffusing molecule, hydrogen sulfide (H
2 S), in protecting against ischemia-reperfusion damage in various organs over the torpor-arousal cycle and during the torpid state. We conclude that (i) the flexibility of torpor use as an adaptive strategy enables different heterothermic species to substantially suppress their energy needs during periods of severely reduced food availability, (ii) the torpor phenotype implies marked metabolic adaptations from the whole organism down to cellular and molecular levels, and (iii) the torpid state is associated with highly efficient rehabilitation and protective mechanisms ensuring the continuity of proper bodily functions. Comparison of mechanisms in monotremes and marsupials is warranted for understanding the origin and evolution of mammalian torpor., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Giroud, Habold, Nespolo, Mejías, Terrien, Logan, Henning and Storey.)- Published
- 2021
- Full Text
- View/download PDF
26. Performance, genomic rearrangements, and signatures of adaptive evolution: Lessons from fermentative yeasts.
- Author
-
Nespolo RF, Solano-Iguaran JJ, Paleo-López R, Quintero-Galvis JF, Cubillos FA, and Bozinovic F
- Abstract
The capacity of some yeasts to extract energy from single sugars, generating CO
2 and ethanol (=fermentation), even in the presence of oxygen, is known as the Crabtree effect. This phenomenon represents an important adaptation as it allowed the utilization of the ecological niche given by modern fruits, an abundant source of food that emerged in the terrestrial environment in the Cretaceous. However, identifying the evolutionary events that triggered fermentative capacity in Crabtree-positive species is challenging, as microorganisms do not leave fossil evidence. Thus, key innovations should be inferred based only on traits measured under culture conditions. Here, we reanalyzed data from a common garden experiment where several proxies of fermentative capacity were recorded in Crabtree-positive and Crabtree-negative species, representing yeast phylogenetic diversity. In particular, we applied the "lasso-OU" algorithm which detects points of adaptive shifts, using traits that are proxies of fermentative performance. We tested whether multiple events or a single event explains the actual fermentative capacity of yeasts. According to the lasso-OU procedure, evolutionary changes in the three proxies of fermentative capacity that we considered (i.e., glycerol production, ethanol yield, and respiratory quotient) are consistent with a single evolutionary episode (a whole-genomic duplication, WGD), instead of a series of small genomic rearrangements. Thus, the WGD appears as the key event behind the diversification of fermentative yeasts, which by increasing gene dosage, and maximized their capacity of energy extraction for exploiting the new ecological niche provided by single sugars., Competing Interests: We do not declare any conflict of interest., (© 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.)- Published
- 2020
- Full Text
- View/download PDF
27. Volatile Compound Screening Using HS-SPME-GC/MS on Saccharomyces eubayanus Strains under Low-Temperature Pilsner Wort Fermentation.
- Author
-
Urbina K, Villarreal P, Nespolo RF, Salazar R, Santander R, and Cubillos FA
- Abstract
The recent isolation of the yeast Saccharomyces eubayanus has opened new avenues in the brewing industry. Recent studies characterized the production of volatile compounds in a handful set of isolates, utilizing a limited set of internal standards, representing insufficient evidence into the ability of the species to produce new and diverse aromas in beer. Using Headspace solid-phase microextraction followed by gas chromatography-mass spectrometry (HS-SPME-GC-MS), we characterized for the first time the production of volatile compounds in 10 wild strains under fermentative brewing conditions and compared them to a commercial lager yeast. S. eubayanus produces a higher number of volatile compounds compared to lager yeast, including acetate and ethyl esters, together with higher alcohols and phenols. Many of the compounds identified in S. eubayanus are related to fruit and floral flavors, which were absent in the commercial lager yeast ferment. Interestingly, we found a significant strain × temperature interaction, in terms of the profiles of volatile compounds, where some strains produced significantly greater levels of esters and higher alcohols. In contrast, other isolates preferentially yielded phenols, depending on the fermentation temperature. This work demonstrates the profound fermentation product differences between different S. eubayanus strains, highlighting the enormous potential of this yeast to produce new styles of lager beers.
- Published
- 2020
- Full Text
- View/download PDF
28. An Out-of-Patagonia migration explains the worldwide diversity and distribution of Saccharomyces eubayanus lineages.
- Author
-
Nespolo RF, Villarroel CA, Oporto CI, Tapia SM, Vega-Macaya F, Urbina K, De Chiara M, Mozzachiodi S, Mikhalev E, Thompson D, Larrondo LF, Saenz-Agudelo P, Liti G, and Cubillos FA
- Subjects
- Acclimatization, Argentina, Chile, Cold Temperature, Gene Flow, Genome, Fungal, Phylogeny, Phylogeography, Saccharomyces genetics, Genetic Variation, Saccharomyces classification, Whole Genome Sequencing methods
- Abstract
Population-level sampling and whole-genome sequences of different individuals allow one to identify signatures of hybridization, gene flow and potential molecular mechanisms of environmental responses. Here, we report the isolation of 160 Saccharomyces eubayanus strains, the cryotolerant ancestor of lager yeast, from ten sampling sites in Patagonia along 2,000 km of Nothofagus forests. Frequency of S. eubayanus isolates was higher towards southern and colder regions, demonstrating the cryotolerant nature of the species. We sequenced the genome of 82 strains and, together with 23 available genomes, performed a comprehensive phylogenetic analysis. Our results revealed the presence of five different lineages together with dozens of admixed strains. Various analytical methods reveal evidence of gene flow and historical admixture between lineages from Patagonia and Holarctic regions, suggesting the co-occurrence of these ancestral populations. Analysis of the genetic contribution to the admixed genomes revealed a Patagonian genetic origin of the admixed strains, even for those located in the North Hemisphere. Overall, the Patagonian lineages, particularly the southern populations, showed a greater global genetic diversity compared to Holarctic and Chinese lineages, in agreement with a higher abundance in Patagonia. Thus, our results are consistent with a likely colonization of the species from peripheral glacial refugia from South Patagonia. Furthermore, fermentative capacity and maltose consumption resulted negatively correlated with latitude, indicating better fermentative performance in northern populations. Our genome analysis, together with previous reports in the sister species S. uvarum suggests that a S. eubayanus ancestor was adapted to the harsh environmental conditions of Patagonia, a region that provides the ecological conditions for the diversification of these ancestral lineages., Competing Interests: the authors have declared that no competing interests exist.
