74 results on '"Neil Bowles"'
Search Results
2. Tracing the earliest stages of hydrothermal alteration on the CM chondrite parent body
- Author
-
Paul F. Schofield, Ashley J. King, H. C. Bates, K. L. Donaldson Hanna, E. Mason, Neil Bowles, and Sara S. Russell
- Subjects
Geophysics ,Space and Planetary Science ,Chondrite ,Chemistry ,Geochemistry ,Tracing ,Hydrothermal circulation ,Parent body - Published
- 2021
3. Farside Seismic Suite (FSS): First-ever seismology on the farside of the Moon and a model for long-lived lunar science
- Author
-
Mark Panning, Sharon Kedar, Neil Bowles, Simon Calcutt, Mélanie Drilleau, Raphael Garcia, Taichi Kawamura, Philippe Lognonné, David Mimoun, Ceri Nunn, W. Tom Pike, Dilan Portela-Moreira, Sébastien de Raucourt, Renee Weber, and Arnaud Wilhelm
- Abstract
The Farside Seismic Suite (FSS), recently selected for flight as part of the NASA PRISM (Payloads and Research Investigations on the Surface of the Moon) program and planned for flight in 2024 or 2025, would deliver two seismometers (both flight-proven through the InSight mission to Mars [Banerdt et al., 2020]) to Schrödinger Basin. The vertical Very BroadBand (VBB) seismometer is the most sensitive flight-ready seismometer ever built [Lognonné et al., 2019], while the Short Period (SP) sensor is the most sensitive and mature compact triaxial sensor available for space application [Lognonné et al., 2019]. Packaged as a self-sufficient payload, with independent power, communications and thermal control allowing survival and operation over the long lunar night, the FSS will outlive the commercial delivery lander, and provide a long-lived seismic experiment capable of answering key scientific questions (figure 1). FSS will address three science objectives with this project:Investigate deep lunar structure and the difference between near and farside activity. Understanding the absence of farside seismicity recorded on Apollo seismometers [e.g. Nakamura et al., 1981] is fundamental to our understanding of the lunar deep interior. Does it reflect a nearside-farside difference in activity rate, or does seismic attenuation from partial melting in the mantle prevent observation of distant events [e.g. Weber et al., 2011]? Direct recording of farside activity, as well as possible recording of known repeating nearside moonquakes or events determined from impact flash observations will illuminate these questions. Understand how the lunar crust is affected by the development of an impact melt basin. Dynamic models of impact processes [e.g. Kring et al., 2016] predict deep structure beneath a well-preserved peak ring impact basin like Schrödinger Basin that can only be revealed through geophysical techniques based on receiver functions [e.g. Vinnik et al., 2011; Knapmeyer-Endrun et al., 2021] and autocorrelation of ambient noise and/or event codas [e.g. Larose et al., 2005; Compaire et al., 2020; Schimmel et al., 2021]. Evaluate the current micrometeorite impact rate and local tectonic activity. Directly constraining micrometeorite impact rates has important implications for future lunar occupation. The lunar background seismic noise is modeled to be driven by micrometeorite impacts [Lognonné et al., 2009]. FSS will record at least 4 months of lunar background hum created by micrometeorite impacts. In order to meet these science objectives, a series of planned measurements were defined and, based on observed Apollo-era seismicity, instrument sensitivity requirements were define. For example, in order to make an estimate of farside seismicity to address objective 1, we require recording at least 50 seismic events, and we assessed that a VBB sensitivity of 2 x 10-10 m/s2/rtHz across the frequency band of 0.1-1Hz would be sufficient to make the measurement during the mission. This is a target, but we assess that we have ample scientific margin if the instrument is unable to reach this noise floor due to either instrument self-noise or other environmental sources of noise (figure 2). To better assess this margin, we are working to quantify the noise sources from the FSS and lander system and the lunar environment (figures 3 and 4). In current modeling, the most important noise sources for the single-component vertical VBB appear to be the instrument self-noise, the noise induced by magnetic field variations as the Moon crosses over the bowshocks surrounding the Earth’s magnetotail, and thermal tilt noise from the regolith which can couple into the VBB signal if the lander is tilted relative to the Moon’s gravitational vector. At typical levels, this noise is close to the proposed instrument requirements (figure 3), while in the stacked worst case (maximum allowed lander tilt and during a bowshock crossing), the noise may exceed the requirement by a factor of 2-3, which still should leave margin for achieving science objectives. FSS is designed to answer several key lunar science questions from a single station on the farside of the Moon. The FSS will also allow for key technical advancement and risk reduction for future missions, such as the Lunar Geophysical Network, a candidate New Frontiers 5 mission [Neal et al., 2020]. Because deployment increases cost and complexity, assessing the need for deployment and characterizing the lander seismic noise environment will be key. In addition, measuring the lunar seismic noise floor beyond what was possible with the Apollo data will permit better requirements definition for future lunar seismic missions and future astrophysics observatories sensitive to lunar ground stability.Figure 1: FSS will return data with unprecedented sensitivity from Schrödinger Crater over multiple lunar diurnal cycles after outliving the delivery lander. Figure adapted from Wieczorek (2009) and Kring et al. (2016).Figure 2: Expected number of events recorded through the mission at various VBB sensitivity levels based on Apollo observation rates, with 95% confidence bounds based on Poisson statistics. Requirements are easily met if VBB performance is within a factor of 5 of the requirement.Figure 3: Expected summed noise sources for a “typical” environment with magnetic noise away from the bowshock crossing and a lander tilt of 5 degrees (half the allowed maximum tilt).Figure 4: Expected worst case instrument noise with magnetic noise at the bowshock crossing and lander tilt at the maximum allowed (10 degrees).
- Published
- 2022
4. Optimizing Filter Bandpass Selection for the Thermal Infrared Imager on ESA’s Comet Interceptor Mission
- Author
-
Katherine Shirley, Tristram Warren, Sara Faggi, Geronimo Villanueva, Silvia Protopapa, Kerri Donaldson Hanna, Tomas Kohut, Neil Bowles, Antti Nasila, and Swati Thirumangalath
- Abstract
Introduction: ESA’s upcoming Comet Interceptor (CI) mission will be the first to visit a long period, potentially dynamically new, comet that will consist of some of the most primitive material from the beginning of our Solar System [1]. Part of CI’s payload includes the Modular InfraRed Molecular and Ices Sensor (MIRMIS) which aims to map the thermal and compositional variation of the comet’s nucleus and coma. MIRMIS is compromised of a near-infrared hyperspectral imager (NIR, 0.9-1.6 µm), a mid-infrared point spectrometer (MIR, 2.5 – 5 µm) and, the focus of this study, a multispectral thermal imager (TIRI, 6-25 µm). TIRI’s instrument design includes one central broadband thermal imaging channel (6-25 µm) and 2 identical sets of eight narrow-band channels situated orthogonal to each other to accommodate the instrument orientation as it changes upon closest approach to the comet (Fig.1). This configuration will allow for optimal comparison between views of the comet, and analysis of photometric effects. To maximize the science return pertinent to the mission objectives, we investigated TIRI’s ability to retrieve both temperature and composition using its originally proposed filter set, described in Table 1, and new alternative filter sets. Table 1: Summation of bandpass centers for filter sets. In blue is the original baseline filter set, and those underneath (yellow and green) show proposed filter sets tested for improved science return. Starred set is the proposed ‘new baseline’. Figure 1 : Filter layout on TIRI Methods: To optimize TIRI’s narrow-band filter set, we used both synthetic nucleus spectral targets and laboratory measured analogue minerals and meteorite spectra to understand TIRI’s detection capabilities. In addition to the proposed baseline filter set, several others were proposed that consisted of band-centers evenly spaced along TIRI’s range; band-centers concentrated near 9-11 µm (a region rich in silicate features); or a mix of the two. Synthetic Spectral Analysis: Twelve synthetic spectra were generated with the Planetary Spectrum Generator (PSG) [2]. These included six featureless spectra made of single or mixed temperature blackbodies and six spectral mixtures composed of crystalline (fayalite or enstatite) and amorphous (pyroxene) silicates convolved with single or mixed temperature blackbodies. Mixed temperature blackbodies were used to account for nucleus roughness and/or pixel anisothermality. The silicate endmembers used in this study were chosen based on identified minerals of comets Tempel 1 and Hale-Bopp [3-5]. For these simulations we assumed fixed resolving power to create synthesized spectra with a specific pixel-width that already accounted for TIRI noise performance. Six filter sets were tested as defined in Table 1 (yellow). The simulated retrievals included realistic instrument noise (noise-equivalent-power) and were performed using the Retrieval Module of the PSG [5]. We used this tool to test the ability of each filter set to retrieve a sequence of information about each original synthetic