234 results on '"Nerem, R. S."'
Search Results
2. Ocean mass, sterodynamic effects, and vertical land motion largely explain US coast relative sea level rise
- Author
-
Harvey, T. C., Hamlington, B. D., Frederikse, T., Nerem, R. S., Piecuch, C. G., Hammond, W. C., Blewitt, G., Thompson, P. R., Bekaert, D. P. S., Landerer, F. W., Reager, J. T., Kopp, R. E., Chandanpurkar, H., Fenty, I., Trossman, D., Walker, J. S., and Boening, C.
- Published
- 2021
- Full Text
- View/download PDF
3. EXPLAINING EXTREME EVENTS OF 2017 : From A Climate Perspective
- Author
-
Herring, Stephanie C., Christidis, Nikolaos, Hoell, Andrew, Hoerling, Marty, Stott, Peter A., Owen, Rebecca, Vano, Julie A., Dettinger, Michael D., Cifelli, Rob, Curtis, David, Dufour, Alexis, Miller, Kathleen, Olsen, J. Rolf, Wilson, Anna M., Nerem, R. S., Fasullo, J., Hoell, Andrew, Perlwitz, Judith, Dewes, Candida, Wolter, Klaus, Rangwala, Imtiaz, Quan, Xiao-Wei, Eischeid, Jon, Wang, Hailan, Schubert, Siegfried D., Koster, Randal D., Chang, Yehui, Christidis, Nikolaos, Betts, Richard A., Stott, Peter A., de Abreu, Rafael C., Cunningham, Christopher, Rudorff, Conrado M., Rudorff, Natalia, Abatan, Abayomi A., Dong, Buwen, Lott, Fraser C., Tett, Simon F. B., Sparrow, Sarah N., Navarro, Juan C. Acosta, Ortega, Pablo, García-Serrano, Javier, Guemas, Virginie, Tourigny, Etienne, Cruz-García, Rubén, Massonnet, François, Doblas-Reyes, Francisco J., Kew, Sarah F., Philip, Sjoukje Y., van Oldenborgh, Geert Jan, Otto, Friederike E. L., Vautard, Robert, van der Schrier, Gerard, Funk, Chris, Hoell, Andrew, Nicholson, Sharon, Korecha, Diriba, Galu, Gideon, Artan, Guleid, Teshome, Fetene, Hailermariam, Kinfe, Segele, Zewdu, Harrison, Laura, Tadege, Abebe, Atheru, Zachary, Pomposi, Catherine, Pedreros, Diego, Rimi, Ruksana H., Haustein, Karsten, Barbour, Emily J., Allen, Myles R., Takahashi, Chiharu, Shiogama, Hideo, Imada, Yukiko, Kosaka, Yu, Mori, Masato, Arai, Miki, Kamae, Youichi, Watanabe, Masahiro, Min, Seung-Ki, Kim, Yeon-Hee, Park, In-Hong, Lee, Donghyun, Sparrow, Sarah, Wallom, David, Stone, Dáithí, Sun, Ying, Dong, Siyan, Zhang, Xuebin, Stott, Peter, Hu, Ting, Wang, Shanshan, Yuan, Xing, Wu, Renguang, Chen, Yang, Chen, Wei, Su, Qin, Luo, Feifei, Sparrow, Sarah, Tian, Fangxing, Dong, Buwen, Tett, Simon F. B., Lott, Fraser C., Wallom, David, Zhou, Chunlüe, Wang, Kaicun, Qi, Dan, Tan, Jianguo, Perkins-Kirkpatrick, S. E., King, A. D., Cougnon, E. A., Grose, M. R., Oliver, E. C. J., Holbrook, N. J., Lewis, S. C., Pourasghar, F., Hope, Pandora, Black, Mitchell T., Lim, Eun-Pa, Dowdy, Andrew, Wang, Guomin, Pepler, Acacia S., and Fawcett, Robert J. B.
- Published
- 2019
4. Climate-change–driven accelerated sea-level rise detected in the altimeter era
- Author
-
Nerem, R. S., Beckley, B. D., Fasullo, J. T., Hamlington, B. D., Masters, D., and Mitchum, G. T.
- Published
- 2018
5. The influence of ENSO on global terrestrial water storage using GRACE
- Author
-
Phillips, T., Nerem, R. S, Fox-Kemper, Baylor, Famiglietti, J. S, and Rajagopalan, B.
- Subjects
Niño-southern-oscillation ,gravity ,sea ,teleconnections ,variability - Abstract
The influence of the El Nino/Southern Oscillation (ENSO) on terrestrial water storage is analyzed for the time period 2003–2010 using monthly estimates of continental water storage from the Gravity Recovery and Climate Experiment (GRACE). Peak correlation between NOAA's Multivariate ENSO Index (MEI) and the measured mass anomaly timeseries shows an R2 of 0.65 for the Amazon Basin and Borneo in Southeast Asia. By including a Hilbert transformation of the MEI to account for time lag, the R2is improved to 0.76. Tropical regions show strong negative correlation with the MEI and arid regions are positively correlated. GRACE is able to detect all the significant known ENSO teleconnection patterns around the globe, including Alaska and Antarctica. In addition, a significant correlation suggests some of Greenland's recent mass loss could be ENSO-related.
- Published
- 2012
6. Impacts of SLR Ground Station Geographic Distribution on Time‐Variable Gravity Recovery
- Author
-
Tucker, E. S., primary, Nerem, R. S., additional, and Loomis, B. D., additional
- Published
- 2023
- Full Text
- View/download PDF
7. Simulation of a Future SLR Satellite to Improve Low‐Degree Gravity Estimates
- Author
-
Tucker, E. S., primary, Nerem, R. S., additional, and Loomis, B. D., additional
- Published
- 2022
- Full Text
- View/download PDF
8. Possible Future Use of Laser Gravity Gradiometers
- Author
-
Scientific Reports Office, Bender, P. L., Nerem, R. S., Wahr, J. M., Beutler, G., editor, Drinkwater, M. R., editor, Rummel, R., editor, and Von Steiger, R., editor
- Published
- 2003
- Full Text
- View/download PDF
9. Measuring the Distribution of Ocean Mass Using GRACE
- Author
-
Nerem, R. S., Wahr, J. M., Leuliette, E. W., Beutler, G., editor, Drinkwater, M. R., editor, Rummel, R., editor, and Von Steiger, R., editor
- Published
- 2003
- Full Text
- View/download PDF
10. The Effect of Signal-to-Noise Ratio on the Study of Sea Level Trends
- Author
-
Hamlington, B. D., Leben, R. R., Nerem, R. S., and Kim, K.-Y.
- Published
- 2011
11. The Development of the NASA GSFC and NIMA Joint Geopotential Model
- Author
-
Lemoine, F. G., Smith, D. E., Kunz, L., Smith, R., Pavlis, E. C., Pavlis, N. K., Klosko, S. M., Chinn, D. S., Torrence, M. H., Williamson, R. G., Cox, C. M., Rachlin, K. E., Wang, Y. M., Kenyon, S. C., Salman, R., Trimmer, R., Rapp, R. H., Nerem, R. S., Schwarz, Klaus-Peter, editor, Segawa, Jiro, editor, Fujimoto, Hiromi, editor, and Okubo, Shuhei, editor
- Published
- 1997
- Full Text
- View/download PDF
12. Applications of Global Gravity Field Models in Geodesy and Oceanography
- Author
-
Nerem, R. S., Klosko, S. M., Pavlis, N. K., Torge, Wolfgang, editor, Rapp, Richard H., editor, Cazenave, Anny A., editor, and Nerem, R. Steven, editor
- Published
- 1996
- Full Text
- View/download PDF
13. Secular Variations of the Zonal Harmonics and Polar Motion as Geophysical Constraints
- Author
-
Nerem, R. S., Klosko, S. M., Torge, Wolfgang, editor, Rapp, Richard H., editor, Cazenave, Anny A., editor, and Nerem, R. Steven, editor
- Published
- 1996
- Full Text
- View/download PDF
14. Preliminary Results from the Joint GSFC/DMA Gravity Model Project
- Author
-
Nerem, R. S., Lerch, F. J., Salman, R., Trimmer, R., Kenyon, S., Rapp, R. H., Pavlis, N. K., Klosko, S. M., Chan, J. C., Torrence, M. H., Wang, Y. M., Williamson, R. G., Pavlis, E. C., Torge, Wolfgang, editor, Rapp, Richard H., editor, Cazenave, Anny A., editor, and Nerem, R. Steven, editor
- Published
- 1996
- Full Text
- View/download PDF
15. Extrapolating Empirical Models of Satellite‐Observed Global Mean Sea Level to Estimate Future Sea Level Change
- Author
-
Nerem, R. S., primary, Frederikse, T., additional, and Hamlington, B. D., additional
- Published
- 2022
- Full Text
- View/download PDF
16. Recent Greenland Ice Mass Loss by Drainage System from Satellite Gravity Observations
- Author
-
Luthcke, S. B., Zwally, H. J., Abdalati, W., Rowlands, D. D., Ray, R. D., Nerem, R. S., Lemoine, F. G., McCarthy, J. J., and Chinn, D. S.