- Published
- 2020
- Full Text
- View/download PDF
29. Shrinking dinosaurs and the evolution of endothermy in birds.
- Author
-
Rezende EL, Bacigalupe LD, Nespolo RF, and Bozinovic F
- Subjects
- Adaptation, Physiological, Animals, Birds anatomy & histology, Body Size, Dinosaurs anatomy & histology, Feathers physiology, Fossils anatomy & histology, Mammals, Phylogeny, Tooth physiology, Biological Evolution, Birds physiology, Body Temperature Regulation physiology, Dinosaurs physiology
- Abstract
The evolution of endothermy represents a major transition in vertebrate history, yet how and why endothermy evolved in birds and mammals remains controversial. Here, we combine a heat transfer model with theropod body size data to reconstruct the evolution of metabolic rates along the bird stem lineage. Results suggest that a reduction in size constitutes the path of least resistance for endothermy to evolve, maximizing thermal niche expansion while obviating the costs of elevated energy requirements. In this scenario, metabolism would have increased with the miniaturization observed in the Early-Middle Jurassic (~180 to 170 million years ago), resulting in a gradient of metabolic levels in the theropod phylogeny. Whereas basal theropods would exhibit lower metabolic rates, more recent nonavian lineages were likely decent thermoregulators with elevated metabolism. These analyses provide a tentative temporal sequence of the key evolutionary transitions that resulted in the emergence of small, endothermic, feathered flying dinosaurs., (Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).)
- Published
- 2020
- Full Text
- View/download PDF
30. The interplay between ambient temperature and salt intake affects oxidative status and immune responses in a ubiquitous Neotropical passerine, the rufous-collared sparrow.
- Author
-
Sabat P, Bozinovic F, Contreras-Ramos C, Nespolo RF, Newsome SD, Quirici V, Maldonado K, Peña-Villalobos I, Ramirez-Otarola N, and Sanchez-Hernandez JC
- Subjects
- Acclimatization physiology, Animals, Basal Metabolism, Feeding Behavior physiology, Reproduction physiology, Salinity, Sodium Chloride, Dietary metabolism, Temperature, Immunity, Innate physiology, Oxidative Stress physiology, Salts metabolism, Sparrows physiology
- Abstract
Physiological traits associated with maintenance, growth, and reproduction demand a large amount of energy and thus directly influence an animal's energy budget, which is also regulated by environmental conditions. In this study, we evaluated the interplay between ambient temperature and salinity of drinking water on energy budgets and physiological responses in adult Rufous-collared sparrow (Zonotrichia capensis), an omnivorous passerine that is ubiquitous in Chile and inhabits a wide range of environments. We acclimated birds to 30 days at two ambient temperatures (27 °C and 17 °C) and drinking water salinity (200 mM NaCl and fresh water) conditions. We evaluated: 1) the aerobic scope and the activities of mitochondrial metabolic enzymes, 2) osmoregulatory parameters, 3) the skin-swelling immune response to an antigen, 4) oxidative status, and 5) the length of telomeres of red blood cells. Our results confirm that Z. capensis tolerates the chronic consumption of moderate levels of salt, maintaining body mass but increasing their basal metabolic rates consistent with expected osmoregulatory costs. Additionally, the factorial aerobic scope was higher in birds acclimated to fresh (tap) water at both 17° and 27 °C. Drinking water salinity and low ambient temperatures negatively impacted inflammatory response, and we observed an increase in lipid peroxidation and high levels of circulating antioxidants at low temperatures. Finally, telomere length was not affected by osmo- and thermoregulatory stress. Our results did not support the existence of an interplay between environmental temperature and drinking water salinity on most physiological and biochemical traits in Z. capensis, but the negative effect of these two factors on the inflammatory immune response suggests the existence of an energetic trade-off between biological functions that act in parallel to control immune function., (Copyright © 2019 Elsevier Inc. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
31. A functional transcriptomic analysis in the relict marsupial Dromiciops gliroides reveals adaptive regulation of protective functions during hibernation.
- Author
-
Nespolo RF, Gaitan-Espitia JD, Quintero-Galvis JF, Fernandez FV, Silva AX, Molina C, Storey KB, and Bozinovic F
- Subjects
- Animals, Brain metabolism, Chile, Gene Expression Regulation, Liver metabolism, Marsupialia metabolism, Muscle Cells metabolism, Thermogenesis, Torpor genetics, Hibernation genetics, Marsupialia genetics, Transcriptome
- Abstract
The small South American marsupial, Dromiciops gliroides, known as the missing link between the American and the Australian marsupials, is one of the few South American mammals known to hibernate. Expressing both daily torpor and seasonal hibernation, this species may provide crucial information about the mechanisms and the evolutionary origins of marsupial hibernation. Here, we compared torpid and active individuals, applying high-throughput sequencing technologies (RNA-seq) to profile gene expression in three D. gliroides tissues and determine whether hibernation induces tissue-specific differential gene expression. We found 566 transcripts that were significantly up-regulated during hibernation (369 in brain, 147 in liver and 50 in skeletal muscle) and 339 that were down-regulated (225 in brain, 79 in liver and 35 in muscle). The proteins encoded by these differentially expressed genes orchestrate multiple metabolic changes during hibernation, such as inhibition of angiogenesis, prevention of muscle disuse atrophy, fuel switch from carbohydrate to lipid metabolism, protection against reactive oxygen species and repair of damaged DNA. According to the global enrichment analysis, brain cells seem to differentially regulate a complex array of biological functions (e.g., cold sensitivity, circadian perception, stress response), whereas liver and muscle cells prioritize fuel switch and heat production for rewarming. Interestingly, transcripts of thioredoxin-interacting protein (TXNIP), a potent antioxidant, were significantly over-expressed during torpor in all three tissues. These results suggest that marsupial hibernation is a controlled process where selected metabolic pathways show adaptive modulation that can help to maintain homeostasis and enhance cytoprotection in the hypometabolic state., (© 2018 John Wiley & Sons Ltd.)