spectrum: 1) temperature; 2) temperature + amorphous pyroxene; 3) temperature + crystalline fayalite; 4) temperature + crystalline enstatite; 5) temperature + crystalline fayalite and enstatite; and 6) temperature + all three silicates (Fig. 2). These retrievals showed that temperature of the featureless spectra was always reliably determined independent of filter set. For the silicate spectra, temperature was always retrieved (±1 K) if >250 K, but spectral shape determination, had a dependence on filter set. Filter set S2 (Table 1, Fig.2 blue) was determined to most accurately identify compositional features. Figure 2. Summary of the final retrieval of temperature and composition (T & three silicates) for the 6 spectra with spectral shape (rows) using the 6 filter sets (columns) defined in Table 1. The last column on the right shows the original high-resolution spectra. Laboratory Spectral Analysis: We examined laboratory spectra of minerals and meteorites likely to be present/analogous to the anticipated primitive comet. These include minerals used in the OSIRIS-REx collection [6] and carbonaceous meteorites from [7]. From these, we identified several key features for compositional determination generally centered within 8-12 µm (Subset in Table 1). We included a set of mineral mixtures with known amorphous content from [8] to test the filter set ability to identify crystalline content of the material. Differences were subtle at low amorphous content and unlikely to be captured at this spectral resolution. Another set included hydrated/altered meteorites from [7]. Tested filter sets captured the overall spectral shape of the meteorite composition and including longer wavelengths (12-15 µm region) improved differentiation of hydrous alteration. It was determined that TIRI alone would be unable to quantify surface ice content, but hydration of surface mineralogy may be detectable. Figure 3. Minerals from the OSIRIS-REx collection [6] and lizardite (unpublished) at laboratory resolution, TIRI baseline, and filter sets defined in Table 1. Discussion: The synthetic analysis showed that filters covering a large range is necessary to capture both temperature and spectral shape of the target comet. The laboratory analysis showed that, while a concentrated filter set was better at distinguishing minute differences between compositions, a wider range of filters can still provide adequate qualitative spectral information to achieve TIRI’s science objectives. We thus propose shifting to the new filter set that encompasses a slightly smaller range (8-22 µm) to retrieve temperatures and to better capture mid-range compositional features (Table 1, starred set). Investigations will continue to incorporate a larger range of compositional spectra into the synthetic analysis model to better understand possible instrument performance and further explore the challenges of compositional unmixing for our target comet. Acknowledgments: We thank the entire Comet Interceptor team for their inputs into this analysis, and the use of online databases including PSG & RELAB. References: [1] Snodgrass C. et al (2019) Nat Commun 10, 5418. [2] Villanueva G. L. et al., (2018) JQS&RT 217, 86-104. [3] Lisse C. M. et al., (2006) Icarus, 313, 635-640 [4] Lisse C. M. et al., (2007) Icarus, 191(2), 223-240. [5] Lisse C. M. (2008) Icarus 195(2), 941-944. [6] Donaldson Hanna K. L. et al. (2021) JGRP 126(2) [7] Bates H. J. et al. (2021) JGRP 126 [8] Donaldson Hanna K. L. et al. (2018) LPSC 49 #1867
- Published
- 2022
5. Destination: Space! A Virtual Flash Talk Series
- Author
-
Katherine Shirley, Helena Cotterill, Tristram Warren, Helena Bates, Robert Spry, Sian Tedaldi, and Neil Bowles
- Abstract
Introduction: During the series of national lockdowns, interacting onsite with local schools became difficult and increased the demand for virtual content. To meet this challenge, we created an online programme entitled “Destination: Space”, aimed at showcasing the current planetary research conducted within the Atmospheric, Oceanic, and Planetary Physics (AOPP) department at the University of Oxford. Over six weeks, school students from the UK and around the globe joined us on an out-of-this-world journey exploring space and planetary physics. Destination: Space has introduced students to fascinating areas of science, including the search for water on the Moon, meteorites and sample return missions, and whether there really could be other life out there in the universe. Talks were hosted online in a live webinar-style, where the audience could interact with and ask questions of the scientists involved in each event. The series consisted of four short seminars, one game show style event, and one purely question and answer panel session. The seminar sessions consisted of a short talk delivered by AOPP scientists focused on their research with time for audience questions. The game show event was loosely based on the “Would I lie to you?” BBC hit television show and had the scientists presenting short statements and inviting the audience to determine whether it was fact or fiction. This format encouraged audience participation and debate through the webinar chat feature. Due to the large number of questions we were unable to get to during the seminar sessions, a Q&A panel was added to the series. Reception: The Destination: Space programme was advertised well in advance of its commencement through the Oxford Physics Outreach department mailing lists connected to local schools, and through social media accounts. Over 750 local and international audience members attended the series with an additional 1000+ viewers watching the recorded versions on YouTube as of this time. Project Assessment: For the seminar sessions, polls were used to assess the audience’s knowledge before and after the talk, with the majority self-reporting an increase in understanding of the topic and overall positive comments from the audience, including several emails from teachers supporting the project. The game show session incorporated polls throughout to encourage an interactive event, and showed the audience actively debating in the chat and reaching the right answer 85% of the time. Responses to this event were overwhelmingly positive and many cited the interactivity as enhancing their experience. Overall polling showed support for the programme and calls for similar series covering other space topics. We will look to create another series for the upcoming school year, and to create more activities for teachers to use in conjunction with the programme. The recorded programme can be found here:https://www.youtube.com/playlist?list=PLUX8glPeEnsK2Qu97enFmpXuIoMrw7Pdm
- Published
- 2021
6. A Spectral Investigation of Aqueously and Thermally Altered CM, CM‐An, and CY Chondrites Under Simulated Asteroid Conditions for Comparison With OSIRIS‐REx and Hayabusa2 Observations
- Author
-
K. L. Donaldson Hanna, Sara S. Russell, Neil Bowles, Ashley J. King, and H. C. Bates
- Subjects
Geophysics ,Materials science ,biology ,Meteorite ,Space and Planetary Science ,Geochemistry and Petrology ,Asteroid ,Chondrite ,Earth and Planetary Sciences (miscellaneous) ,Osiris ,biology.organism_classification ,Spectroscopy ,Astrobiology - Published
- 2021
7. Christiansen Feature Map From the Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment: Improved Corrections and Derived Mineralogy
- Author
-
Benjamin T. Greenhagen, David A. Paige, Paul G. Lucey, Kerri Donaldson Hanna, A. Flom, and Neil Bowles
- Subjects
Orbiter ,Geophysics ,Radiometer ,Space and Planetary Science ,Geochemistry and Petrology ,Feature (computer vision) ,Infrared remote sensing ,law ,Earth and Planetary Sciences (miscellaneous) ,Geology ,Diviner ,Remote sensing ,law.invention - Published
- 2021
8. Evidence for ultra-cold traps and surface water ice in the lunar south polar crater Amundsen
- Author
-
Neil Bowles, Elliot Sefton-Nash, Jean-Pierre Williams, Klaus-Michael Aye, Benjamin T. Greenhagen, F. Leader, Tristram Warren, David A. Paige, Matthew A. Siegler, Paul O. Hayne, and Joshua L. Bandfield
- Subjects
010504 meteorology & atmospheric sciences ,Astronomy and Astrophysics ,Albedo ,Atmospheric sciences ,01 natural sciences ,Regolith ,law.invention ,Orbiter ,Impact crater ,Space and Planetary Science ,law ,0103 physical sciences ,Frost ,Emissivity ,Altimeter ,010303 astronomy & astrophysics ,Geology ,0105 earth and related environmental sciences ,Diviner - Abstract
The northern floor and wall of Amundsen crater, near the lunar south pole, is a permanently shaded region (PSR). Previous study of this area using data from the Lunar Orbiter Laser Altimeter (LOLA), Diviner and LAMP instruments aboard Lunar Reconnaissance Orbiter (LRO) shows a spatial correlation between brighter 1064 nm albedo, annual maximum surface temperatures low enough to enable persistence of surface water ice ( We find features in far-IR emissivity (50–400 μm) could be attributed to either, or a combination, of two effects (i) differential regolith emissive behavior between permanently-shadowed temperature regimes and those of normally illuminated polar terrain, perhaps related to presence of water frost (as indicated in other studies), or (ii) high degrees of anisothermality within observation fields of view caused by doubly-shaded areas within the PSR target that are colder than observed brightness temperatures. The implications in both cases are compelling: The far-IR emissivity curve of lunar cold traps may provide a metric for the abundance of “micro” cold traps that are ultra-cool, i.e. shadowed also from secondary and higher order radiation (absorption and re-radiation or scattering by surrounding terrain), or for emissive properties consistent with the presence of surface water ice.