- Published
- 2006
- Full Text
- View/download PDF
17. An Improved Model of the Earth’s Gravity Field: GEM-T3
- Author
-
Nerem, R. S., Lerch, F. J., Putney, B. H., Klosko, S. M., Patel, G. B., Williamson, R. G., Pavlis, E. C., Mueller, Ivan I., editor, and Colombo, Oscar L., editor
- Published
- 1992
- Full Text
- View/download PDF
18. Gravity Modeling of Mars and Venus at NASA/GSFC
- Author
-
Smith, D. E., Nerem, R. S., Mueller, Ivan I., editor, and Colombo, Oscar L., editor
- Published
- 1992
- Full Text
- View/download PDF
19. Simulation study of a follow-on gravity mission to GRACE
- Author
-
Loomis, Bryant D., Nerem, R. S., and Luthcke, S. B.
- Published
- 2012
- Full Text
- View/download PDF
20. Design considerations for a dedicated gravity recovery satellite mission consisting of two pairs of satellites
- Author
-
Wiese, D. N., Nerem, R. S., and Lemoine, F. G.
- Published
- 2012
- Full Text
- View/download PDF
21. Orbit Determination and Sea Level Rise: How Astrodynamics Informs Us About the Climate
- Author
-
Nerem, R. S. and Chambers, D. P.
- Published
- 2009
- Full Text
- View/download PDF
22. Alternative mission architectures for a gravity recovery satellite mission
- Author
-
Wiese, D. N., Folkner, W. M., and Nerem, R. S.
- Published
- 2009
- Full Text
- View/download PDF
23. Neutral Composition and Density Effects in the October-November 2003 Magnetic Storms
- Author
-
Immel, T. J., primary, Crowley, Geoff, additional, Forbes, J. M., additional, Nerem, R. S., additional, and Sutton, E. K., additional
- Published
- 2013
- Full Text
- View/download PDF
24. Global Scale Variations in Sea Surface Topography Determined from Satellite Altimetry
- Author
-
Koblinsky, C. J., primary, Nerem, R. S., additional, Williamson, R. G., additional, and Klosko, S. M., additional
- Published
- 2013
- Full Text
- View/download PDF
25. Past, Present, and Future Pacific Sea‐Level Change
- Author
-
Hamlington, B. D., primary, Frederikse, T., additional, Thompson, P. R., additional, Willis, J. K., additional, Nerem, R. S., additional, and Fasullo, J. T., additional
- Published
- 2021
- Full Text
- View/download PDF
26. Possible Future Use of Laser Gravity Gradiometers
- Author
-
Bender, P. L., Nerem, R. S., and Wahr, J. M.
- Published
- 2003
- Full Text
- View/download PDF
27. Forced Patterns of Sea Level Rise in the Community Earth System Model Large Ensemble From 1920 to 2100
- Author
-
Fasullo, John T., primary, Gent, Peter R., additional, and Nerem, R. S., additional
- Published
- 2020
- Full Text
- View/download PDF
28. Development of a Daily GRACE Mascon Solution for Terrestrial Water Storage
- Author
-
Croteau, M. J., primary, Nerem, R. S., additional, Loomis, B. D., additional, and Sabaka, T. J., additional
- Published
- 2020
- Full Text
- View/download PDF
29. Global Mean Sea Level Variations from TOPEX/POSEIDON Altimeter Data
- Author
-
Nerem, R. S.
- Published
- 1995
30. Gravity Models from CHAMP and other Satellite Data
- Author
-
Lemoime, Frank G, Cox, C. M, Chinn, D. S, Zelensky, N. P, Thompson, B. F, Rowlands, D. D, Luthdke, S. B, and Nerem, R. S
- Subjects
Spacecraft Instrumentation And Astrionics - Abstract
CHAMP spacecraft is the first of a series of new spacecraft missions that are revolutionizing our ability to model the Earth's geopotential. We report on the analysis of over 100 days of CHAMP data in 2001 and 2002, merged with tracking data of other satellites such as Jason, Topex, GFO, Starlette, Stella, Spot-2, as well as satellite altimetry. We find that the CHAMP-only component of these solutions is a significant improvement over pre-CHAMP satellite only models with respect to the high degree information expressed by the geopotential model coefficients. For example, the variance of the differences with altimeter-derived anomalies through degree 70 is 2.80 mGal(sup 2) for the CHAMP-only solution based on 87 days of data vs. 10.19 mGal(sup 2) for EGM96S. Nonetheless, in order to model properly the various resonances to which different satellites are sensitive, we must include other satellite data. We evaluate the performance of these new CHAMP derived solutions with EGM96 and the EIGEN series of solutions. We review carefully the performance of these models for altimetric satellites.
- Published
- 2003
31. An investigation of recent observed changes in the Earth's oblateness
- Author
-
Gross, R. S, Nerem, R. S, Leuliette, E. W, Parker, J. S, Cazenave, A, Lemoine, J. M, and Chambers, D. P
- Subjects
Geophysics - Published
- 2002
32. CHAMP Tracking and Accelerometer Data Analysis Results
- Author
-
Lemoine, Frank G, Luthcke, S. B, Rowlands, D. D, Pavlis, D. E, Colombo, O. L, Ray, Richard D, Thompson, B, Nerem, R. S, Williams, Teresa A, and Smith, David E
- Subjects
Geophysics - Abstract
The CHAMP (Challenging Minisatellite Payload) mission's unique combination of sensors and orbit configuration will enable unprecedented improvements in modeling and understanding the Earth's static gravity field and its temporal variations. CHAMP is the first of two missions (GRACE (Gravity Recovery and Climate Experiment) to be launched in the later part of '01) that combine a new generation of GPS (Global Positioning System) receivers, a high precision three axis accelerometer, and star cameras for the precision attitude determination. In order to isolate the gravity signal for science investigations, it is necessary to perform a detailed reduction and analysis of the GPS and SLR tracking data in conjunction with the accelerometer and attitude data. Precision orbit determination based on the GPS and SLR (Satellite Laser Ranging) tracking data will isolate the orbit perturbations, while the accelerometer data will be used to distinguish the surface forces from those due to the geopotential (static, and time varying). In preparation for the CHAMP and GRACE missions, extensive modifications have been made to NASA/GSFC's GEODYN orbit determination software to enable the simultaneous reduction of spacecraft tracking (e.g. GPS and SLR), three axis accelerometer and precise attitude data. Several weeks of CHAMP tracking and accelerometer data have been analyzed and the results will be presented. Precision orbit determination analysis based on tracking data alone in addition to results based on the simultaneous reduction of tracking and accelerometer data will be discussed. Results from a calibration of the accelerometer will be presented along with the results from various orbit determination strategies. Gravity field modeling status and plans will be discussed.
- Published
- 2002
33. Gravity Fields from CHAMP Mission Data
- Author
-
Lemoine, Frank G, Luthcke, S. B, Cox, C. M, Rowlands, D. D, Thompson, B. F, Chinn, D. S, Williams, T. A, and Nerem, R. S
- Subjects
Geophysics - Abstract
The CHAMP mission, launched in July 2000, is the first in a series of missions that will revolutionize our ability to model the Earth s geopotential. The CHAMP spacecraft is equipped for precision tracking by the Global Positioning System (GPS) and Satellite Laser Ranging (SLR) along with a precision accelerometer to provide measurements of the surface forces. Preliminary satellite-only geopotential solutions with only 30 days of CHAMP data are, by some criteria, as strong as solutions made from tracking data collected over the previous 30 years of the space age. Compared to EGM96, CHAMP makes notable contributions in regions where the terrestrial data (surface gravimetry and altimetry) were weak, for example in the polar regions, in the Amazon and the Himalayas. The CHAMP data allow us to separate the geoid from the dynamic ocean topography (DOT) up to at least degree 25 rather than just under degree 20 as in EGM96. We report on satellite-only and combination models that incorporate up to 100 days of CHAMP data as well as other satellite data. We report on our updated processing of the CHAMP tracking and accelerometer data and evaluate the performance of the geopotential models using a variety of tests.