- Published
- 2018
- Full Text
- View/download PDF
32. Strategies of biochemical adaptation for hibernation in a South American marsupial, Dromiciops gliroides: 3. Activation of pro-survival response pathways.
- Author
-
Luu BE, Wijenayake S, Zhang J, Tessier SN, Quintero-Galvis JF, Gaitán-Espitia JD, Nespolo RF, and Storey KB
- Subjects
- Animals, Organ Specificity physiology, Adaptation, Physiological physiology, Cell Cycle Proteins metabolism, Heat-Shock Proteins metabolism, Hibernation physiology, Marsupialia metabolism, Stress, Physiological physiology
- Abstract
The South American marsupial, monito del monte (Dromiciops gliroides) uses both daily torpor and multi-day hibernation to survive in its southern Chile native environment. The present study leverages multiplex technology to assess the contributions of key stress-inducible cell cycle regulators and heat shock proteins to hibernation in liver, heart, and brain of monito del monte in a comparison of control versus 4day hibernating conditions. The data indicate that MDM2, a stress-responsive ubiquitin ligase, plays a crucial role in marsupial hibernation since all three tissues showed statistically significant increases in MDM2 levels during torpor (1.6-1.8 fold). MDM2 may have a cytoprotective action to deal with ischemia/reperfusion stress and is also involved in a nutrient sensing pathway where it could help regulate the metabolic switch to fatty acid oxidation during torpor. Elevated levels of stress-sensitive cell cycle regulators including ATR (2.32-3.91 fold), and the phosphorylated forms of p-Chk1 (Ser345) (1.92 fold), p-Chk2 (Thr68) (2.20 fold) and p21 (1.64 fold) were observed in heart and liver during hibernation suggesting that the cell cycle is likely suppressed to conserve energy while animals are in torpor. Upregulation of heat shock proteins also occurred as a cytoprotective strategy with increased levels of hsp27 (2.00 fold) and hsp60 (1.72-2.76 fold) during hibernation. The results suggest that cell cycle control and selective chaperone action are significant components of hibernation in D. gliroides and reveal common molecular responses to those seen in eutherian hibernators., (Copyright © 2017 Elsevier Inc. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
33. Strategies of biochemical adaptation for hibernation in a South American marsupial, Dromiciops gliroides: 4. Regulation of pyruvate dehydrogenase complex and metabolic fuel selection.
- Author
-
Wijenayake S, Luu BE, Zhang J, Tessier SN, Quintero-Galvis JF, Gaitán-Espitia JD, Nespolo RF, and Storey KB
- Subjects
- Animals, Organ Specificity physiology, Adaptation, Physiological physiology, Carbohydrate Metabolism physiology, Citric Acid Cycle physiology, Hibernation physiology, Marsupialia metabolism, Pyruvate Dehydrogenase Complex metabolism, Triglycerides metabolism
- Abstract
Mammalian hibernation is characterized by extensive adjustments to metabolism that typically include suppression of carbohydrate catabolism and a switch to triglycerides as the primary fuel during torpor. A crucial locus of control in this process is the pyruvate dehydrogenase complex that gates carbohydrate entry into the tricarboxylic acid cycle. Within the complex, the E1 enzyme pyruvate dehydrogenase (PDH) is the main regulatory site and is subject to inhibitory phosphorylation at three serine residues (S232, S293, S300). To determine if marsupial hibernators show a comparable focus on PDH to regulate fuel metabolism, the current study explored PDH control by site-specific phosphorylation in the South American marsupial, monito del monte (Dromiciops gliroides). Luminex multiplex technology was used to analyze PDH responses in six tissues comparing control and hibernating (4days continuous torpor) animals. Total PDH content did not change significantly during hibernation in any tissue but phospho-PDH content increased in all. Heart PDH showed increased phosphorylation at all three sites by 8.1-, 10.6- and 2.1-fold for S232, S293 and S300, respectively. Liver also showed elevated p-S300 (2.5-fold) and p-S293 (4.7-fold) content. Phosphorylation of S232 and S293 increased significantly in brain and lung but only S232 phosphorylation increased in kidney and skeletal muscle. The results show that PDH suppression via enzyme phosphorylation during torpor is a conserved mechanism for inhibiting carbohydrate catabolism in both marsupial and eutherian mammals, an action that would also promote the switch to fatty acid oxidation instead., (Copyright © 2017 Elsevier Inc. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
34. Strategies of biochemical adaptation for hibernation in a South American marsupial Dromiciops gliroides: 1. Mitogen-activated protein kinases and the cell stress response.