- Published
- 2019
9. Modeling the Angular Dependence of Emissivity of Randomly Rough Surfaces
- Author
-
Neil Bowles, Joshua L. Bandfield, Tristram Warren, and K. L. Donaldson Hanna
- Subjects
Materials science ,010504 meteorology & atmospheric sciences ,Scattering ,Astrophysics::High Energy Astrophysical Phenomena ,Monte Carlo method ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Fresnel equations ,Viewing angle ,01 natural sciences ,Computational physics ,Wavelength ,Geophysics ,Space and Planetary Science ,Geochemistry and Petrology ,Goniometer ,Earth and Planetary Sciences (miscellaneous) ,Emissivity ,Surface roughness ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences - Abstract
Directional emissivity (DE) describes how the emissivity of an isothermal surface changes with viewing angle across thermal infrared wavelengths. The Oxford Space Environment Goniometer (OSEG) is a novel instrument that has been specifically designed to measure the DE of regolith materials derived from planetary surfaces. The DE of Nextel high emissivity black paint was previously measured by the OSEG and showed that the measured emissivity decreases with increasing emission angle, from an emissivity of 0.97 ± 0.01 at 0° emission angle to an emissivity of 0.89± 0.01 at 71° emission angle. The Nextel target measured was isothermal (
- Published
- 2019
10. Spectral characterization of analog samples in anticipation of OSIRIS-REx's arrival at Bennu: A blind test study
- Author
-
C. Lantz, Timothy J. McCoy, Sara S. Russell, L. F. Lim, Paul F. Schofield, L.P. Keller, V.E. Hamilton, Daniel M. Applin, B.E. Clark, G. D. Cody, H.C. Connolly, E. Dotto, Neil Bowles, K. L. Donaldson Hanna, Dante S. Lauretta, Devin L. Schrader, Edward A. Cloutis, A.J. King, John Robert Brucato, and J.P. Mann
- Subjects
Materials science ,010504 meteorology & atmospheric sciences ,Mineralogy ,Astronomy and Astrophysics ,Albedo ,01 natural sciences ,Regolith ,Spectral line ,VNIR ,Characterization (materials science) ,Meteorite ,Space and Planetary Science ,Chondrite ,Asteroid ,0103 physical sciences ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences - Abstract
We present spectral measurements of a suite of mineral mixtures and meteorites that are possible analogs for asteroid (101955) Bennu, the target asteroid for NASA's Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-REx) mission. The sample suite, which includes anhydrous and hydrated mineral mixtures and a suite of chondritic meteorites (CM, CI, CV, CR, and L5), was chosen to characterize the spectral effects due to varying amounts of aqueous alteration and minor amounts of organic material. Our results demonstrate the utility of mineral mixtures for understanding the mixing behavior of meteoritic materials and identifying spectrally dominant species across the visible to near-infrared (VNIR) and thermal infrared (TIR) spectral ranges. Our measurements demonstrate that, even with subtle signatures in the spectra of chondritic meteorites, we can identify diagnostic features related to the minerals comprising each of the samples. Also, the complementary nature of the two spectral ranges regarding their ability to detect different mixture and meteorite components can be used to characterize analog sample compositions better. However, we observe differences in the VNIR and TIR spectra between the mineral mixtures and the meteorites. These differences likely result from (1) differences in the types and physical disposition of constituents in the mixtures versus in meteorites, (2) missing phases observed in meteorites that we did not add to the mixtures, and (3) albedo differences among the samples. In addition to the initial characterization of the analog samples, we will use these spectral measurements to test phase detection and abundance determination algorithms in anticipation of mapping Bennu's surface properties and selecting a sampling site.
- Published
- 2019
11. Spectral Characterization of Bennu Analogs Using PASCALE: A New Experimental Set‐Up for Simulating the Near‐Surface Conditions of Airless Bodies
- Author
-
Neil Bowles, Devin L. Schrader, T. Warren, S. B. Calcutt, V. E. Hamilton, A. Clack, Jon Temple, K. L. Donaldson Hanna, Dante S. Lauretta, and Timothy J. McCoy
- Subjects
Atmospheres ,010504 meteorology & atmospheric sciences ,Planetary Atmospheres, Clouds, and Hazes ,Permafrost ,Atmospheric Composition and Structure ,Biogeosciences ,01 natural sciences ,Meteorites and Tektites ,Spectral line ,Planetary Sciences: Solar System Objects ,Physics and Chemistry of Materials ,Earth and Planetary Sciences (miscellaneous) ,Planetary Sciences: Astrobiology ,Permafrost, Cryosphere, and High‐latitude Processes ,Planetary Atmospheres ,Composition of Meteorites ,Meteorite Mineralogy and Petrology ,Asteroids ,Characterization (materials science) ,Planetary Mineralogy and Petrology ,Surfaces ,Geophysics ,Meteorite ,Asteroid ,Comets: Dust Tails and Trails ,Bennu ,Planetary Sciences: Comets and Small Bodies ,airless bodies ,Cryosphere ,Composition ,Research Article ,spectroscopy ,Materials science ,Mineralogy ,Planetary Geochemistry ,Cryobiology ,Geochemistry and Petrology ,Chondrite ,Comets ,Emissivity ,Spectroscopy ,Planetary Sciences: Solid Surface Planets ,Planetary Sciences: Fluid Planets ,Mineralogy and Petrology ,0105 earth and related environmental sciences ,Albedo ,Geochemistry ,Space and Planetary Science ,thermal infrared ,Other ,laboratory ,Natural Hazards - Abstract
We describe the capabilities, radiometric stability, and calibration of a custom vacuum environment chamber capable of simulating the near‐surface conditions of airless bodies. Here we demonstrate the collection of spectral measurements of a suite of fine particulate asteroid analogs made using the Planetary Analogue Surface Chamber for Asteroid and Lunar Environments (PASCALE) under conditions like those found on Earth and on airless bodies. The sample suite includes anhydrous and hydrated physical mixtures, and chondritic meteorites (CM, CI, CV, CR, and L5) previously characterized under Earth‐ and asteroid‐like conditions. And for the first time, we measure the terrestrial and extra‐terrestrial mineral end members used in the olivine‐ and phyllosilicate‐dominated physical mixtures under the same conditions as the mixtures and meteorites allowing us better understand how minerals combine spectrally when mixed intimately. Our measurements highlight the sensitivity of thermal infrared emissivity spectra to small amounts of low albedo materials and the composition of the sample materials. As the albedo of the sample decreases, we observe smaller differences between Earth‐ and asteroid‐like spectra, which results from a reduced thermal gradient in the upper hundreds of microns in the sample. These spectral measurements can be compared to thermal infrared emissivity spectra of asteroid (101955) Bennu's surface in regions where similarly fine particulate materials may be observed to infer surface compositions., Key Points Thermal infrared spectra of fine particulate minerals, physical mixtures of those minerals, and meteorites were measured under simulated Bennu conditionsComparisons of mineral, physical mixture, and meteorite spectra highlight the spectral behavior when materials are mixed in increasing complexityAs albedo decreases the spectral effects due to thermal gradients due to the vacuum environment of airless bodies are reduced
- Published
- 2021
12. Ariel: Enabling planetary science across light-years
- Author
-