- Published
- 2002
34. Recent Results from CHAMP Tracking and Accelerometer Data Analysis
- Author
-
Luthcke, S. B, Rowlands, D. D, Lemoine, F. G, Nerem, R. S, Thompson, B, Pavlis, E, Williams, T. A, Colombo, O. L, and Chao, Benjamin F
- Subjects
Geophysics - Abstract
The CHAMP mission's unique combination of sensors and orbit configuration will enable unprecedented improvements in modeling and understanding the Earth's static gravity field and its temporal variations. CHAMP is the first of two missions (GRACE to be launched in the early part of 02') that combine a new generation of Global Positioning System (GPS) receivers, a high precision three-axis accelerometer, and star cameras for the precision attitude determination. In order to isolate the gravity signal for science investigations, it is necessary to perform a detailed reduction and analysis of the GPS and Satellite Laser Ranging (SLR) tracking data in conjunction with the accelerometer and attitude data. Precision orbit determination based on the GPS and SLR tracking data will isolate the orbit perturbations, while the accelerometer data will be used to distinguish the non-gravitational forces from those due to the geopotential (static, and time varying). In preparation for the CHAMP and GRACE missions, extensive modifications have been made to NASA/GSFC's GEODYN orbit determination software to enable the simultaneous reduction of spacecraft tracking (e.g. GPS and SLR), three-axis accelerometer and precise attitude data. Several weeks of CHAMP tracking and accelerometer data have been analyzed and the results will be presented. Precision orbit determination analysis based on tracking data alone in addition to results based on the simultaneous reduction of tracking and accelerometer data will be discussed. Results from a calibration of the accelerometer will be presented along with the results from various orbit determination strategies.
- Published
- 2002
35. An Assessment of Gravity Recovery with CHAMP Data
- Author
-
Lemoine, F. G, Luthcke, S. B, Rowlands, D. D, Cox, C. M, Chinn, D. S, Pavlis, D. E, Thompson, B, Nerem, R. S, Ray, R, and Chao, Benjamin F
- Subjects
Geophysics - Abstract
The CHAMP mission, launched in July 2000, is the first in the series of mapping missions for the Earth's geopotential scheduled for the first decade of the new millenium. Its unique contributions compared to all the previous generation of satellites whose data have been included in Earth geopotential models are the precision global tracking with GPS data, and the availability of precision accelerometry data to model the nonconservative forces. Over the past year we have implemented extensive modifications to our GEODYN orbit determination processing code and ancillary data preprocessors to process the GPS and accelerometry data from missions such as CHAMP and GRACE. We report on the analysis of up to 60 days of CHAMP data and how these data contribute to Earth geopotential solutions where the base model is a derivative of EGM96. Preliminary results with only 12.5 days of data processed clearly show the ability of the CHAMP data to improve the modeling of the zonals (1=10 to 40), the m-dailies, the primary resonance terms, and the sectoral harmonics. We will detail the results of our calibrations of the CHAMP accelerometry and assess the quality of test solutions that include these CHAMP data.
- Published
- 2002
36. Long wavelength geopotential and tidal modeling for geodynamics and ocean dynamics: GEM-T3 and GEM-T3S
- Author
-
Nerem, R. S., primary, Lerch, F. J., additional, Putney, B. H., additional, Klosko, S. M., additional, Williamson, R. G., additional, Patel, G. B., additional, and Pavlis, E. C., additional
- Published
- 1994
- Full Text
- View/download PDF
37. Improvements in the accuracy of Goddard Earth Models (GEM)
- Author
-
Lerch, F. J., primary, Nerem, R. S., additional, Putney, B. H., additional, Klosko, S. M., additional, Patel, G. B., additional, Williamson, R. G., additional, Iz, H. B., additional, Chan, J. C., additional, and Pavlis, E. C., additional
- Published
- 1993
- Full Text
- View/download PDF
38. An Improved Model of the Earth’s Gravity Field: GEM-T3
- Author
-
Nerem, R. S., primary, Lerch, F. J., additional, Putney, B. H., additional, Klosko, S. M., additional, Patel, G. B., additional, Williamson, R. G., additional, and Pavlis, E. C., additional
- Published
- 1992
- Full Text
- View/download PDF
39. Gravity Modeling of Mars and Venus at NASA/GSFC
- Author
-
Smith, D. E., primary and Nerem, R. S., additional
- Published
- 1992
- Full Text
- View/download PDF
40. CHARACTERIZATION OF GLOBAL MEAN SEA LEVEL VARIATIONS OBSERVED BY TOPEX/POSEIDON USING EMPIRICAL ORTHOGONAL FUNCTIONS
- Author
-
Nerem, R. S., Rachlin, K. E., and Hughes stx inc., B. D.
- Published
- 1997
41. State of the Climate in 2018
- Author
-
Arndt, D. S., Blunden, J., Dunn, R. J. H., Stanitski, D. M., Gobron, N., Willett, K. M., Sanchez-lugo, A., Berrisford, P., Morice, C., Nicolas, Jp, Carrea, L., Woolway, R. I., Merchant, C. J., Dokulil, M. T., De Eyto, E., Degasperi, C. L., Korhonen, J., Marszelewski, W., May, L., Paterson, A. M., Rusak, J. A., Schladow, S. G., Schmid, M., Verburg, P., Watanabe, S., Weyhenmeyer, G. A., King, A. D., Donat, M. G., Christy, J. R., Po-chedley, S., Mears, C. R., Haimberger, L., Covey, C., Randel, W., Noetzli, J., Biskaborn, B. K., Christiansen, H. H., Isaksen, K., Schoeneich, P., Smith, S., Vieira, G., Zhao, L., Streletskiy, D. A., Robinson, D. A., Pelto, M., Berry, D. I., Bosilovich, M. G., Simmons, A. J., Mears, C., Ho, S. P., Bock, O., Zhou, X., Nicolas, J, Vose, R. S., Adler, R., Gu, G., Becker, A., Yin, X, Tye, M. R., Blenkinsop, S., Durre, I., Ziese, M., Collow, A. B. Marquardt, Rustemeier, E., Foster, M. J., Di Girolamo, L., Frey, R. A., Heidinger, A. K., Sun-mack, S., Phillips, C., Menzel, W. P., Stengel, M., Zhao, G., Kim, H., Rodell, M., Li, B., Famiglietti, J. S., Scanlon, T., Van Der Schalie, R., Preimesberger, W., Reimer, C., Hahn, S., Gruber, A., Kidd, R., De Jeu, R. A. M., Dorigo, W. A., Barichivich, J., Osborn, T. J., Harris, I., Van Der