- Author
-
Wijenayake S, Luu BE, Zhang J, Tessier SN, Quintero-Galvis JF, Gaitán-Espitia JD, Nespolo RF, and Storey KB
- Subjects
- Animals, Hibernation physiology, Kidney enzymology, Liver enzymology, MAP Kinase Signaling System physiology, Marsupialia metabolism, Mitogen-Activated Protein Kinase Kinases metabolism
- Abstract
Hibernation is a period of torpor and heterothermy that is typically associated with a strong reduction in metabolic rate, global suppression of transcription and translation, and upregulation of various genes/proteins that are central to the cellular stress response such as protein kinases, antioxidants, and heat shock proteins. The current study examined cell signaling cascades in hibernating monito del monte, Dromiciops gliroides, a South American marsupial of the Order Microbiotheria. Responses to hibernation by members of the mitogen-activated protein kinase (MAPK) pathways, and their roles in coordinating hibernator metabolism were examined in liver, kidney, heart and brain of control and versus hibernating (4days continuous torpor) D. gliroides. The targets evaluated included key protein kinases in their activated phosphorylated forms (p-ERK/MAPK 1/2, p-MEK1, p-MSK1, p-p38, p-JNK) and related target proteins (p-CREB 2, p-ATF2, p-c-Jun and p-p53). Liver exhibited a strong coordinated response by MAPK members to hibernation with significant increases in protein phosphorylation levels of p-MEK1, p-ERK/MAPK1/2, p-MSK1, p-JNK and target proteins c-Jun, and p-ATF2, all combining to signify a strong activation of MAPK signaling during hibernation. Kidney also showed activation of MAPK cascades with significant increases in p-MEK1, p-ERK/MAPK1/2, p-p38, and p-c-Jun levels in hibernating animals. By contrast, responses by heart and brain indicated reduced MAPK pathway function during torpor with reduced phosphorylation of targets including p-ERK/MAPK 1/2 in both tissues as well as lower p-p38 and p-JNK content in heart. Overall, the data indicate a vital role for MAPK signaling in regulating the cell stress response during marsupial hibernation., (Copyright © 2017 Elsevier Inc. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
35. Strategies of biochemical adaptation for hibernation in a South American marsupial, Dromiciops gliroides: 2. Control of the Akt pathway and protein translation machinery.
- Author
-
Luu BE, Wijenayake S, Zhang J, Tessier SN, Quintero-Galvis JF, Gaitán-Espitia JD, Nespolo RF, and Storey KB
- Subjects
- Animals, Protein Biosynthesis, Adaptation, Physiological physiology, Hibernation physiology, Liver enzymology, Marsupialia metabolism, Proto-Oncogene Proteins c-akt metabolism
- Abstract
When faced with harsh environmental conditions, the South American marsupial, monito del monte (Dromiciops gliroides), reduces its body temperature and uses either daily torpor or multiday hibernation to survive. This study used ELISA and multiplex assays to characterize the responses to hibernation by three regulatory components of protein translation machinery [p-eIF2α(S51), p-eIF4E(S209), p-4EBP(Thr37/46)] and eight targets involved in upstream signaling control of translation [p-IGF-1R(Tyr1135/1136), PTEN(S380), p-Akt(S473), p-GSK-3α(S21), p-GSK-3β(S9), p-TSC2(S939), p-mTOR(S2448), and p70S6K(T412)]. Liver, brain and kidney were analyzed comparing control and hibernation (4days continuous torpor) conditions. In the liver, increased phosphorylation of IGF-1R, Akt, GSK-3β, TSC2, mTOR, eIF2α, and 4EBP (1.60-1.98 fold compared to control) occurred during torpor suggesting that the regulatory phosphorylation cascade and protein synthesis remained active during torpor. However, responses by brain and kidney differed; torpor resulted in increased phosphorylation of GSK-3β (2.15-4.17 fold) and TSC2 (2.03-3.65 fold), but phosphorylated Akt decreased (to 34-62% of control levels). Torpor also led to an increase in phosphorylated eIF2α (1.4 fold) content in the brain. These patterns of differential protein phosphorylation in brain and kidney were indicative of suppression of protein translation but also could suggest an increase in antioxidant and anti-apoptotic signaling during torpor. Previous studies of liver metabolism in hibernating eutherian mammals have shown that Akt kinase and its downstream signaling components play roles in facilitating hypometabolism by suppressing energy expensive anabolic processes during torpor. However, the results in this study reveal differences between eutherian and marsupial hibernators, suggesting alternative actions of liver Akt during torpor., (Copyright © 2017 Elsevier Inc. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
36. Exploring the evolution of multicellularity in Saccharomyces cerevisiae under bacteria environment: An experimental phylogenetics approach.
- Author
-
Quintero-Galvis JF, Paleo-López R, Solano-Iguaran JJ, Poupin MJ, Ledger T, Gaitan-Espitia JD, Antoł A, Travisano M, and Nespolo RF
- Abstract
There have been over 25 independent unicellular to multicellular evolutionary transitions, which have been transformational in the complexity of life. All of these transitions likely occurred in communities numerically dominated by unicellular organisms, mostly bacteria. Hence, it is reasonable to expect that bacteria were involved in generating the ecological conditions that promoted the stability and proliferation of the first multicellular forms as protective units. In this study, we addressed this problem by analyzing the occurrence of multicellularity in an experimental phylogeny of yeasts ( Sacharomyces cerevisiae ) a model organism that is unicellular but can generate multicellular clusters under some conditions. We exposed a single ancestral population to periodic divergences, coevolving with a cocktail of environmental bacteria that were inoculated to the environment of the ancestor, and compared to a control (no bacteria). We quantified culturable microorganisms to the level of genera, finding up to 20 taxa (all bacteria) that competed with the yeasts during diversification. After 600 generations of coevolution, the yeasts produced two types of multicellular clusters: clonal and aggregative. Whereas clonal clusters were present in both treatments, aggregative clusters were only present under the bacteria treatment and showed significant phylogenetic signal. However, clonal clusters showed different properties if bacteria were present as follows: They were more abundant and significantly smaller than in the control. These results indicate that bacteria are important modulators of the occurrence of multicellularity, providing support to the idea that they generated the ecological conditions-promoting multicellularity.