Giovanna Tinetti, Paul Eccleston, Carole Haswell, Pierre-Olivier Lagage, Jérémy Leconte, Theresa Lüftinger, Giusi Micela, Michel Min, Göran Pilbratt, Ludovic Puig, Mark Swain, Leonardo Testi, Diego Turrini, Bart Vandenbussche, Maria Rosa Zapatero Osorio, Anna Aret, Jean-Philippe Beaulieu, Buchhave, Lars A., Martin Ferus, Matt Griffin, Manuel Guedel, Paul Hartogh, Pedro Machado, Giuseppe Malaguti, Enric Pallé, Mirek Rataj, Tom Ray, Ignasi Ribas, Robert Szabó, Jonathan Tan, Stephanie Werner, Francesco Ratti, Carsten Scharmberg, Jean-Christophe Salvignol, Nathalie Boudin, Jean-Philippe Halain, Martin Haag, Pierre-Elie Crouzet, Ralf Kohley, Kate Symonds, Florian Renk, Andrew Caldwell, Manuel Abreu, Gustavo Alonso, Jerome Amiaux, Michel Berthé, Georgia Bishop, Neil Bowles, Manuel Carmona, Deirdre Coffey, Josep Colomé, Martin Crook, Lucile Désjonqueres, Díaz, José J., Rachel Drummond, Mauro Focardi, Gómez, Jose M., Warren Holmes, Matthijs Krijger, Zsolt Kovacs, Tom Hunt, Richardo Machado, Gianluca Morgante, Marc Ollivier, Roland Ottensamer, Emanuele Pace, Teresa Pagano, Enzo Pascale, Chris Pearson, Søren Møller Pedersen, Moshe Pniel, Stéphane Roose, Giorgio Savini, Richard Stamper, Peter Szirovicza, Janos Szoke, Ian Tosh, Francesc Vilardell, Joanna Barstow, Luca Borsato, Sarah Casewell, Quentin Changeat, Benjamin Charnay, Svatopluk Civiš, Vincent Coudé du Foresto, Athena Coustenis, Nicolas Cowan, Camilla Danielski, Olivier Demangeon, Pierre Drossart, Edwards, Billy N., Gabriella Gilli, Therese Encrenaz, Csaba Kiss, Anastasia Kokori, Masahiro Ikoma, Juan Carlos Morales, Joao Mendonca, Andrea Moneti, Lorenzo Mugnai, Antonio García Muñoz, Ravit Helled, Mihkel Kama, Yamila Miguel, Nikos Nikolaou, Isabella Pagano, Olja Panic, Miriam Rengel, Hans Rickman, Marco Rocchetto, Subhajit Sarkar, Franck Selsis, Jonathan Tennyson, Angelos Tsiaras, Olivia Venot, Krisztián Vida, Waldmann, Ingo P., Sergey Yurchenko, Gyula Szabó, Rob Zellem, Ahmed Al-Refaie, Javier Perez Alvarez, Lara Anisman, Axel Arhancet, Jaume Ateca, Robin Baeyens, Barnes, John R., Taylor Bell, Serena Benatti, Katia Biazzo, Maria Błęcka, Aldo Stefano Bonomo, José Bosch, Diego Bossini, Jeremy Bourgalais, Daniele Brienza, Anna Brucalassi, Giovanni Bruno, Hamish Caines, Simon Calcutt, Tiago Campante, Rodolfo Canestrari, Nick Cann, Giada Casali, Albert Casas, Giuseppe Cassone, Christophe Cara, Ludmila Carone, Nathalie Carrasco, Paolo Chioetto, Fausto Cortecchia, Markus Czupalla, Chubb, Katy L., Angela Ciaravella, Antonio Claret, Riccardo Claudi, Claudio Codella, Maya Garcia Comas, Gianluca Cracchiolo, Patricio Cubillos, Vania Da Peppo, Leen Decin, Clemence Dejabrun, Elisa Delgado-Mena, Anna Di Giorgio, Emiliano Diolaiti, Caroline Dorn, Vanessa Doublier, Eric Doumayrou, Georgina Dransfield, Luc Dumaye, Emma Dunford, Antonio Jimenez Escobar, Vincent Van Eylen, Maria Farina, Davide Fedele, Alejandro Fernández, Benjamin Fleury, Sergio Fonte, Jean Fontignie, Luca Fossati, Bernd Funke, Camille Galy, Zoltán Garai, Andrés García, Alberto García-Rigo, Antonio Garufi, Giuseppe Germano Sacco, Paolo Giacobbe, Alejandro Gómez, Arturo Gonzalez, Francisco Gonzalez-Galindo, Davide Grassi, Caitlin Griffith, Mario Giuseppe Guarcello, Audrey Goujon, Amélie Gressier, Aleksandra Grzegorczyk, Tristan Guillot, Gloria Guilluy, Peter Hargrave, Marie-Laure Hellin, Enrique Herrero, Matt Hills, Benoit Horeau, Yuichi Ito, Niels Christian Jessen, Petr Kabath, Szilárd Kálmán, Yui Kawashima, Tadahiro Kimura, Antonín Knížek, Laura Kreidberg, Ronald Kruid, Kruijssen, Diederik J. M., Petr Kubelík, Luisa Lara, Sebastien Lebonnois, David Lee, Maxence Lefevre, Tim Lichtenberg, Daniele Locci, Matteo Lombini, Alejandro Sanchez Lopez, Andrea Lorenzani, Ryan MacDonald, Laura Magrini, Jesus Maldonado, Emmanuel Marcq, Alessandra Migliorini, Darius Modirrousta-Galian, Karan Molaverdikhani, Sergio Molinari, Paul Mollière, Vincent Moreau, Giuseppe Morello, Gilles Morinaud, Mario Morvan, Moses, Julianne I., Salima Mouzali, Nariman Nakhjiri, Luca Naponiello, Norio Narita, Valerio Nascimbeni, Athanasia Nikolaou, Vladimiro Noce, Fabrizio Oliva, Pietro Palladino, Andreas Papageorgiou, Vivien Parmentier, Giovanni Peres, Javier Pérez, Santiago Perez-Hoyos, Manuel Perger, Cesare Cecchi Pestellini, Antonino Petralia, Anne Philippon, Arianna Piccialli, Marco Pignatari, Giampaolo Piotto, Linda Podio, Gianluca Polenta, Giampaolo Preti, Theodor Pribulla, Manuel Lopez Puertas, Monica Rainer, Jean-Michel Reess, Paul Rimmer, Séverine Robert, Albert Rosich, Loic Rossi, Duncan Rust, Ayman Saleh, Nicoletta Sanna, Eugenio Schisano, Laura Schreiber, Victor Schwartz, Antonio Scippa, Bálint Seli, Sho Shibata, Caroline Simpson, Oliver Shorttle, Skaf, N., Konrad Skup, Mateusz Sobiecki, Sergio Sousa, Alessandro Sozzetti, Judit Šponer, Lukas Steiger, Paolo Tanga, Paul Tackley, Jake Taylor, Matthias Tecza, Luca Terenzi, Pascal Tremblin, Andrea Tozzi, Amaury Triaud, Loïc Trompet, Shang-Min Tsai, Maria Tsantaki, Diana Valencia, Ann Carine Vandaele, Mathieu Van der Swaelmen, Adibekyan Vardan, Gautam Vasisht, Allona Vazan, Ciro Del Vecchio, Dave Waltham, Piotr Wawer, Thomas Widemann, Paulina Wolkenberg, Gordon Hou Yip, Yuk Yung, Mantas Zilinskas, Tiziano Zingales, Paola Zuppella, University College of London [London] (UCL), Space Science and Technology Department [Didcot] (RAL Space), STFC Rutherford Appleton Laboratory (RAL), Science and Technology Facilities Council (STFC)-Science and Technology Facilities Council (STFC), Université de Bordeaux (UB), Agence Spatiale Européenne = European Space Agency (ESA), SRON Netherlands Institute for Space Research (SRON), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Istituto di Astrofisica e Planetologia Spaziali - INAF (IAPS), Istituto Nazionale di Astrofisica (INAF), Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), INAF - Osservatorio Astronomico di Bologna (OABO), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Belgian Institute for Space Aeronomy / Institut d'Aéronomie Spatiale de Belgique (BIRA-IASB), European Space Agency, Agence Spatiale Européenne (ESA), European Space Agency (ESA), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Giovanna Tinetti, Paul Eccleston, Carole Haswell, Pierre-Olivier Lagage, Jérémy Leconte, Theresa Lüftinger, Giusi Micela, Michel Min, Göran Pilbratt, Ludovic Puig, Mark Swain, Leonardo Testi, Diego Turrini, Bart Vandenbussche, Maria Rosa Zapatero Osorio, Anna Aret, Jean-Philippe Beaulieu, Lars Buchhave, Martin Feru, Matt Griffin, Manuel Guedel, Paul Hartogh, Pedro Machado, Giuseppe Malaguti, Enric Pallé, Mirek Rataj, Tom Ray, Ignasi Riba, Robert Szabó, Jonathan Tan, Stephanie Werner, Francesco Ratti, Carsten Scharmberg, Jean-Christophe Salvignol, Nathalie Boudin, Jean-Philippe Halain, Martin Haag, Pierre-Elie Crouzet, Ralf Kohley, Kate Symond, Florian Renk, Andrew Caldwell, Manuel Abreu, Gustavo Alonso, Jerome Amiaux, Michel Berthé, Georgia Bishop, Neil Bowle, Manuel Carmona, Deirdre Coffey, Josep Colomé, Martin Crook, Lucile Désjonquere, José J. Díaz, Rachel Drummond, Mauro Focardi, Jose M. Gómez, Warren Holme, Matthijs Krijger, Zsolt Kovac, Tom Hunt, Richardo Machado, Gianluca Morgante, Marc Ollivier, Roland Ottensamer, Emanuele Pace, Teresa Pagano, Enzo Pascale, Chris Pearson, Søren Møller Pedersen, Moshe Pniel, Stéphane Roose, Giorgio Savini, Richard Stamper, Peter Szirovicza, Janos Szoke, Ian Tosh, Francesc Vilardell, Joanna Barstow, Luca Borsato, Sarah Casewell, Quentin Changeat, Benjamin Charnay, Svatopluk Civiš, Vincent Coudé du Foresto, Athena Cousteni, Nicolas Cowan, Camilla Danielski, Olivier Demangeon, Pierre Drossart, Billy N. Edward, Gabriella Gilli, Therese Encrenaz, Csaba Ki, Anastasia Kokori, Masahiro Ikoma, Juan Carlos Morale, João Mendonça, Andrea Moneti, Lorenzo Mugnai, Antonio García Muñoz, Ravit Helled, Mihkel Kama, Yamila Miguel, Nikos Nikolaou, Isabella Pagano, Olja Panic, Miriam Rengel, Hans Rickman, Marco Rocchetto, Subhajit Sarkar, Franck Selsi, Jonathan Tennyson, Angelos Tsiara, Olivia Venot, Krisztián Vida, Ingo P. Waldmann, Sergey Yurchenko, Gyula Szabó, Rob Zellem, Ahmed Al-Refaie, Javier Perez Alvarez, Lara Anisman, Axel Arhancet, Jaume Ateca, Robin Baeyen, John R. Barne, Taylor Bell, Serena Benatti, Katia Biazzo, Maria