Schrier, G., Jones, P. D., Miralles, D. G., Martens, B., Beck, H. E., Dolman, A. J., Jimenez, C., Mccabe, M. F., Wood, E. F., Allan, R., Azorin-molina, C., Mears, C. A., Mcvicar, T. R., Mayer, M., Schenzinger, V., Hersbach, H., Stackhouse, P. W., Jr., Wong, T., Kratz, D. P., Sawaengphokhai, P., Wilber, A. C., Gupta, S. K., Loeb, N. G., Dlugokencky, E. J., Hall, B. D., Montzka, S. A., Dutton, G., Muhle, J., Elkins, J. W., Miller, Br, Remy, S., Bellouin, N., Kipling, Z., Ades, M., Benedetti, A., Boucher, O., Weber, M., Steinbrecht, W., Arosio, C., Van Der A, R., Frith, S. M., Anderson, J., Coldewey-egbers, M., Davis, S., Degenstein, D., Fioletov, V. E., Froidevaux, L., Hubert, D., Long, C. S., Loyola, D., Rozanov, A., Roth, C., Sofieva, V., Tourpali, K., Wang, R., Wild, J. D., Davis, S. M., Rosenlof, K. H., Hurst, D. F., Selkirk, H. B., Vomel, H., Ziemke, J. R., Cooper, O. R., Flemming, J., Inness, A., Pinty, B., Kaiser, J. W., Van Der Werf, G. R., Hemming, D. L., Garforth, J., Park, T., Richardson, A. D., Rutishauser, T., Sparks, T. H., Thackeray, S. J., Myneni, R., Lumpkin, R., Huang, B., Kennedy, J., Xue, Y., Zhang, H. -m., Hu, C., Wang, M., Johnson, G. C., Lyman, J. M., Boyer, T., Cheng, L., Domingues, C. M., Gilson, J., Ishii, M., Killick, R. E., Monselesan, D., Purkey, S. G., Wijffels, S. E., Locarnini, R., Yu, L., Jin, X., Stackhouse, P. W., Kato, S., Weller, R. A., Thompson, P. R., Widlansky, M. J., Leuliette, E., Sweet, W., Chambers, D. P., Hamlington, B. D., Jevrejeva, S., Marra, J. J., Merrifield, M. A., Mitchum, G. T., Nerem, R. S., Kelble, C., Karnauskas, M., Hubbard, K., Goni, G., Streeter, C., Dohan, K., Franz, B. A., Cetinic, I., Karakoylu, E. M., Siegel, D. A., Westberry, T. K., Feely, R. A., Wanninkhof, R., Carter, B. R., Landschutzer, P., Sutton, A. J., Cosca, C., Trinanes, J. A., Baxter, S., Schreck, C., Bell, G. D., Mullan, A. B., Pezza, A. B., Coelho, C. A. S., Wang, B., He, Q., Diamond, H. J., Schreck, C. J., Blake, E. S., Landsea, C. W., Wang, H., Goldenberg, S. B., Pasch, R. J., Klotzbach, P. J., Kruk, M. C., Camargo, S. J., Trewin, B. C., Pearce, P. R., Lorrey, A. M., Domingues, R., Goni, G. J., Knaff, J. A., Lin, I. -i., Bringas, F., Richter-menge, J., Osborne, E., Druckenmiller, M., Jeffries, M. O., Overland, J. E., Hanna, E., Hanssen-bauer, I., Kim, S. -j., Walsh, J. E., Bhatt, U. S., Timmermans, M. -l., Ladd, C., Perovich, D., Meier, W., Tschudi, M., Farrell, S., Hendricks, S., Gerland, S., Haas, C., Krumpen, T., Polashenski, C., Ricker, R, Webster, M., Stabeno, P. J., Tedesco, M., Box, J. E., Cappelen, J., Fausto, R. S., Fettweis, X., Andersen, J. K., Mote, T., Smeets, C. J. P. P., Van As, D., Van De Wal, R. S. W., Romanovsky, V. E., Smith, S. L., Shiklomanov, N. I., Kholodov, A. L., Drozdov, D. S., Malkova, G. V., Marchenko, S. S., Jella, K. B., Mudryk, L., Brown, R., Derksen, C., Luojus, K., Decharme, B., Holmes, R. M., Shiklomanov, A. I., Suslova, A., Tretiakov, M., Mcclelland, J. W., Spencer, R. G. M., Tank, S. E., Epstein, H., Bhatt, U., Raynolds, M., Walker, D., Forbes, B., Phoenix, G., Bjerke, J., Tommervik, H., Karlsen, S. -r., Goetz, S., Jia, G., Bernhard, G. H., Grooss, J. -u., Ialongo, I., Johnsen, B., Lakkala, K., Manney, G. L., Mueller, R., Scambos, T., Stammerjohn, S., Clem, K. R., Barreira, S., Fogt, R. L., Colwell, S., Keller, L. M., Lazzara, M. A., Reid, P., Massom, R. A., Lieser, J. L., Meijers, A., Sallee, J. -b., Grey, A., Johnson, K., Arrigo, K., Swart, S., King, B., Meredith, M., Mazloff, M., Scardilli, A., Claus, F., Shuman, C. A., Kramarova, N., Newman, P. A., Nash, E. R., Strahan, S. E., Johnson, B., Pitts, M., Santee, M. L., Petropavlovskikh, I., Braathen, G. O., Coy, L., De Laat, J., Bissolli, P., Ganter, C., Li, T., Mekonnen, A., Gleason, K., Smith, A., Fenimore, C., Heim, R. R., Jr., Nauslar, N. J., Brown, T. J., Mcevoy, D. J., Lareau, N. P., Amador, J. A., Hidalgo, H. G., Alfaro, E. J., Calderon, B., Mora, N., Stephenson, T. S., Taylor, M. A., Trotman, A. R., Van Meerbeeck, C. J., Campbell, J. D., Brown, A., Spence, J., Martinez, R., Diaz, E., Marin, D., Hernandez, R., Caceres, L., Zambrano, E., Nieto, J., Marengo, J. A., Espinoza, J. C., Alves, L. M., Ronchail, J., Lavado-casimiro, J. W., Ramos, I., Davila, C., Ramos, A. M., Diniz, F. A., Aliaga-nestares, V., Castro, A. Y., Stella, J. L., Aldeco, L. S., Diaz, D. A. Campos, Misevicius, N., Kabidi, K., Sayouri, A., Elkharrim, M., Mostafa, A. E., Hagos, S., Feng, Z., Ijampy, J. A., Sima, F., Francis, S. D., Tsidu, G. Mengistu, Kruger, A. C., Mcbride, C., Jumaux, G., Dhurmea, K. R., Belmont, M., Rakotoarimalala, C. L., Labbe, L., Rosner, B., Benedict, I., Van Heerwaarden, C., Weerts, A., Hazeleger, W., Trachte, K., Zhu, Z., Zhang, P., Lee, T. C., Ripaldi, A., Mochizuki, Y., Lim, J. -y, Oyunjargal, L., Timbal, B., Srivastava, A. K., Revadekar, J. V., Rajeevan, M., Shimpo, A., Khoshkam, M., Kazemi, A. Fazl, Zeyaeyan, S., Lander, M. A., Mcgree, S., Tobin, S., Bettio, L., Arndt, D. S., Blunden, J., Dunn, R. J. H., Stanitski, D. M., Gobron, N., Willett, K. M., Sanchez-lugo, A., Berrisford, P., Morice, C., Nicolas, Jp, Carrea, L., Woolway, R. I., Merchant, C. J., Dokulil, M. T., De Eyto, E., Degasperi, C. L., Korhonen, J., Marszelewski, W., May, L., Paterson, A. M., Rusak, J. A., Schladow, S. G., Schmid, M., Verburg, P., Watanabe, S., Weyhenmeyer, G. A., King, A. D., Donat, M. G., Christy, J. R., Po-chedley, S., Mears, C. R., Haimberger, L., Covey, C., Randel, W., Noetzli, J., Biskaborn, B. K., Christiansen, H. H., Isaksen, K., Schoeneich, P., Smith, S., Vieira, G., Zhao, L., Streletskiy, D. A., Robinson, D. A., Pelto, M., Berry, D. I., Bosilovich, M. G., Simmons, A. J., Mears, C., Ho, S. P., Bock, O., Zhou, X., Nicolas, J, Vose, R. S., Adler, R., Gu, G., Becker, A., Yin, X, Tye, M. R., Blenkinsop, S., Durre, I., Ziese, M., Collow, A. B. Marquardt, Rustemeier, E., Foster, M. J., Di Girolamo, L., Frey, R. A., Heidinger, A. K., Sun-mack, S., Phillips, C., Menzel, W. P., Stengel, M., Zhao, G., Kim, H., Rodell, M., Li, B., Famiglietti, J. S., Scanlon, T., Van Der Schalie, R., Preimesberger, W., Reimer, C., Hahn, S., Gruber, A., Kidd, R., De Jeu, R. A. M., Dorigo, W. A., Barichivich, J., Osborn, T. J., Harris, I., Van Der Schrier, G., Jones, P. D., Miralles, D. G., Martens, B., Beck, H. E., Dolman, A. J., Jimenez, C., Mccabe, M. F., Wood, E. F., Allan, R., Azorin-molina, C., Mears, C. A., Mcvicar, T. R., Mayer, M., Schenzinger, V., Hersbach, H., Stackhouse, P. W., Jr., Wong, T., Kratz, D. P., Sawaengphokhai, P., Wilber, A. C., Gupta, S. K., Loeb, N. G., Dlugokencky, E. J., Hall, B. D., Montzka, S. A., Dutton, G., Muhle, J., Elkins, J. W., Miller, Br, Remy, S., Bellouin, N., Kipling, Z., Ades, M., Benedetti, A., Boucher, O., Weber, M., Steinbrecht, W., Arosio, C., Van