- Published
- 2018
- Full Text
- View/download PDF
37. Aerobic power and flight capacity in birds: a phylogenetic test of the heart-size hypothesis.
- Author
-
Nespolo RF, González-Lagos C, Solano-Iguaran JJ, Elfwing M, Garitano-Zavala A, Mañosa S, Alonso JC, and Altimiras J
- Subjects
- Aerobiosis, Animals, Phylogeny, Birds anatomy & histology, Birds physiology, Flight, Animal physiology, Heart anatomy & histology, Heart physiology
- Abstract
Flight capacity is one of the most important innovations in animal evolution; it only evolved in insects, birds, mammals and the extinct pterodactyls. Given that powered flight represents a demanding aerobic activity, an efficient cardiovascular system is essential for the continuous delivery of oxygen to the pectoral muscles during flight. It is well known that the limiting step in the circulation is stroke volume (the volume of blood pumped from the ventricle to the body during each beat), which is determined by the size of the ventricle. Thus, the fresh mass of the heart represents a simple and repeatable anatomical measure of the aerobic power of an animal. Although several authors have compared heart masses across bird species, a phylogenetic comparative analysis is still lacking. By compiling heart sizes for 915 species and applying several statistical procedures controlling for body size and/or testing for adaptive trends in the dataset (e.g. model selection approaches, phylogenetic generalized linear models), we found that (residuals of) heart size is consistently associated with four categories of flight capacity. In general, our results indicate that species exhibiting continuous hovering flight (i.e. hummingbirds) have substantially larger hearts than other groups, species that use flapping flight and gliding show intermediate values, and that species categorized as poor flyers show the smallest values. Our study reveals that on a broad scale, routine flight modes seem to have shaped the energetic requirements of birds sufficiently to be anatomically detected at the comparative level., Competing Interests: Competing interestsThe authors declare no competing or financial interests., (© 2018. Published by The Company of Biologists Ltd.)
- Published
- 2018
- Full Text
- View/download PDF
38. Quantitative Genetic Modeling of the Parental Care Hypothesis for the Evolution of Endothermy.
- Author
-
Bacigalupe LD, Moore AJ, Nespolo RF, Rezende EL, and Bozinovic F
- Abstract
There are two heuristic explanations proposed for the evolution of endothermy in vertebrates: a correlated response to selection for stable body temperatures, or as a correlated response to increased activity. Parental care has been suggested as a major driving force in this context given its impact on the parents' activity levels and energy budgets, and in the offspring's growth rates due to food provisioning and controlled incubation temperature. This results in a complex scenario involving multiple traits and transgenerational fitness benefits that can be hard to disentangle, quantify and ultimately test. Here we demonstrate how standard quantitative genetic models of maternal effects can be applied to study the evolution of endothermy, focusing on the interplay between daily energy expenditure (DEE) of the mother and growth rates of the offspring. Our model shows that maternal effects can dramatically exacerbate evolutionary responses to selection in comparison to regular univariate models (breeder's equation). This effect would emerge from indirect selection mediated by maternal effects concomitantly with a positive genetic covariance between DEE and growth rates. The multivariate nature of selection, which could favor a higher DEE, higher growth rates or both, might partly explain how high turnover rates were continuously favored in a self-reinforcing process. Overall, our quantitative genetic analysis provides support for the parental care hypothesis for the evolution of endothermy. We contend that much has to be gained from quantifying maternal and developmental effects on metabolic and thermoregulatory variation during adulthood.
- Published
- 2017
- Full Text
- View/download PDF
39. Studying the evolutionary significance of thermal adaptation in ectotherms: The diversification of amphibians' energetics.
- Author
-
Nespolo RF, Figueroa J, and Solano-Iguaran JJ
- Subjects
- Amphibians metabolism, Animals, Energy Metabolism, Models, Biological, Phenotype, Phylogeny, Selection, Genetic, Acclimatization physiology, Amphibians classification, Amphibians physiology, Biological Evolution
- Abstract
A fundamental problem in evolutionary biology is the understanding of the factors that promote or constrain adaptive evolution, and assessing the role of natural selection in this process. Here, comparative phylogenetics, that is, using phylogenetic information and traits to infer evolutionary processes has been a major paradigm . In this study, we discuss Ornstein-Uhlenbeck models (OU) in the context of thermal adaptation in ectotherms. We specifically applied this approach to study amphibians's evolution and energy metabolism. It has been hypothesized that amphibians exploit adaptive zones characterized by low energy expenditure, which generate specific predictions in terms of the patterns of diversification in standard metabolic rate (SMR). We complied whole-animal metabolic rates for 122 species of amphibians, and adjusted several models of diversification. According to the adaptive zone hypothesis, we expected: (1) to find "accelerated evolution" in SMR (i.e., diversification above Brownian Motion expectations, BM), (2) that a model assuming evolutionary optima (i.e., an OU model) fits better than a white-noise model and (3) that a model assuming multiple optima (according to the three amphibians's orders) fits better than a model assuming a single optimum. As predicted, we found that the diversification of SMR occurred most of the time, above BM expectations. Also, we found that a model assuming an optimum explained the data in a better way than a white-noise model. However, we did not find evidence that an OU model with multiple optima fits the data better, suggesting a single optimum in SMR for Anura, Caudata and Gymnophiona. These results show how comparative phylogenetics could be applied for testing adaptive hypotheses regarding history and physiological performance in ectotherms., (Copyright © 2016 Elsevier Ltd. All rights reserved.)
- Published
- 2017
- Full Text
- View/download PDF
40. Differential expression of stress candidate genes for thermal tolerance in the sea urchin Loxechinus albus.
- Author
-
Vergara-Amado J, Silva AX, Manzi C, Nespolo RF, and Cárdenas L
- Subjects
- Animals, Thermotolerance genetics, Gene Expression Regulation physiology, Sea Urchins genetics, Stress, Physiological genetics
- Abstract
Marine ectotherms inhabiting intertidal and shallow subtidal environments are continuously exposed to diurnal tidal cycles and seasonal variability in temperature. These organisms have adaptive mechanisms to maintain cellular homeostasis, irrespective of thermal environmental variation. In this study, we describe the molecular responses to thermal stress in the edible sea urchin Loxechinus albus. In particular, we determined the differential expression of a set of molecular markers that have been identified as targets of stress-related responses. These include the heat shock proteins (hsp70 and hsp90), cell detoxification proteins (cytochrome P450), and osmorregulatory proteins (α and ß - Na
+ /K+ ATPase). We exposed individuals to different temperatures; a warm treatment (18±1.0°C), a cold treatment (10±1.0°C), and a control treatment (average local temperature of 14±1.0°C) and differential expression was quantified after 2, 6, 12 and 48h of exposure. Levels of mRNA were quantified by reverse transcription-quantitative polymerase chain reaction, and the relative expression of each gene was calculated using the 18S rRNA gene as a reference, and the control treatment as a calibrator. We found that the expression levels of all studied genes increased during exposure to warmth. The largest increase in expression was observed in cytochrome p450 genes (ca. sixteen-fold); this was followed by increases in the expression of the Na+ /K+ ATPase (ca. eight-fold) and by the hsp (ca. six fold) genes. These results indicate that sea urchin thermal stress responses depend on differential gene-regulation, involving heat-shock, membrane potential, and detoxification genes that generate an integrated adaptive response to acute environmental changes., (Copyright © 2017 Elsevier Ltd. All rights reserved.)- Published