Błęcka, Aldo Stefano Bonomo, José Bosch, Diego Bossini, Jeremy Bourgalai, Daniele Brienza, Anna Brucalassi, Giovanni Bruno, Hamish Caine, Simon Calcutt, Tiago Campante, Rodolfo Canestrari, Nick Cann, Giada Casali, Albert Casa, Giuseppe Cassone, Christophe Cara, Ludmila Carone, Nathalie Carrasco, Paolo Chioetto, Fausto Cortecchia, Markus Czupalla, Katy L. Chubb, Angela Ciaravella, Antonio Claret, Riccardo Claudi, Claudio Codella, Maya Garcia Coma, Gianluca Cracchiolo, Patricio Cubillo, Vania Da Peppo, Leen Decin, Clemence Dejabrun, Elisa Delgado-Mena, Anna Di Giorgio, Emiliano Diolaiti, Caroline Dorn, Vanessa Doublier, Eric Doumayrou, Georgina Dransfield, Luc Dumaye, Emma Dunford, Antonio Jimenez Escobar, Vincent Van Eylen, Maria Farina, Davide Fedele, Alejandro Fernández, Benjamin Fleury, Sergio Fonte, Jean Fontignie, Luca Fossati, Bernd Funke, Camille Galy, Zoltán Garai, Andrés García, Alberto García-Rigo, Antonio Garufi, Giuseppe Germano Sacco, Paolo Giacobbe, Alejandro Gómez, Arturo Gonzalez, Francisco Gonzalez-Galindo, Davide Grassi, Caitlin Griffith, Mario Giuseppe Guarcello, Audrey Goujon, Amélie Gressier, Aleksandra Grzegorczyk, Tristan Guillot, Gloria Guilluy, Peter Hargrave, Marie-Laure Hellin, Enrique Herrero, Matt Hill, Benoit Horeau, Yuichi Ito, Niels Christian Jessen, Petr Kabath, Szilárd Kálmán, Yui Kawashima, Tadahiro Kimura, Antonín Knížek, Laura Kreidberg, Ronald Kruid, Diederik J. M. Kruijssen, Petr Kubelík, Luisa Lara, Sebastien Lebonnoi, David Lee, Maxence Lefevre, Tim Lichtenberg, Daniele Locci, Matteo Lombini, Alejandro Sanchez Lopez, Andrea Lorenzani, Ryan MacDonald, Laura Magrini, Jesus Maldonado, Emmanuel Marcq, Alessandra Migliorini, Darius Modirrousta-Galian, Karan Molaverdikhani, Sergio Molinari, Paul Mollière, Vincent Moreau, Giuseppe Morello, Gilles Morinaud, Mario Morvan, Julianne I. Mose, Salima Mouzali, Nariman Nakhjiri, Luca Naponiello, Norio Narita, Valerio Nascimbeni, Athanasia Nikolaou, Vladimiro Noce, Fabrizio Oliva, Pietro Palladino, Andreas Papageorgiou, Vivien Parmentier, Giovanni Pere, Javier Pérez, Santiago Perez-Hoyo, Manuel Perger, Cesare Cecchi Pestellini, Antonino Petralia, Anne Philippon, Arianna Piccialli, Marco Pignatari, Giampaolo Piotto, Linda Podio, Gianluca Polenta, Giampaolo Preti, Theodor Pribulla, Manuel Lopez Puerta, Monica Rainer, Jean-Michel Ree, Paul Rimmer, Séverine Robert, Albert Rosich, Loic Rossi, Duncan Rust, Ayman Saleh, Nicoletta Sanna, Eugenio Schisano, Laura Schreiber, Victor Schwartz, Antonio Scippa, Bálint Seli, Sho Shibata, Caroline Simpson, Oliver Shorttle, N. Skaf, Konrad Skup, Mateusz Sobiecki, Sergio Sousa, Alessandro Sozzetti, Judit Šponer, Lukas Steiger, Paolo Tanga, Paul Tackley, Jake Taylor, Matthias Tecza, Luca Terenzi, Pascal Tremblin, Andrea Tozzi, Amaury Triaud, Loïc Trompet, Shang-Min Tsai, Maria Tsantaki, Diana Valencia, Ann Carine Vandaele, Mathieu Van der Swaelmen, Adibekyan Vardan, Gautam Vasisht, Allona Vazan, Ciro Del Vecchio, Dave Waltham, Piotr Wawer, Thomas Widemann, Paulina Wolkenberg, Gordon Hou Yip, Yuk Yung, Mantas Zilinska, Tiziano Zingale, Paola Zuppella, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), and Cardon, Catherine
- Subjects
[SDU] Sciences of the Universe [physics] ,Earth and Planetary Astrophysics (astro-ph.EP) ,[SDU.ASTR.IM] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Settore FIS/05 - Astronomia E Astrofisica ,[SDU]Sciences of the Universe [physics] ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,[SDU.ASTR.EP] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,FOS: Physical sciences ,Astrophysics - Instrumentation and Methods for Astrophysic ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Astrophysics - Earth and Planetary Astrophysics ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] - Abstract
Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, was adopted as the fourth medium-class mission in ESA's Cosmic Vision programme to be launched in 2029. During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System. The payload consists of an off-axis Cassegrain telescope (primary mirror 1100 mm x 730 mm ellipse) and two separate instruments (FGS and AIRS) covering simultaneously 0.5-7.8 micron spectral range. The satellite is best placed into an L2 orbit to maximise the thermal stability and the field of regard. The payload module is passively cooled via a series of V-Groove radiators; the detectors for the AIRS are the only items that require active cooling via an active Ne JT cooler. The Ariel payload is developed by a consortium of more than 50 institutes from 16 ESA countries, which include the UK, France, Italy, Belgium, Poland, Spain, Austria, Denmark, Ireland, Portugal, Czech Republic, Hungary, the Netherlands, Sweden, Norway, Estonia, and a NASA contribution., Comment: Ariel Definition Study Report, 147 pages. Reviewed by ESA Science Advisory Structure in November 2020. Original document available at: https://www.cosmos.esa.int/documents/1783156/3267291/Ariel_RedBook_Nov2020.pdf/
- Published
- 2021
- Full Text
- View/download PDF
13. THE ANGULAR INFRARED EMISSIVITY OF THE SURFACE OF THE MOON
- Author
-
Kristen A. Bennett, David A. Paige, Tristram Warren, Neil Bowles, B. T. Greenhagen, Lior Rubanenko, and E. J. Foote
- Subjects
Surface (mathematics) ,Materials science ,Optics ,Infrared ,business.industry ,Emissivity ,business - Published
- 2021
14. THE EFFECTS OF FINE PARTICULATES ON THERMAL INFRARED EMISSIVITY SPECTRA: IMPLICATIONS FOR SOLAR SYSTEM AIRLESS BODIES
- Author
-
Kerri Donaldson Hanna, Neil Bowles, and B. T. Greenhagen
- Subjects
Solar System ,Materials science ,Thermal infrared ,Optics ,business.industry ,Emissivity ,Particulates ,business ,Spectral line - Published
- 2021
15. Author Correction: Shape of (101955) Bennu indicative of a rubble pile with internal stiffness
- Author
-
M. Lefevre, Aaron S. Burton, Carina Bennett, J. A. Mapel, Renu Malhotra, Peter Fleming, J. McAdams, N. Mogk, R. L. Ballouz, P. H. Smith, V. Nifo, C. K. Maleszewski, Timothy D. Swindle, E. Dotto, Stephen R. Schwartz, C. May, J. Bayron, D. Patterson, D. Guevel, Ellen S. Howell, Humberto Campins, J. Kissell, E. Brown, J. Wood, E. Muhle, John Robert Brucato, J. Small, B. Miller, Oleksiy Golubov, R. Pennington, K. Harshman, J. Nelson, Catherine Elder, M. McGee, R. Burns, J. Contreras, S. Hull, D. Kubitschek, D. Noss, Andrew J. Liounis, J. Backer, B. May, G. Fitzgibbon, J. Donaldson, D. Worden, Bashar Rizk, R. Witherspoon, Catherine L. Johnson, Erica Jawin, G. Shaw, A. Aqueche, Dolores H. Hill, D. Folta, S. Ferrone, M. Lujan, Giovanni Poggiali, B. G. Williams, S. Selznick, Melissa A. Morris, K. Rios, Sara S. Russell, D. Lambert, J. Hong, Jeffrey B. Plescia, H. Bloomenthal, D. Drinnon, Olivier S. Barnouin, Derek S. Nelson, Amanda E. Toland, Michael C. Moreau, J. A. Seabrook, K. Dill, A. Mirfakhrai, K. Hyde, J. D. P. Deshapriya, Hannah Kaplan, Timothy P. McElrath, Juliette I. Brodbeck, N. Ramos, S. Stewart, James B. Garvin, Sei-ichiro Watanabe, M. Arvizu-Jakubicki, Jason P. Dworkin, Matthew A. Siegler, Collin Lewin, Masatoshi Hirabayashi, L. Bloomquist, S. Gardner, Keiko Nakamura-Messenger, A. H. Nair, M. Schmitzer, P. Haas, Julie Bellerose, Dolan E. Highsmith, L. Koelbel, C. C. Lorentson, J. Zareski, E. Queen, S. R. Chesley, Philip A. Bland, A. Cheuvront, V. E. Hamilton, Ronald G. Mink, N. Mastrodemos, H. C. Connolly, K. Bellamy, M. Killgore, A. Gardner, Y. Takahashi, M. Lambert, R. C. Espiritu, Z. Zeszut, E. T. Morton, Kevin J. Walsh, Timothy D. Glotch, M. Skeen, Brian Kennedy, Matthew R.M. Izawa, G. Neumann, F. Teti, D. Doerres, A. Hasten, F. Ciceri, D. Howell, A. Deguzman, J. Nagy, D. Vaughan, H. Ma, C. Lantz, D. N. Brack, David K. Hammond, Erwan Mazarico, Leilah K. McCarthy, L. Rhoads, Kathleen L. Craft, C. Welch, Jay W. McMahon, C. L. Parish, D. C. Reuter, M. Giuntini, N. Castro, Clive Dickinson, J. Kreiner, K. Kingsbury, S. Dickenshied, Joseph