Der A, R., Frith, S. M., Anderson, J., Coldewey-egbers, M., Davis, S., Degenstein, D., Fioletov, V. E., Froidevaux, L., Hubert, D., Long, C. S., Loyola, D., Rozanov, A., Roth, C., Sofieva, V., Tourpali, K., Wang, R., Wild, J. D., Davis, S. M., Rosenlof, K. H., Hurst, D. F., Selkirk, H. B., Vomel, H., Ziemke, J. R., Cooper, O. R., Flemming, J., Inness, A., Pinty, B., Kaiser, J. W., Van Der Werf, G. R., Hemming, D. L., Garforth, J., Park, T., Richardson, A. D., Rutishauser, T., Sparks, T. H., Thackeray, S. J., Myneni, R., Lumpkin, R., Huang, B., Kennedy, J., Xue, Y., Zhang, H. -m., Hu, C., Wang, M., Johnson, G. C., Lyman, J. M., Boyer, T., Cheng, L., Domingues, C. M., Gilson, J., Ishii, M., Killick, R. E., Monselesan, D., Purkey, S. G., Wijffels, S. E., Locarnini, R., Yu, L., Jin, X., Stackhouse, P. W., Kato, S., Weller, R. A., Thompson, P. R., Widlansky, M. J., Leuliette, E., Sweet, W., Chambers, D. P., Hamlington, B. D., Jevrejeva, S., Marra, J. J., Merrifield, M. A., Mitchum, G. T., Nerem, R. S., Kelble, C., Karnauskas, M., Hubbard, K., Goni, G., Streeter, C., Dohan, K., Franz, B. A., Cetinic, I., Karakoylu, E. M., Siegel, D. A., Westberry, T. K., Feely, R. A., Wanninkhof, R., Carter, B. R., Landschutzer, P., Sutton, A. J., Cosca, C., Trinanes, J. A., Baxter, S., Schreck, C., Bell, G. D., Mullan, A. B., Pezza, A. B., Coelho, C. A. S., Wang, B., He, Q., Diamond, H. J., Schreck, C. J., Blake, E. S., Landsea, C. W., Wang, H., Goldenberg, S. B., Pasch, R. J., Klotzbach, P. J., Kruk, M. C., Camargo, S. J., Trewin, B. C., Pearce, P. R., Lorrey, A. M., Domingues, R., Goni, G. J., Knaff, J. A., Lin, I. -i., Bringas, F., Richter-menge, J., Osborne, E., Druckenmiller, M., Jeffries, M. O., Overland, J. E., Hanna, E., Hanssen-bauer, I., Kim, S. -j., Walsh, J. E., Bhatt, U. S., Timmermans, M. -l., Ladd, C., Perovich, D., Meier, W., Tschudi, M., Farrell, S., Hendricks, S., Gerland, S., Haas, C., Krumpen, T., Polashenski, C., Ricker, R, Webster, M., Stabeno, P. J., Tedesco, M., Box, J. E., Cappelen, J., Fausto, R. S., Fettweis, X., Andersen, J. K., Mote, T., Smeets, C. J. P. P., Van As, D., Van De Wal, R. S. W., Romanovsky, V. E., Smith, S. L., Shiklomanov, N. I., Kholodov, A. L., Drozdov, D. S., Malkova, G. V., Marchenko, S. S., Jella, K. B., Mudryk, L., Brown, R., Derksen, C., Luojus, K., Decharme, B., Holmes, R. M., Shiklomanov, A. I., Suslova, A., Tretiakov, M., Mcclelland, J. W., Spencer, R. G. M., Tank, S. E., Epstein, H., Bhatt, U., Raynolds, M., Walker, D., Forbes, B., Phoenix, G., Bjerke, J., Tommervik, H., Karlsen, S. -r., Goetz, S., Jia, G., Bernhard, G. H., Grooss, J. -u., Ialongo, I., Johnsen, B., Lakkala, K., Manney, G. L., Mueller, R., Scambos, T., Stammerjohn, S., Clem, K. R., Barreira, S., Fogt, R. L., Colwell, S., Keller, L. M., Lazzara, M. A., Reid, P., Massom, R. A., Lieser, J. L., Meijers, A., Sallee, J. -b., Grey, A., Johnson, K., Arrigo, K., Swart, S., King, B., Meredith, M., Mazloff, M., Scardilli, A., Claus, F., Shuman, C. A., Kramarova, N., Newman, P. A., Nash, E. R., Strahan, S. E., Johnson, B., Pitts, M., Santee, M. L., Petropavlovskikh, I., Braathen, G. O., Coy, L., De Laat, J., Bissolli, P., Ganter, C., Li, T., Mekonnen, A., Gleason, K., Smith, A., Fenimore, C., Heim, R. R., Jr., Nauslar, N. J., Brown, T. J., Mcevoy, D. J., Lareau, N. P., Amador, J. A., Hidalgo, H. G., Alfaro, E. J., Calderon, B., Mora, N., Stephenson, T. S., Taylor, M. A., Trotman, A. R., Van Meerbeeck, C. J., Campbell, J. D., Brown, A., Spence, J., Martinez, R., Diaz, E., Marin, D., Hernandez, R., Caceres, L., Zambrano, E., Nieto, J., Marengo, J. A., Espinoza, J. C., Alves, L. M., Ronchail, J., Lavado-casimiro, J. W., Ramos, I., Davila, C., Ramos, A. M., Diniz, F. A., Aliaga-nestares, V., Castro, A. Y., Stella, J. L., Aldeco, L. S., Diaz, D. A. Campos, Misevicius, N., Kabidi, K., Sayouri, A., Elkharrim, M., Mostafa, A. E., Hagos, S., Feng, Z., Ijampy, J. A., Sima, F., Francis, S. D., Tsidu, G. Mengistu, Kruger, A. C., Mcbride, C., Jumaux, G., Dhurmea, K. R., Belmont, M., Rakotoarimalala, C. L., Labbe, L., Rosner, B., Benedict, I., Van Heerwaarden, C., Weerts, A., Hazeleger, W., Trachte, K., Zhu, Z., Zhang, P., Lee, T. C., Ripaldi, A., Mochizuki, Y., Lim, J. -y, Oyunjargal, L., Timbal, B., Srivastava, A. K., Revadekar, J. V., Rajeevan, M., Shimpo, A., Khoshkam, M., Kazemi, A. Fazl, Zeyaeyan, S., Lander, M. A., Mcgree, S., Tobin, S., and Bettio, L.
- Published
- 2019
42. Precision orbit determination for TOPEX/POSEIDON
- Author
-
Tapley, B. D, Ries, J. C, Davis, G. W, Eanes, R. J, Schultz, B. E, Shum, C. K, Watkins, M. M, Marshall, J. A, Nerem, R. S, and Putney, B. H
- Subjects
Spacecraft Instrumentation - Abstract
The TOPEX/POSEIDON mission objective requires that the radial position of the spacecraft be determined with an accuracy better than 13 cm RMS (root mean square). This stringent requirement is an order of magnitude below the accuracy achieved for any altimeter mission prior to the definition of the TOPEX/POSEIDON mission. To satislfy this objective, the TOPEX Precision Orbit determination (POD) Team was established as a joint effort between the NASA Goddard Space Flight Center and the University of Texas at Austin, with collaboration from the University of Colorado and the Jet Propulsion Laboratory. During the prelaunch development and the post launch verification phases, the POD team improved, calibrated, and validated the precision orbit determination computer software systems. The accomplishments include (1) increased accuracy of the gravity and surface force models and (2) improved peformance of both laser ranging and Doppler tracking systems. The result of these efforts led to orbit accuracies for TOPEX/POSEIDON which are significantly better than the original mission requirement. Tests based on data fits, covariance analysis, and orbit comparisons indicate that the radial component of the TOPEX/POSEIDON spacecraft is determined, relative to the Earth's mass center, with an root mean square (RMS) error in the range of 3 to 4 cm RMS. This orbit accuracy, together with the near continuous dual-frequency altimetry from this mission, provides the means to determine the ocean's dynamic topography with an unprecedented accuracy.