- 2017
- Full Text
- View/download PDF
41. Phylogenetic Analysis Supports the Aerobic-Capacity Model for the Evolution of Endothermy.
- Author
-
Nespolo RF, Solano-Iguaran JJ, and Bozinovic F
- Subjects
- Animals, Fishes, Mammals, Vertebrates, Biological Evolution, Energy Metabolism, Phylogeny
- Abstract
The evolution of endothermy is a controversial topic in evolutionary biology, although several hypotheses have been proposed to explain it. To a great extent, the debate has centered on the aerobic-capacity model (AC model), an adaptive hypothesis involving maximum and resting rates of metabolism (MMR and RMR, respectively; hereafter "metabolic traits"). The AC model posits that MMR, a proxy of aerobic capacity and sustained activity, is the target of directional selection and that RMR is also influenced as a correlated response. Associated with this reasoning are the assumptions that (1) factorial aerobic scope (FAS; MMR/RMR) and net aerobic scope (NAS; MMR - RMR), two commonly used indexes of aerobic capacity, show different evolutionary optima and (2) the functional link between MMR and RMR is a basic design feature of vertebrates. To test these assumptions, we performed a comparative phylogenetic analysis in 176 vertebrate species, ranging from fish and amphibians to birds and mammals. Using disparity-through-time analysis, we also explored trait diversification and fitted different evolutionary models to study the evolution of metabolic traits. As predicted, we found (1) a positive phylogenetic correlation between RMR and MMR, (2) diversification of metabolic traits exceeding that of random-walk expectations, (3) that a model assuming selection fits the data better than alternative models, and (4) that a single evolutionary optimum best fits FAS data, whereas a model involving two optima (one for ectotherms and another for endotherms) is the best explanatory model for NAS. These results support the AC model and give novel information concerning the mode and tempo of physiological evolution of vertebrates.
- Published
- 2017
- Full Text
- View/download PDF
42. Leptin levels, seasonality and thermal acclimation in the Microbiotherid marsupial Dromiciops gliroides: Does photoperiod play a role?
- Author
-
Franco M, Contreras C, Place NJ, Bozinovic F, and Nespolo RF
- Subjects
- 3-Hydroxybutyric Acid blood, Animals, Chile, Cholesterol blood, Hibernation, Marsupialia blood, Marsupialia growth & development, Photoperiod, Seasons, Serum Globulins analysis, Weight Gain, Weight Loss, Acclimatization, Adiposity, Leptin blood, Marsupialia physiology, Nutritional Status
- Abstract
Mammals of the Neotropics are characterized by a marked annual cycle of activity, which is accompanied by several physiological changes at the levels of the whole organism, organs and tissues. The physiological characterization of these cycles is important, as it gives insight on the mechanisms by which animals adjust adaptively to seasonality. Here we studied the seasonal changes in blood biochemical parameters in the relict South American marsupial Dromiciops gliroides ("monito del monte" or "little mountain monkey"), under semi-natural conditions. We manipulated thermal conditions in order to characterize the effects of temperature and season on a battery of biochemical parameters, body mass and adiposity. Our results indicate that monitos experience an annual cycle in body mass and adiposity (measured as leptin levels), reaching a maximum in winter and a minimum in summer. Blood biochemistry confirms that the nutritional condition of animals is reduced in summer instead of winter (as generally reported). This was coincident with a reduction of several biochemical parameters in summer, such as betahydroxybutyrate, cholesterol, total protein concentration and globulins. Monitos seem to initiate winter preparation during autumn and reach maximum body reserves in winter. Hibernation lasts until spring, at which time they use fat reserves and become reproductively active. Sexual maturation during summer would be the strongest energetic bottleneck, which explains the reductions in body mass and other parameters in this season. Overall, this study suggests that monitos anticipate the cold season by a complex interaction of photoperiodic and thermal cues., (Copyright © 2016 Elsevier Inc. All rights reserved.)
- Published
- 2017
- Full Text
- View/download PDF
43. Is Maximum Food Intake in Endotherms Constrained by Net or Factorial Aerobic Scope? Lessons from the Leaf-Eared Mouse.
- Author
-
Maldonado K, Sabat P, Piriz G, Bogdanovich JM, Nespolo RF, and Bozinovic F
- Abstract
Food availability varies substantially throughout animals' lifespans, thus the ability to profit from high food levels may directly influence animal fitness. Studies exploring the link between basal metabolic rate (BMR), growth, reproduction, and other fitness traits have shown varying relationships in terms of both magnitude and direction. The diversity of results has led to the hypothesis that these relationships are modulated by environmental conditions (e.g., food availability), suggesting that the fitness consequences of a given BMR may be context-dependent. In turn, there is indirect evidence that individuals with an increased capacity for aerobic work also have a high capacity for acquiring energy from food. Surprisingly, very few studies have explored the correlation between maximum rates of energy acquisition and BMR in endotherms, and to the best of our knowledge, none have attempted to elucidate relationships between the former and aerobic capacity [e.g., maximum metabolic rate (MMR), aerobic scope (Factorial aerobic scope, FAS; Net aerobic scope, NAS)]. In this study, we measured BMR, MMR, maximum food intake (recorded under low ambient temperature and ad libitum food conditions; MFI), and estimated aerobic scope in the leaf-eared mouse ( Phyllotis darwini ). We, then, examined correlations among these variables to determine whether metabolic rates and aerobic scope are functionally correlated, and whether an increased aerobic capacity is related to a higher MFI. We found that aerobic capacity measured as NAS is positively correlated with MFI in endotherms, but with neither FAS nor BMR. Therefore, it appears plausible that the capacity for assimilating energy under conditions of abundant resources is determined adaptively by NAS, as animals with higher NAS would be promoted by selection. In theory, FAS is an invariant measurement of the extreme capacity for energy turnover in relation to resting expenditure, whereas NAS represents the maximum capacity for simultaneous aerobic processes above maintenance levels. Accordingly, in our study, FAS and NAS represent different biological variables; FAS, in contrast to NAS, may not constrain food intake. The explanations for these differences are discussed in biological and mathematical terms; further, we encourage the use of NAS rather than FAS when analyzing the aerobic capacity of animals.