A. Nuth, Alan R. Hildebrand, Erik Asphaug, H. Ido, Eric M. Sahr, A. Harbison, Arlin E. Bartels, T. Forrester, D. Eckart, R. Bandrowski, Michael K. Barker, Robert Gaskell, J. Wendel, S. Freund, Marc Bernacki, Ryan S. Park, A. Taylor, E. B. Bierhaus, S. Millington-Veloza, J. Stromberg, L. B. Breitenfeld, K. Stakkestad, D. Ellis, Timothy J. McCoy, M. Susak, Richard G. Cosentino, C. Manzoni, Hisayoshi Yurimoto, C. Drouet d'Aubigny, A. Bjurstrom, Masako Yoshikawa, S. Francis, J. Peachey, J. Geeraert, K. Marchese, O. Billett, M. Rascon, F. Jaen, B. Diallo, Martin Miner, Kris J. Becker, E. Mazzotta Epifani, Florian Thuillet, A. Knight, James H. Roberts, Pasquale Tricarico, Edward A. Cloutis, T. Fisher, Dale Stanbridge, A. Colpo, Osiris-Rex Team, S. Gonzales, Q. Tran, M. K. Crombie, John Marshall, N. Bojorquez-Murphy, David Vokrouhlický, Allen W. Lunsford, H. Bowles, K. L. Edmundson, R. A. Masterson, Peter G. Antreasian, N. Gorius, Benjamin Rozitis, D. Pino Muñoz, S. Carlson-Kelly, C. Thayer, J. Elsila Cook, B. C. Clark, N. Piacentine, José C. Aponte, M. Al Asad, M. A. Barucci, D. Blum, P. Falkenstern, Neil Bowles, Matthew Chojnacki, J. M. Leonard, J. Daly, K. Yetter, M. R. Fisher, Jeffrey N. Grossman, A. Boggs, N. Jayakody, Cristina A. Thomas, C.M. Ernst, Namrah Habib, J. N. Kidd, R. J. Steele, Andrew B. Calloway, Andrew Ryan, Kimberly T. Tait, Paul O. Hayne, J. Y. Li, K. L. Berry, William V. Boynton, Yanga R. Fernandez, D. A. Lorenz, M. Wasser, Daniel J. Scheeres, K. Fortney, A. Scroggins, B. Allen, B. Sutter, T. Ferro, Jonathan Joseph, Derek C. Richardson, D. Hoak, Brian Carcich, W. Chang, P. Wren, C. Boyles, Kaj E. Williams, B. Marty, J. Liang, J. Hoffman, A. Harch, Daniel R. Wibben, Jamie Molaro, S. Rieger, R. Enos, C. W. Hergenrother, Stephen R. Sutton, J. Grindlay, E. J. Lessac-Chenen, E. Huettner, C. Norman, P. Sherman, L. Swanson, M. Coltrin, S. Van wal, B. Buck, A. Fisher, Kevin Righter, Brian Rush, David D. Rowlands, Lauren McGraw, A. Levine, K. Drozd, D. Gaudreau, A. Nguyen, S. Sides, M. Chodas, R. Dubisher, B. Ashman, Michael Caplinger, Amy Simon, W. Moore, S. S. Balram-Knutson, R. Carpenter, S. Fornasier, Shogo Tachibana, Russell Turner, Ian A. Franchi, Trevor Ireland, Chloe B. Beddingfield, D. F. Everett, M. Corvin, Lindsay P. Keller, Tammy L. Becker, S. Carter, J. L. Rizos Garcia, Mark E. Perry, E. Keates, Michael C. Nolan, P. Vasudeva, C. Fellows, K. Herzog, Mark A. Jenkins, J. R. Weirich, J. Swenson, D. R. Golish, Davide Farnocchia, Lydia C. Philpott, Rebecca R. Ghent, Hannah C.M. Susorney, S. W. Squyres, Pedro Hasselmann, J. Hill, Thomas J. Zega, B. Key, Marco Delbo, A. S. French, P. Sánchez, A. Hilbert, J. Y. Pelgrift, R. P. Binzel, L. McNamara, Vishnu Reddy, Michael Daly, Scott Messenger, Daniella DellaGiustina, Maurizio Pajola, Charles Brunet, Joshua L. Bandfield, J. Padilla, A. Janakus, M. Moreau, R. Garcia, R. A. Chicoine, P. Michel, P. Kaotira, K. S. Johnson, J. Forelli, G. Miller, K. Martin, I. Galinsky, S. Desjardins, Naru Hirata, Christine Hartzell, M. L. Jones, S. Hooven, D. Velez, R. Munoz, Carolyn M. Ernst, C. Emr, N. Martinez-Vlasoff, S. Bendall, R. Zellar, E. Church, Theodore Kareta, T. Warren, P. Wolff, V. Morrison, C. Bryan, S. Bhaskaran, N. Jones, D. Hauf, Jeremy Bauman, R. T. Daly, R. Olds, M. M. Westermann, D. K. Hamara, E. Audi, G. Johnston, Eric Palmer, Courtney Mario, Daniel P. Glavin, T. Haltigin, J. Cutts, Javier Licandro, Xiao-Duan Zou, H. L. Roper, Gregory A. Neumann, William M. Owen, S. Sugita, Y. H. Tang, Kevin Burke, H. L. Enos, D. Gallagher, William F. Bottke, K. Getzandanner, Philip R. Christensen, C. W. V. Wolner, K. Fleshman, D. Poland, J. P. Emery, M.M. Riehl, D. Fennell, D. Sallitt, A. D. Rogers, M. Fitzgibbon, John H. Jones, S. Mullen, S. Salazar, S. Oliver, A. T. Polit, J. Cerna, A. Praet, Mark E. Holdridge, E. M. Ibrahim, Coralie D. Adam, J. de León, Christopher J. Miller, M. Ryle, J. Lyzhoft, M. Loveridge, C. Hoekenga, Brent J. Bos, S. Anwar, K. Chaffin, Devin L. Schrader, B. Lovelace, Romy D. Hanna, C. D. Adam, G. L. Mehall, K. L. Donaldson Hanna, F. Merlin, B. Wright, Guy Libourel, L. F. Lim, N. Shultz, Dante S. Lauretta, K. Hanley, Beth E. Clark, L. Le Corre, K. Thomas-Keprta, Moses Milazzo, W. Hagee, B. Page, M. Fisher, E. McDonough, D. Trang, S. Clemett, A. Rubi, A. Ingegneri, Scott A. Sandford, D. Dean, J. Freemantle, Michael D. Smith, Christopher W. Haberle, L. Nguyen, M. Fulchignoni, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL), Centre de Mise en Forme des Matériaux (CEMEF), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS]Physics [physics] ,010504 meteorology & atmospheric sciences ,Rubble ,Stiffness ,engineering.material ,010502 geochemistry & geophysics ,01 natural sciences ,[SDU]Sciences of the Universe [physics] ,engineering ,medicine ,General Earth and Planetary Sciences ,Geotechnical engineering ,medicine.symptom ,Pile ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Geology ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences - Abstract
International audience
- Published
- 2020
16. Linear unmixing of fine particulate materials: implications for compositional analyses of primitive asteroids
- Author
-
Neil Bowles, Victoria E. Hamilton, Humberto Campins, Kerri Donaldson Hanna, and Vanessa C. Lowry
- Subjects
Asteroid ,Fine particulate ,Mineralogy ,Geology - Abstract
Linear least squares unmixing of infrared spectra is a fast and effective way to spectrally estimate the modal mineral abundances of laboratory samples and remotely-sensed surfaces to within 5% on average [e.g., 1]. This technique has been applied to spectra of whole rocks, coarse particulates, meteorites, and the Martian surface to successfully determine modal abundances [e.g., 1-3]. With the recent arrival of NASA’s OSIRIS-REx spacecraft to asteroid 101955 Bennu, the OSIRIS-REx Thermal Emission Spectrometer (OTES) has been providing a wealth of data to interpret using spectral unmixing techniques [e.g., 4]. The assumption of linear spectral unmixing allows for the deconvolution of a mixed spectrum if the individual spectra and particle sizes of the pure end members are present within a spectral library. By implementing a weighted linear least squares (WLS) unmixing algorithm, one is able to deconvolve these mixed spectra into areal percentages of each endmember with the underlying assumption that this then corresponds to the volume percentages [e.g., 1-3]. At thermal infrared (TIR) wavelengths, end member spectra of coarse particulates combine linearly due to high absorption coefficients and relatively small mean optical paths, which limits most of the volumetric scattering [e.g., 1-3]. Linearity in the TIR region continues as particle size decreases until the wavelength of light approaches the particle size, at this point particles become optically thin and non-linear behavior (e.g., volumetric scattering) is observed. However, Ramsey and Christensen [1] demonstrated that when unmixing fine particulates (10 – 20 μm) with a spectral library of end members at the same particle size linear unmixing can still be used to estimate modal mineral abundances. In this study we investigate the effectiveness of a linear least squares unmixing approach to estimate mineral abundances for samples dominated by fine particulates (< 38 μm). We use a WLS algorithm and a spectral library of fine particulate pure minerals to unmix spectra of a suite of fine particulate, primitive asteroid analogs. Results from this investigation have implications for the interpretation of spectral observations of primitive asteroids that have a layer of fine particulate regolith. [1] Ramsey M. S. and Christensen P. R. (1998) JGR, 103, 577-596. [2] Hamilton V. E. and Christensen P. R. (2000) JGR, 105, 9717-9733. [3] Rogers A. D. and Aharonson O. (2008) JGR, 113,EO6S14. [4] Hamilton V. E. et al. (2019) Nature Astron., 3, 332-340.