- Published
- 1994
- Full Text
- View/download PDF
43. Gravity model development for TOPEX/POSEIDON: Joint gravity models 1 and 2
- Author
-
Nerem, R. S, Lerch, F. J, Marshall, J. A, Pavlis, E. C, Putney, B. H, Tapley, B. D, Eanes, R. J, Ries, J. C, Schutz, B. E, and Shum, C. K
- Subjects
Oceanography - Abstract
The TOPEX/POSEIDON (T/P) prelaunch Joint Gravity Model-1 (JGM-1) and the postlaunch JGM-2 Earth gravitational models have been developed to support precision orbit determination for T/P. Each of these models is complete to degree 70 in spherical harmonics and was computed from a combination of satellite tracking data, satellite altimetry, and surface gravimetry. While improved orbit determination accuracies for T/P have driven the improvements in the models, the models are general in application and also provide an improved geoid for oceanographic computations. The postlaunch model, JGM-2, which includes T/P satellite laser ranging (SLR) and Doppler orbitography and radiopositioning integrated by satellite (DORIS) tracking data, introduces radial orbit errors for T/P that are only 2 cm RMS with the commission errors of the marine geoid for terms to degree 70 being +/- 25 cm. Errors in modeling the nonconservative forces acting on T/P increase the total radial errors to only 3-4 cm root mean square (RMS), a result much better than premission goals. While the orbit accuracy goal for T/P has been far surpassed geoid errors still prevent the absolute determination of the ocean dynamic topography for wavelengths shorter than about 2500 km. Only a dedicated gravitational field satellite mission will likely provide the necessary improvement in the geoid.
- Published
- 1994
- Full Text
- View/download PDF
44. A preliminary evaluation of ocean topography from the TOPEX/POSEIDON mission
- Author
-
Nerem, R. S, Schrama, E. J, Koblinsky, C. J, and Beckley, B
- Subjects
Oceanography - Abstract
We have analyzed 50 ten-day cycles of TOPEX/POSEIDON (T/P) altimeter data to evaluate the ocean dynamic topography and its temporal variations. We have employed data from both the U.S. and French altimeters along with the NASA precision orbits in this analysis. Errors in the diurnal and semidiurnal components of the Cartwright-Ray tide model have been significantly reduced using a correction developed from a combination of JGM-2 and OSU91A was employed, as well as a geoid model based solely on OSU91A. The long wavelengths of the comparisons to historical data, although geoid error still corrupts the dynamic topography for wavelengths shorter than 2500 km. The root mean square (RMS) variability is similar to previous results from Geosat, with bakground 'noise' approaching 3 cm RMS. The computed annual and semiannual variations are also similar to previous Geosat results, although the hemispheric distribution of the annual heating cycle is much better presented in the T/P results. They also compare reasonably well with the Levitus hydrographic compilation in the northern hemisphere, although the T/P variations generally have larger amplitudes. Ten-day average maps of variations in sea level compare well with simulations measurements at ocean tide gauges, with RMS differences of less than 4 cm and correlations greater than 0.6 for most of the island gauges. Time-longitude plots of these sea level variations at different latitudes in the Pacific clearly show the presence of equatorial Kelvin waves and Rossby waves, with the wave speeds agreeing well with theoretical and observed values. Measurement of variations in global sea level over cycles 2-51 have an RMS variability of 6.3 mm and a rate of change of -3.5 +/- 8 mm/yr, the uncertainty primarily due to insufficient averaging of the interannual and periodic sea level variations. These results show that the accuracy of the T/P measurements of sea level has dramatically improved over previous missions, with estimated time variable errors of 4 cm or less. Although geographically correlated orbit errors have also been reduced to the few centimeter level, further improvement in determinations of the mean dynamic topography will be difficult to obtain until a more accurate model of the marine geoid is available.
- Published
- 1994
- Full Text
- View/download PDF
45. Observations of geographically correlated orbit errors for TOPEX/Poseidon using the global positioning system
- Author
-
Christensen, E. J, Haines, B. J, Mccoll, K. C, and Nerem, R. S
- Subjects
Spacecraft Instrumentation - Abstract
We have compared Global Positioning System (GPS)-based dynamic and reduced-dynamic TOPEX/Poseidon orbits over three 10-day repeat cycles of the ground-track. The results suggest that the prelaunch joint gravity model (JGM-1) introduces geographically correlated errors (GCEs) which have a strong meridional dependence. The global distribution and magnitude of these GCEs are consistent with a prelaunch covariance analysis, with estimated and predicted global rms error statistics of 2.3 and 2.4 cm rms, respectively. Repeating the analysis with the post-launch joint gravity model (JGM-2) suggests that a portion of the meridional dependence observed in JGM-1 still remains, with global rms error of 1.2 cm.
- Published
- 1994
- Full Text
- View/download PDF
46. A geopotential model from satellite tracking, altimeter, and surface gravity data: GEM-T3
- Author
-
Lerch, F. J, Nerem, R. S, Putney, B. H, Felsentreger, T. L, Sanchez, B. V, Marshall, J. A, Klosko, S. M, Patel, G. B, Williamson, R. G, and Chinn, D. S
- Subjects
Geophysics - Abstract
An improved model of Earth's gravitational field, Goddard Earth Model T-3 (GEM-T3), has been developed from a combination of satellite tracking, satellite altimeter, and surface gravimetric data. GEM-T3 provides a significant improvement in the modeling of the gravity field at half wavelengths of 400 km and longer. This model, complete to degree and order 50, yields more accurate satellite orbits and an improved geoid representation than previous Goddard Earth Models. GEM-T3 uses altimeter data from GEOS 3 (1975-1976), Seasat (1978) and Geosat (1986-1987). Tracking information used in the solution includes more than 1300 arcs of data encompassing 31 different satellites. The recovery of the long-wavelength components of the solution relies mostly on highly precise satellite laser ranging (SLR) data, but also includes Tracking Network (TRANET) Doppler, optical, and satellite-to-satellite tracking acquired between the ATS 6 and GEOS 3 satellites. The main advances over GEM-T2 (beyond the inclusion of altimeter and surface gravity information which is essential for the resolution of the shorter wavelength geoid) are some improved tracking data analysis approaches and additional SLR data. Although the use of altimeter data has greatly enhanced the modeling of the ocean geoid between 65 deg N and 60 deg S latitudes in GEM-T3, the lack of accurate detailed surface gravimetry leaves poor geoid resolution over many continental regions of great tectonic interest (e.g., Himalayas, Andes). Estimates of polar motion, tracking station coordinates, and long-wavelength ocean tidal terms were also made (accounting for 6330 parameters). GEM-T3 has undergone error calibration using a technique based on subset solutions to produce reliable error estimates. The calibration is based on the condition that the expected mean square deviation of a subset gravity solution from the full set values is predicted by the solutions' error covariances. Data weights are iteratively adjusted until this condition for the error calibration is satisfied. In addition, gravity field tests were performed on strong satellite data sets withheld from the solution (thereby ensuring their independence). In these tests, the performance of the subset models on the withheld observations is compared to error projections based on their calibrated error covariances. These results demonstrate that orbit accuracy projections are reliable for new satellites which were not included in GEM-T3.
- Published
- 1994
- Full Text
- View/download PDF
47. Gravity model improvement using the DORIS tracking system on the SPOT 2 satellite
- Author
-
Nerem, R. S, Lerch, F. J, Williamson, R. G, Klosko, S. M, Robbins, J. W, and Patel, G. B
- Subjects
Geophysics - Abstract
A high-precision radiometric satellite tracking system, Doppler Orbitography and Radio-positioning Integrated by Satellite system (DORIS), has recently been developed by the French space agency, Centre National d'Etudes Spatiales (CNES). DORIS was designed to provide tracking support for missions such as the joint United States/French TOPEX/Poseidon. As part of the flight testing process, a DORIS package was flown on the French SPOT 2 satellite. A substantial quantity of geodetic quality tracking data was obtained on SPOT 2 from an extensive international DORIS tracking network. These data were analyzed to assess their accuracy and to evaluate the gravitational modeling enhancements provided by these data in combination with the Goddard Earth Model-T3 (GEM-T3) gravitational model. These observations have noise levels of 0.4 to 0.5 mm/s, with few residual systematic effects. Although the SPOT 2 satellite experiences high atmospheric drag forces, the precision and global coverage of the DORIS tracking data have enabled more extensive orbit parameterization to mitigate these effects. As a result, the SPOT 2 orbital errors have been reduced to an estimated radial accuracy in the 10-20 cm RMS range. The addition of these data, which encompass many regions heretofore lacking in precision satellite tracking, has significantly improved GEM-T3 and allowed greatly improved orbit accuracies for Sun-synchronous satellites like SPOT 2 (such as ERS 1 and EOS). Comparison of the ensuing gravity model with other contemporary fields (GRIM-4C2, TEG2B, and OSU91A) provides a means to assess the current state of knowledge of the Earth's gravity field. Thus, the DORIS experiment on SPOT 2 has provided a strong basis for evaluating this new orbit tracking technology and has demonstrated the important contribution of the DORIS network to the success of the TOPEX/Poseidon mission.