- Published
- 2016
- Full Text
- View/download PDF
44. A phylogenetic analysis of macroevolutionary patterns in fermentative yeasts.
- Author
-
Paleo-López R, Quintero-Galvis JF, Solano-Iguaran JJ, Sanchez-Salazar AM, Gaitan-Espitia JD, and Nespolo RF
- Abstract
When novel sources of ecological opportunity are available, physiological innovations can trigger adaptive radiations. This could be the case of yeasts (Saccharomycotina), in which an evolutionary novelty is represented by the capacity to exploit simple sugars from fruits (fermentation). During adaptive radiations, diversification and morphological evolution are predicted to slow-down after early bursts of diversification. Here, we performed the first comparative phylogenetic analysis in yeasts, testing the "early burst" prediction on species diversification and also on traits of putative ecological relevance (cell-size and fermentation versatility). We found that speciation rates are constant during the time-range we considered (ca., 150 millions of years). Phylogenetic signal of both traits was significant (but lower for cell-size), suggesting that lineages resemble each other in trait-values. Disparity analysis suggested accelerated evolution (diversification in trait values above Brownian Motion expectations) in cell-size. We also found a significant phylogenetic regression between cell-size and fermentation versatility (R (2) = 0.10), which suggests correlated evolution between both traits. Overall, our results do not support the early burst prediction both in species and traits, but suggest a number of interesting evolutionary patterns, that warrant further exploration. For instance, we show that the Whole Genomic Duplication that affected a whole clade of yeasts, does not seems to have a statistically detectable phenotypic effect at our level of analysis. In this regard, further studies of fermentation under common-garden conditions combined with comparative analyses are warranted.
- Published
- 2016
- Full Text
- View/download PDF
45. The hibernating South American marsupial, Dromiciops gliroides, displays torpor-sensitive microRNA expression patterns.
- Author
-
Hadj-Moussa H, Moggridge JA, Luu BE, Quintero-Galvis JF, Gaitán-Espitia JD, Nespolo RF, and Storey KB
- Subjects
- Animals, Marsupialia genetics, Marsupialia physiology, MicroRNAs metabolism, Mitogen-Activated Protein Kinases genetics, Mitogen-Activated Protein Kinases metabolism, Muscle, Skeletal metabolism, Oncogene Proteins v-erbB genetics, Oncogene Proteins v-erbB metabolism, Phosphatidylinositol 3-Kinases genetics, Phosphatidylinositol 3-Kinases metabolism, Proto-Oncogene Proteins c-akt genetics, Proto-Oncogene Proteins c-akt metabolism, TOR Serine-Threonine Kinases genetics, TOR Serine-Threonine Kinases metabolism, Marsupialia metabolism, MicroRNAs genetics, Torpor
- Abstract
When faced with adverse environmental conditions, the marsupial Dromiciops gliroides uses either daily or seasonal torpor to support survival and is the only known hibernating mammal in South America. As the sole living representative of the ancient Order Microbiotheria, this species can provide crucial information about the evolutionary origins and biochemical mechanisms of hibernation. Hibernation is a complex energy-saving strategy that involves changes in gene expression that are elicited in part by microRNAs. To better elucidate the role of microRNAs in orchestrating hypometabolism, a modified stem-loop technique and quantitative PCR were used to characterize the relative expression levels of 85 microRNAs in liver and skeletal muscle of control and torpid D. gliroides. Thirty-nine microRNAs were differentially regulated during torpor; of these, 35 were downregulated in liver and 11 were differentially expressed in skeletal muscle. Bioinformatic analysis predicted that the downregulated liver microRNAs were associated with activation of MAPK, PI3K-Akt and mTOR pathways, suggesting their importance in facilitating marsupial torpor. In skeletal muscle, hibernation-responsive microRNAs were predicted to regulate focal adhesion, ErbB, and mTOR pathways, indicating a promotion of muscle maintenance mechanisms. These tissue-specific responses suggest that microRNAs regulate key molecular pathways that facilitate hibernation, thermoregulation, and prevention of muscle disuse atrophy.
- Published
- 2016
- Full Text
- View/download PDF
46. Anticipatory gene regulation driven by maternal effects in an insect-host system.
- Author
-
Nespolo RF, Silva AX, Figueroa CC, and Bacigalupe LD
- Abstract
Adaptive mechanisms involved in the prediction of future environments are common in organisms experiencing temporally variable environments. One of these is AGR (anticipatory gene regulation); in which differential gene expression occur in an individual, triggered by the experience of an ancestor. In this study, we explored the existence of AGR driven by a maternal effect, in an insect-host system. We analyzed gene expression of detoxifying systems in aphids across two generations, by shifting mothers and offspring from chemically defended to nondefended hosts, and vice versa. Then, we measured fitness (intrinsic rate of increase) and the relative abundance of transcripts from certain candidate genes in daughters, using RT-qPCR (quantitative reverse-transcription PCR). We found AGR in most cases, but responses varied according to the system being analyzed. For some pathways (e.g., cathepsins), the experience of both mothers and offsprings affected the response (i.e., when both, mother and daughter grew in the defended host, the maximum response was elicited; when only the mother grew in the defended host, an intermediate response was elicited; and when both, mother and daughter grew in a nondefended host, the response was undetectable). In other cases (esterases and GSTs), gene over-expression was maintained even if the daughter was transferred to the nondefended host. In spite of these changes at the gene-regulatory level, fitness was constant across hosts, suggesting that insects keep adapted thanks to this fluctuating gene expression. Also, it seems that that telescopic reproduction permits aphids to anticipate stressful environments, by minute changes in the timing of differential gene expression.