- Published
- 2020
17. Small bodies science with the Twinkle space telescope
- Author
-
Marcell Tessenyi, Neil Bowles, Giorgio Savini, Sean S. Lindsay, Billy Edwards, Giovanna Tinetti, and C. Arena
- Subjects
Physics ,Brightness ,Solar System ,Mechanical Engineering ,Visible and near infrared spectroscopy ,Astronomy ,Astronomy and Astrophysics ,Field of view ,01 natural sciences ,Electronic, Optical and Magnetic Materials ,law.invention ,010309 optics ,Telescope ,Spitzer Space Telescope ,Space and Planetary Science ,Control and Systems Engineering ,Asteroid ,law ,0103 physical sciences ,Magnitude (astronomy) ,010303 astronomy & astrophysics ,Instrumentation - Abstract
Twinkle is an upcoming 0.45-m space-based telescope equipped with a visible and two near-infrared spectrometers covering the spectral range 0.4 to 4.5 μm with a resolving power R ∼ 250 (λ 2.42 μm). We explore Twinkle’s capabilities for small bodies science and find that, given Twinkle’s sensitivity, pointing stability, and spectral range, the mission can observe a large number of small bodies. The sensitivity of Twinkle is calculated and compared to the flux from an object of a given visible magnitude. The number, and brightness, of asteroids and comets that enter Twinkle’s field of regard is studied over three time periods of up to a decade. We find that, over a decade, several thousand asteroids enter Twinkle’s field of regard with a brightness and nonsidereal rate that will allow Twinkle to characterize them at the instrumentation’s native resolution with SNR > 100. Hundreds of comets can also be observed. Therefore, Twinkle offers researchers the opportunity to contribute significantly to the field of Solar System small bodies research.
- Published
- 2020
18. Linking mineralogy and spectroscopy of highly aqueously altered CM and CI carbonaceous chondrites in preparation for primitive asteroid sample return
- Author
-
K. L. Donaldson Hanna, Sara S. Russell, Ashley J. King, H. C. Bates, and Neil Bowles
- Subjects
Mineralogy ,010502 geochemistry & geophysics ,01 natural sciences ,Spectral line ,VNIR ,chemistry.chemical_compound ,Geophysics ,Meteorite ,chemistry ,Space and Planetary Science ,Asteroid ,Chondrite ,0103 physical sciences ,Spectral slope ,Spectroscopy ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Magnetite - Abstract
The highly hydrated, petrologic type 1 CM and CI carbonaceous chondrites likely derived from primitive, water‐rich asteroids, two of which are the targets for JAXA's Hayabusa2 and NASA's OSIRIS‐REx missions. We have collected visible and near‐infrared (VNIR) and mid infrared (MIR) reflectance spectra from well‐characterized CM1/2, CM1, and CI1 chondrites and identified trends related to their mineralogy and degree of secondary processing. The spectral slope between 0.65 and 1.05 μm decreases with increasing total phyllosilicate abundance and increasing magnetite abundance, both of which are associated with more extensive aqueous alteration. Furthermore, features at ~3 μm shift from centers near 2.80 μm in the intermediately altered CM1/2 chondrites to near 2.73 μm in the highly altered CM1 chondrites. The Christiansen features (CF) and the transparency features shift to shorter wavelengths as the phyllosilicate composition of the meteorites becomes more Mg‐rich, which occurs as aqueous alteration proceeds. Spectra also show a feature near 6 μm, which is related to the presence of phyllosilicates, but is not a reliable parameter for estimating the degree of aqueous alteration. The observed trends can be used to estimate the surface mineralogy and the degree of aqueous alteration in remote observations of asteroids. For example, (1) Ceres has a sharp feature near 2.72 μm, which is similar in both position and shape to the same feature in the spectra of the highly altered CM1 MIL 05137, suggesting abundant Mg‐rich phyllosilicates on the surface. Notably, both OSIRIS‐REx and Hayabusa2 have onboard instruments which cover the VNIR and MIR wavelength ranges, so the results presented here will help in corroborating initial results from Bennu and Ryugu.
- Published
- 2020
19. Initial results from the InSight mission on Mars
- Author
-
Sharon Kedar, Don Banfield, Scott M. McLennan, Nicholas Schmerr, Justin N. Maki, Gareth S. Collins, John Clinton, Anna Mittelholz, Paul Morgan, Mélanie Drilleau, Sabine Stanley, Chloé Michaut, Nicholas A Teanby, Daniele Antonangeli, Jeroen Tromp, W. Bruce Banerdt, James B. Garvin, Mark A. Wieczorek, Jerzy Grygorczuk, Suzanne E. Smrekar, Catherine L. Johnson, Aymeric Spiga, Peter Chi, Brigitte Knapmeyer-Endrun, Raphaël F. Garcia, Claire E. Newman, Seiichi Nagihara, Matthias Grott, W. Thomas Pike, Philippe Lognonné, Véronique Dehant, Ana-Catalina Plesa, Matthew Fillingim, Domenico Giardini, Taichi Kawamura, Mark T. Lemmon, Antoine Mocquet, Naomi Murdoch, Ebru Bozdag, David Mimoun, Ludovic Margerin, Matthew P. Golombek, Jessica C. E. Irving, Troy L. Hudson, Sami W. Asmar, Günter Kargl, Martin Knapmeyer, Mark P. Panning, Francis Nimmo, Scott D. King, John A. Grant, Sebastien Rodriguez, Martin van Driel, Nicholas H. Warner, Nils Mueller, José Antonio Rodríguez-Manfredi, Christopher T. Russell, Caroline Beghein, Clément Perrin, Ulrich R. Christensen, William M. Folkner, Renee Weber, Neil Bowles, Ingrid Daubar, Simon Stähler, Tilman Spohn, Eléanore Stutzmann, Ralph D. Lorenz, Matthew A. Siegler, Institut Supérieur de l'Aéronautique et de l'Espace - ISAE-SUPAERO (FRANCE), Jet Propulsion Laboratory (JPL), California Institute of Technology (CALTECH)-NASA, Cornell Center for Astrophysics and Planetary Science (CCAPS), Cornell University, Institute of Geophysics [ETH Zürich], Department of Earth Sciences [ETH Zürich] (D-ERDW), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich)-Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich), Department of Earth, Ocean and Atmospheric Sciences [Vancouver] (EOAS), University of British Columbia (UBC), Département de géophysique spatiale et planétaire (DGSP (UMR_7096)), Université Paris Diderot - Paris 7 (UPD7)-IPG PARIS-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris)-École normale supérieure - Paris (ENS Paris)-Centre National de la Recherche Scientifique (CNRS)-École des Ponts ParisTech (ENPC)-École polytechnique (X)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), DLR Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), Institut de Physique du Globe de Paris (IPGP), Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Department of Atmospheric, Oceanic and Planetary Physics [Oxford] (AOPP), University of Oxford [Oxford], Department of Geosciences [Princeton], Princeton University, Max Planck Institute for Solar System Research (MPS), Max-Planck-Gesellschaft, Swiss Seismological Service [ETH Zurich] (SED), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich)-Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich)-Department of Earth Sciences [ETH Zürich] (D-ERDW), Department of Earth Science and Engineering [Imperial College London], Imperial College London, Department of Earth, Environmental and Planetary Sciences [Providence], Brown University, Royal Observatory of Belgium [Brussels], Space Sciences Laboratory [Berkeley] (SSL), University of California [Berkeley], University of California-University of California, Département Electronique, Optronique et Signal (DEOS), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Institute of Remote Sensing and Geographic Information System (IRSGIS), School of Earth and Space Sciences [Beijing], Peking University [Beijing]-Peking University [Beijing], Austrian Academy of Sciences (OeAW), Graphics and Vision Research Laboratory (Graphics Lab), University of Otago [Dunedin, Nouvelle-Zélande], Deutsches Zentrum für Luft- und Raumfahrt (DLR), Space Science Institute [Boulder] (SSI), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Department of Geosciences, Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Université d'Angers (UA), AstraZeneca, Aeolis Research, Department of Earth and Planetary Sciences [Santa Cruz], University of California [Santa Cruz] (UCSC), Department of Geological Sciences, University of Florida [Gainesville], Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Spain] (CSIC), Department of Earth, Planetary and Space