- Published
- 1994
- Full Text
- View/download PDF
48. Calibration of TOPEX/Poseidon at Platform Harvest
- Author
-
Nerem, R. S, Kolenkiewicz, R, Tapley, B. D, Shum, C. K, Gill, S. K, Parke, M. E, Born, G. H, Wilson, B. C, Williams, B. G, Purcell, G. H, Norman, R. A, Morris, C. S, Keihm, S. J, Haines, B. J, and Christensen, E. J
- Abstract
We present preliminary estimates for the mean bias of the TOPEX/Poseidon NASA altimeter (ALT) and the CNES altimeter (SSALT) using in situ data gathered at platform Harvest during the first 36 cycles of the mission. Data for 21 overflights of the ALT and 3 overflights of the SSALT have been analyzed.
- Published
- 1994
49. Calibration of TOPEX/Poseidon at Platform Harvest
- Author
-
Christensen, E. J, Haines, B. J, Keihm, S. J, Morris, C. S, Norman, R. A, Purcell, G. H, Williams, B. G, Wilson, B. C, Born, G. H, Parke, M. E, Gill, S. K, Shum, C. K, Tapley, B. D, Kolenkiewicz, R, and Nerem, R. S
- Published
- 1994
50. State of the climate in 2016
- Author
-
Aaron-Morrison, A. P., Ackerman, S. A., Adams, N. G., Adler, R. F., Albanil, A., Alfaro, E. J., Allan, R., Alves, L. M., Amador, J. A., Andreassen, L. M., Arendt, A., Arévalo, J., Arndt, D. S., Arzhanova, N. M., Aschan, M. M., Azorin-Molina, C., Banzon, V., Bardin, M. U., Barichivich, J., Baringer, M. O., Barreira, S., Baxter, S., Bazo, J., Becker, A., Bedka, K. M., Behrenfeld, M. J., Bell, G. D., Belmont, M., Benedetti, A., Bernhard, G., Berrisford, P., Berry, D. I., Bettolli, M. L., Bhatt, U. S., Bidegain, M., Bill, B. D., Billheimer, S., Bissolli, P., Blake, E. S., Blunden, J., Bosilovich, M. G., Boucher, O., Boudet, D., Box, J. E., Boyer, T., Braathen, G. O., Bromwich, D. H., Brown, R., Bulygina, O. N., Burgess, D., Calderón, B., Camargo, S. J., Campbell, J. D., Cappelen, J., Carrasco, G., Carter, B. R., Chambers, D. P., Chandler, E., Christiansen, H. H., Christy, J. R., Chung, D., Chung, E. S., Cinque, K., Clem, K. R., Coelho, C. A., Cogley, J. G., Coldewey-Egbers, M., Colwell, S., Cooper, O. R., Copland, L., Cosca, C. E., Cross, J. N., Crotwell, M. J., Crouch, J., Davis, S. M., Eyto, E., Jeu, R. A. M., Laat, J., Degasperi, C. L., Degenstein, D., Demircan, M., Derksen, C., Destin, D., Di Girolamo, L., Di Giuseppe, F., Diamond, H. J., Dlugokencky, E. J., Dohan, K., Dokulil, M. T., Dolgov, A. V., Dolman, A. J., Domingues, C. M., Donat, M. G., Dong, S., Dorigo, W. A., Dortch, Q., Doucette, G., Drozdov, D. S., Ducklow, H., Dunn, R. J. H., Durán-Quesada, A. M., Dutton, G. S., Ebrahim, A., Elkharrim, M., Elkins, J. W., Espinoza, J. C., Etienne-Leblanc, S., Evans, T. E., Famiglietti, J. S., Farrell, S., Fateh, S., Fausto, R. S., Fedaeff, N., Feely, R. A., Feng, Z., Fenimore, C., Fettweis, X., Fioletov, V. E., Flemming, J., Fogarty, C. T., Fogt, R. L., Folland, C., Fonseca, C., Fossheim, M., Foster, M. J., Fountain, A., Francis, S. D., Franz, B. A., Frey, R. A., Frith, S. M., Froidevaux, L., Ganter, C., Garzoli, S., Gerland, S., Gobron, N., Goldenberg, S. B., Gomez, R. S., Goni, G., Goto, A., Grooß, J. U., Gruber, A., Guard, C. C., Gugliemin, M., Gupta, S. K., Gutiérrez, J. M., Hagos, S., Hahn, S., Haimberger, L., Hakkarainen, J., Hall, B. D., Halpert, M. S., Hamlington, B. D., Hanna, E., Hansen, K., Hanssen-Bauer, I., Harris, I., Heidinger, A. K., Heikkilä, A., Heil, A., Heim, R. R., Hendricks, S., Hernández, M., Hidalgo, H. G., Hilburn, K., Ho, S. P. B., Holmes, R. M., Hu, Z. Z., Huang, B., Huelsing, H. K., Huffman, G. J., Hughes, C., Hurst, D. F., Ialongo, I., Ijampy, J. A., Ingvaldsen, R. B., Inness, A., Isaksen, K., Ishii, M., Jevrejeva, S., Jiménez, C., Jin, X., Johannesen, E., John, V., Johnsen, B., Johnson, B., Johnson, G. C., Jones, P. D., Joseph, A. C., Jumaux, G., Kabidi, K., Kaiser, J. W., Kato, S., Kazemi, A., Keller, L. M., Kendon, M., Kennedy, J., Kerr, K., Kholodov, A. L., Khoshkam, M., Killick, R., Kim, H., Kim, S. J., Kimberlain, T. B., Klotzbach, P. J., Knaff, J. A., Kobayashi, S., Kohler, J., Korhonen, J., Korshunova, N. N., Kovacs, K. M., Kramarova, N., Kratz, D. P., Kruger, A., Kruk, M. C., Kudela, R., Kumar, A., Lakatos, M., Lakkala, K., Lander, M. A., Landsea, C. W., Lankhorst, M., Lantz, K., Lazzara, M. A., Lemons, P., Leuliette, E., L’heureux, M., Lieser, J. L., Lin, I. I., Liu, H., Liu, Y., Locarnini, R., Loeb, N. G., Lo Monaco, C., Long, C. S., López Álvarez, L. A., Lorrey, A. M., Loyola, D., Lumpkin, R., Luo, J. J., Luojus, K., Lydersen, C., Lyman, J. M., Maberly, S. C., Maddux, B. C., Malheiros Ramos, A., Malkova, G. V., Manney, G., Marcellin, V., Marchenko, S. S., Marengo, J. A., Marra, J. J., Marszelewski, W., Martens, B., Martínez-Güingla, R., Massom, R. A., Mata, M. M., Mathis, J. T., May, L., Mayer, M., Mazloff, M., Mcbride, C., Mccabe, M. F., Mccarthy, M., Mcclelland, J. W., Mcgree, S., Mcvicar, T. R., Mears, C. A., Meier, W., Meinen, C. S., Mekonnen, A., Menéndez, M., Mengistu Tsidu, G., Menzel, W. P., Merchant, C. J., Meredith, M. P., Merrifield, M. A., Metzl, N., Minnis, P., Miralles, D. G., Mistelbauer, T., Mitchum, G. T., Monselesan, D., Monteiro, P., Montzka, S. A., Morice, C., Mote, T., Mudryk, L., Mühle, J., Mullan, A. B., Nash, E. R., Naveira-Garabato, A. C., Nerem, R. S., Newman, P. A., Nieto, J. J., Noetzli, J., O’neel, S., Osborn, T. J., Overland, J., Oyunjargal, L., Parinussa, R. M., Park, E. H., Parker, D., Parrington, M., Parsons, A. R., Pasch, R. J., Pascual-Ramírez, R., Paterson, A. M., Paulik, C., Pearce, P. R., Pelto, M. S., Peng, L., Perkins-Kirkpatrick, S. E., Perovich, D., Petropavlovskikh, I., Pezza, A. B., Phillips, D., Pinty, B., Pitts, M. C., Pons, M. R., Porter, A. O., Primicerio, R., Proshutinsky, A., Quegan, S., Quintana, J., Rahimzadeh, F., Rajeevan, M., Randriamarolaza, L., Razuvaev, V. N., Reagan, J., Reid, P., Reimer, C., Rémy, S., Renwick, J. A., Revadekar, J. V., Richter-Menge, J., Riffler, M., Rimmer, A., Rintoul, S., Robinson, D. A., Rodell, M., Rodríguez Solís, J. L., Romanovsky, V. E., Ronchail, J., Rosenlof, K. H., Roth, C., Rusak, J. A., Sabine, C. L., Sallée, J. B., Sánchez-Lugo, A., Santee, M. L., Sawaengphokhai, P., Sayouri, A., Scambos, T. A., Schemm, J., Schladow, S. G., Schmid, C., Schmid, M., Schmidtko, S., Schreck, C. J., Selkirk, H. B., Send, U., Sensoy, S., Setzer, A., Sharp, M., Shaw, A., Shi, L., Shiklomanov, A. I., Shiklomanov, N. I., Siegel, D. A., Signorini, S. R., Sima, F., Simmons, A. J., Smeets, C. J. P. P., Smith, S. L., Spence, J. M., Srivastava, A. K., Stackhouse, P. W., Stammerjohn, S., Steinbrecht, W., Stella, J. L., Stengel, M., Stennett-Brown, R., Stephenson, T. S., Strahan, S., Streletskiy, D. A., Sun-Mack, S., Swart, S., Sweet, W., Talley, L. D., Tamar, G., Tank, S. E., Taylor, M. A., Tedesco, M., Teubner, K., Thoman, R. L., Thompson, P., Thomson, L., Timmermans, M. L., Maxim Timofeyev, Tirnanes, J. A., Tobin, S., Trachte, K., Trainer, V. L., Tretiakov, M., Trewin, B. C., Trotman, A. R., Tschudi, M., As, D., Wal, R. S. W., A, R. J., Schalie, R., Schrier, G., Werf, G. R., Meerbeeck, C. J., Velicogna, I., Verburg, P., Vigneswaran, B., Vincent, L. A., Volkov, D., Vose, R. S., Wagner, W., Wåhlin, A., Wahr, J., Walsh, J., Wang, C., Wang, J., Wang, L., Wang, M., Wang, S. H., Wanninkhof, R., Watanabe, S., Weber, M., Weller, R. A., Weyhenmeyer, G. A., Whitewood, R., Wijffels, S. E., Wilber, A. C., Wild, J. D., Willett, K. M., Williams, M. J. M., Willie, S., Wolken, G., Wong, T., Wood, E. F., Woolway, R. I., Wouters, B., Xue, Y., Yamada, R., Yim, S. Y., Yin, X., Young, S. H., Yu, L., Zahid, H., Zambrano, E., Zhang, P., Zhao, G., Zhou, L., Ziemke, J. R., Love-Brotak, S. E., Gilbert, K., Maycock, T., Osborne, S., Sprain, M., Veasey, S. W., Ambrose, B. J., Griffin, J., Misch, D. J., Riddle, D. B., Young, T., Macias Fauria, M, Blunden, J, Arndt, D, Earth and Climate, Faculty of Earth and Life Sciences, Clinical Developmental Psychology, Climate Change and Landscape Dynamics, and Molecular Cell Physiology