- Published
- 2015
- Full Text
- View/download PDF
47. Model falsification, quantitative genetics, and the evolution of endothermy: are we choosing the right tool?
- Author
-
Nespolo RF and Roff DA
- Subjects
- Animals, Body Temperature Regulation genetics, Energy Metabolism genetics, Models, Genetic
- Published
- 2014
- Full Text
- View/download PDF
48. The effects of poly-unsaturated fatty acids on the physiology of hibernation in a South American marsupial, Dromiciops gliroides.
- Author
-
Contreras C, Franco M, Place NJ, and Nespolo RF
- Subjects
- Animals, Body Mass Index, Energy Metabolism physiology, Seasons, Temperature, Torpor physiology, Dietary Fats, Unsaturated metabolism, Fatty Acids, Unsaturated metabolism, Hibernation physiology, Marsupialia metabolism, Marsupialia physiology
- Abstract
Many mammals hibernate, which is a profound lethargic state of several weeks or months during winter, that represents a transitory episode of hetherothermy. As with other cases of dormancy, the main benefit of hibernation seems to be energy saving. However, the depth and duration of torpor can be experimentally modified by the composition of food, especially by fattyacid composition. In eutherians, diets rich in unsaturated fatty acids (i.e., fatty acids with at least one double bond) lengthen torpor, reduce metabolism and permit hibernation at lower temperatures. Here we studied whether diets varying in fatty acid composition have an effect on the physiology of hibernation in a South American marsupial, Dromiciops gliroides. We designed a factorial experiment where thermal acclimation (two levels: natural versus constant temperature) was combined with diet acclimation: saturated (i.e., diets with high concentration of saturated fatty acids) versus unsaturated (i.e., diets with high concentration of unsaturated fatty acids). We measured energy metabolism in active and torpid individuals, as well as torpor duration, and a suite of 12 blood biochemical parameters. After a cafeteria test, we found that D. gliroides did not show any preference for a given diet. Also, we did not find effects of diet on body temperature during torpor, or its duration. However, saturated diets, combined with high temperatures provoked a disproportionate increase in fat utilization, leading to body mass reduction. Those animals were more active, and metabolized more fats than those fed with a high proportion of unsaturated fatty acids (="unsaturated diets"). These results contrast with previous studies, which showed a significant effect of fatty acid composition of diets on food preferences and torpor patterns in mammals., (Copyright © 2014 Elsevier Inc. All rights reserved.)
- Published
- 2014
- Full Text
- View/download PDF
49. Thermoregulatory capacities and torpor in the South American marsupial, Dromiciops gliroides.
- Author
-
Cortés PA, Franco M, Moreno-Gómez FN, Barrientos K, and Nespolo RF
- Subjects
- Acclimatization, Animals, Basal Metabolism, Body Weight, Norepinephrine pharmacology, Thermogenesis drug effects, Marsupialia physiology, Thermogenesis physiology, Torpor
- Abstract
During periods of adverse conditions small endotherms depend on a continuous supply of food and energy to maintain body temperature. Thus, rapid and reversible phenotypic modifications at different organizational levels are key for an efficient use of resources and survival. In this study, we provide a quantitative description of thermoregulatory capacities and energy-saving strategies in the Chilean marsupial Dromiciops gliroides. In particular, we evaluated the effect of thermal acclimation on basal metabolic rate (BMR), thermal conductance (C) and torpor patterns, as well as the presence of non-shivering thermogenesis (NST) as a rewarming mechanism in this marsupial. Non-significant effects of thermal acclimation were observed in BMR, C and body mass, but cold-acclimated individuals exhibited significantly longer torpor bouts. Also, minimum body temperature during torpor, inter-bout body temperature and arousal rewarming rate were lower in cold-acclimated animals. Furthermore, we found that D. gliroides did not display NST in response to Norepinephrine. Hence, despite the high regulation of torpor of other species, D. gliroides shows low flexibility in the ability to adjust energy expenditure and insulation properties, and (as in other marsupials) NST do not seems to be important as thermoregulatory mechanism., (Copyright © 2014 Elsevier Ltd. All rights reserved.)
- Published
- 2014
- Full Text
- View/download PDF
50. Testing the aerobic model for the evolution of endothermy: implications of using present correlations to infer past evolution.
- Author
-
Nespolo RF and Roff DA
- Subjects
- Animals, Biological Evolution, Mutation, Body Temperature Regulation genetics, Energy Metabolism genetics, Models, Genetic
- Abstract
The evolution of endothermy is one of the most puzzling events in vertebrate evolution, for which several hypotheses have been proposed. The most accepted model is the aerobic model, which assumes the existence of a genetic correlation between resting metabolic rate (RMR) and maximum aerobic capacity (whose standard measure is maximum metabolic rate, MMR). This model posits that directional selection acted on maximum aerobic capacity and resting metabolic rate increased as a correlated response, in turn increasing body temperature. To test this hypothesis we implemented a simple two-trait quantitative genetic model in which RMR and MMR are initially independent of each other and subject to stabilizing selection to two separate optima. We show mutations that arise that affect both traits can lead to the evolution of a genetic correlation between the traits without any significant shifting of the two trait means. Thus, the presence of a genetic correlation between RMR and MMR in living animals provides no support in and of itself for the past elevation of metabolic rate via selection on aerobic capacity. This result calls into question the testability of the hypothesis that RMR increased as a correlated response to directional selection on MMR, in turn increasing body temperature, using quantitative genetics. Given the difficulty in studying ancient physiological processes, we suggest that approaches such as this model are a valuable alternative for analyzing possible mechanisms of endothermy evolution.
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.