- Subjects
Meteor (satellite) ,Atmospheric Science ,010504 meteorology & atmospheric sciences ,0208 environmental biotechnology ,02 engineering and technology ,01 natural sciences ,020801 environmental engineering ,Geography ,13. Climate action ,Climatology ,SDG 13 - Climate Action ,SDG 14 - Life Below Water ,0105 earth and related environmental sciences - Abstract
In 2016, the dominant greenhouse gases released into Earth's atmosphere-carbon dioxide, methane, and nitrous oxide-continued to increase and reach new record highs. The 3.5 +/- 0.1 ppm rise in global annual mean carbon dioxide from 2015 to 2016 was the largest annual increase observed in the 58-year measurement record. The annual global average carbon dioxide concentration at Earth's surface surpassed 400 ppm (402.9 +/- 0.1 ppm) for the first time in the modern atmospheric measurement record and in ice core records dating back as far as 800000 years. One of the strongest El Nino events since at least 1950 dissipated in spring, and a weak La Nina evolved later in the year. Owing at least in part to the combination of El Nino conditions early in the year and a long-term upward trend, Earth's surface observed record warmth for a third consecutive year, albeit by a much slimmer margin than by which that record was set in 2015. Above Earth's surface, the annual lower troposphere temperature was record high according to all datasets analyzed, while the lower stratospheric temperature was record low according to most of the in situ and satellite datasets. Several countries, including Mexico and India, reported record high annual temperatures while many others observed near-record highs. A week-long heat wave at the end of April over the northern and eastern Indian peninsula, with temperatures surpassing 44 degrees C, contributed to a water crisis for 330 million people and to 300 fatalities. In the Arctic the 2016 land surface temperature was 2.0 degrees C above the 1981-2010 average, breaking the previous record of 2007, 2011, and 2015 by 0.8 degrees C, representing a 3.5 degrees C increase since the record began in 1900. The increasing temperatures have led to decreasing Arctic sea ice extent and thickness. On 24 March, the sea ice extent at the end of the growth season saw its lowest maximum in the 37-year satellite record, tying with 2015 at 7.2% below the 1981-2010 average. The September 2016 Arctic sea ice minimum extent tied with 2007 for the second lowest value on record, 33% lower than the 1981-2010 average. Arctic sea ice cover remains relatively young and thin, making it vulnerable to continued extensive melt. The mass of the Greenland Ice Sheet, which has the capacity to contribute similar to 7 m to sea level rise, reached a record low value. The onset of its surface melt was the second earliest, after 2012, in the 37-year satellite record. Sea surface temperature was record high at the global scale, surpassing the previous record of 2015 by about 0.01 degrees C. The global sea surface temperature trend for the 21st century-to-date of +0.162 degrees C decade(-1) is much higher than the longer term 1950-2016 trend of +0.100 degrees C decade(-1). Global annual mean sea level also reached a new record high, marking the sixth consecutive year of increase. Global annual ocean heat content saw a slight drop compared to the record high in 2015. Alpine glacier retreat continued around the globe, and preliminary data indicate that 2016 is the 37th consecutive year of negative annual mass balance. Across the Northern Hemisphere, snow cover for each month from February to June was among its four least extensive in the 47-year satellite record. Continuing a pattern below the surface, record high temperatures at 20-m depth were measured at all permafrost observatories on the North Slope of Alaska and at the Canadian observatory on northernmost Ellesmere Island. In the Antarctic, record low monthly surface pressures were broken at many stations, with the southern annular mode setting record high index values in March and June. Monthly high surface pressure records for August and November were set at several stations. During this period, record low daily and monthly sea ice extents were observed, with the November mean sea ice extent more than 5 standard deviations below the 1981-2010 average. These record low sea ice values contrast sharply with the record high values observed during 2012-14. Over the region, springtime Antarctic stratospheric ozone depletion was less severe relative to the 1991-2006 average, but ozone levels were still low compared to pre-1990 levels. Closer to the equator, 93 named tropical storms were observed during 2016, above the 1981-2010 average of 82, but fewer than the 101 storms recorded in 2015. Three basins-the North Atlantic, and eastern and western North Pacific-experienced above-normal activity in 2016. The Australian basin recorded its least active season since the beginning of the satellite era in 1970. Overall, four tropical cyclones reached the Saffir-Simpson category 5 intensity level. The strong El Nino at the beginning of the year that transitioned to a weak La Nina contributed to enhanced precipitation variability around the world. Wet conditions were observed throughout the year across southern South America, causing repeated heavy flooding in Argentina, Paraguay, and Uruguay. Wetter-than-usual conditions were also observed for eastern Europe and central Asia, alleviating the drought conditions of 2014 and 2015 in southern Russia. In the United States, California had its first wetter-than-average year since 2012, after being plagued by drought for several years. Even so, the area covered by drought in 2016 at the global scale was among the largest in the post-1950 record. For each month, at least 12% of land surfaces experienced severe drought conditions or worse, the longest such stretch in the record. In northeastern Brazil, drought conditions were observed for the fifth consecutive year, making this the longest drought on record in the region. Dry conditions were also observed in western Bolivia and Peru; it was Bolivia's worst drought in the past 25 years. In May, with abnormally warm and dry conditions already prevailing over western Canada for about a year, the human-induced Fort McMurray wildfire burned nearly 590000 hectares and became the costliest disaster in Canadian history, with $3 billion (U.S. dollars) in insured losses.
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.