Sciences [Los Angeles] (EPSS), University of California [Los Angeles] (UCLA), The Open University [Milton Keynes] (OU), Morton K. Blaustein Department of Earth and Planetary Sciences [Baltimore], Johns Hopkins University (JHU), School of Earth Sciences [Bristol], University of Bristol [Bristol], Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich), University of Southern California (USC), Joseph Louis LAGRANGE (LAGRANGE), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS), Cornell University [New York], Department of Earth Sciences [Swiss Federal Institute of Technology - ETH Zürich] (D-ERDW), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich)- Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Department of Earth, Ocean and Atmospheric Sciences [Vancouver] (UBC EOAS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École des Ponts ParisTech (ENPC)-École polytechnique (X)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de recherche pour le développement [IRD] : UR206-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich)- Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich)-Department of Earth Sciences [Swiss Federal Institute of Technology - ETH Zürich] (D-ERDW), Royal Observatory of Belgium [Brussels] (ROB), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Southwest Research Institute [Boulder] (SwRI), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), University of California, Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), NASA-California Institute of Technology (CALTECH), Institut de recherche pour le développement [IRD] : UR206-Muséum national d'Histoire naturelle (MNHN)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Muséum national d'Histoire naturelle (MNHN)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de recherche pour le développement [IRD] : UR206-Centre National de la Recherche Scientifique (CNRS), University of Oxford, Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research (MPS), University of California [Berkeley] (UC Berkeley), University of California (UC)-University of California (UC), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), University of California [Santa Cruz] (UC Santa Cruz), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), University of California (UC), Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737, Tromp, J. [0000-0002-2742-8299], Rodríguez, S. [0000-0003-1219-0641], Lognonné, P. [0000-0002-1014-920X], Perrin, C. [0000-0002-7200-5682], Murdoch, N. [0000-0002-9701-4075], Knapmeyer, M. [0000-0003-0319-2514], Rodríguez Manfredi, J. A. [0000-0003-0461-9815], Spiga, A. [0000-0002-6776-6268], Panning, M. P. [0000-0002-2041-3190], García, R. [0000-0003-1460-6663], Johnson, C. [0000-0001-6084-0149], Stutzmann, E. [0000-0002-4348-7475], Knapmeyer-Endrun, B. [0000-0003-3309-6785], Schmerr, N. [0000-0002-3256-1262], Irving, J. C. E. [0000-0002-0866-8246], Morgan, P. [0000-0001-8714-4178], Mueller, N. [0000-0001-9229-8921], Pike, W. [0000-0002-7660-6231], Kawamura, T. [0000-0001-5246-5561], Clinton, J. [0000-0001-8626-2703], Agence Nationale de la Recherche (ANR), Swiss National Science Foundation (SNSF), Agence Nationale de la Recherche (ANR), ANR-10LABX-0023 ANR-11-IDEX-0005-0, Swiss National Science Foundation (SNSF- ANR project), 157133, ETH Research grant, ETH-06 17-02, Lunar and Planetary Institute, 2250, UCL - SST/ELI/ELIC - Earth & Climate, Science and Technology Facilities Council (STFC), and Science & Technology Facilities Council
- Subjects
Seismometer ,010504 meteorology & atmospheric sciences ,[PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Mars ,010502 geochemistry & geophysics ,01 natural sciences ,Atmosphere ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,Impact crater ,Autre ,Planet ,Inner planets ,InSight Mars Geophysik ,Meteorology & Atmospheric Sciences ,Seismology ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Atmospheric dynamics ,Geomorphology ,Moment magnitude scale ,Mars InSight ,Geomagnetism ,Mars Exploration Program ,Geophysics ,[SDU]Sciences of the Universe [physics] ,13. Climate action ,Intraplate earthquake ,General Earth and Planetary Sciences ,Timekeeping on Mars ,[SDU.OTHER]Sciences of the Universe [physics]/Other ,InSight mission ,Geology - Abstract
Banerdt, William B. et al., NASA’s InSight (Interior exploration using Seismic Investigations, Geodesy and Heat Transport) mission landed in Elysium Planitia on Mars on 26 November 2018. It aims to determine the interior structure, composition and thermal state of Mars, as well as constrain present-day seismicity and impact cratering rates. Such information is key to understanding the differentiation and subsequent thermal evolution of Mars, and thus the forces that shape the planet’s surface geology and volatile processes. Here we report an overview of the first ten months of geophysical observations by InSight. As of 30 September 2019, 174 seismic events have been recorded by the lander’s seismometer, including over 20 events of moment magnitude M = 3–4. The detections thus far are consistent with tectonic origins, with no impact-induced seismicity yet observed, and indicate a seismically active planet. An assessment of these detections suggests that the frequency of global seismic events below approximately M = 3 is similar to that of terrestrial intraplate seismic activity, but there are fewer larger quakes; no quakes exceeding M = 4 have been observed. The lander’s other instruments—two cameras, atmospheric pressure, temperature and wind sensors, a magnetometer and a radiometer—have yielded much more than the intended supporting data for seismometer noise characterization: magnetic field measurements indicate a local magnetic field that is ten-times stronger than orbital estimates and meteorological measurements reveal a more dynamic atmosphere than expected, hosting baroclinic and gravity waves and convective vortices. With the mission due to last for an entire Martian year or longer, these results will be built on by further measurements by the InSight lander., With funding from the Spanish government through the "María de Maeztu Unit of Excellence" accreditation (MDM-2017-0737)
- Published
- 2020
20. Effects of varying environmental conditions on emissivity spectra of bulk lunar soils: Application to Diviner thermal infrared observations of the Moon
- Author
-
J. F. Mustard, Benjamin T. Greenhagen, K. L. Donaldson Hanna, C. Thompson, William R. Patterson, David A. Paige, Timothy D. Glotch, C. M. Pieters, and Neil Bowles
- Subjects
Radiometer ,010504 meteorology & atmospheric sciences ,Atmospheric pressure ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy and Astrophysics ,Atmospheric sciences ,01 natural sciences ,Physics::Geophysics ,law.invention ,Orbiter ,Meteorite ,Space and Planetary Science ,law ,Physics::Space Physics ,0103 physical sciences ,Emissivity ,Environmental science ,Vacuum chamber ,Astrophysics::Earth and Planetary Astrophysics ,Spectroscopy ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Diviner - Abstract
Currently, few thermal infrared measurements exist of fine particulate ( < 63 μm) analogue samples (e.g. minerals, mineral mixtures, rocks, meteorites, and lunar soils) measured under simulated lunar condi- tions. Such measurements are fundamental for interpreting thermal infrared (TIR) observations by the Diviner Lunar Radiometer Experiment (Diviner) onboard NASA’s Lunar Reconnaissance Orbiter as well as future TIR observations of the Moon and other airless bodies. In this work, we present thermal in- frared emissivity measurements of a suite of well-characterized Apollo lunar soils and a fine particu- late ( < 25 μm) San Carlos olivine sample as we systematically vary parameters that control the near- surface environment in our vacuum chamber (atmospheric pressure, incident solar-like radiation, and sample cup temperature). The atmospheric pressure is varied between ambient (1000 mbar) and vacuum ( < 10^−3 mbar) pressures, the incident solar-like radiation is varied between 52 and 146 mW/cm 2 , and the sample cup temperature is varied between 325 and 405 K. Spectral changes are characterized as each parameter is varied, which highlight the sensitivity of thermal infrared emissivity spectra to the atmospheric pressure and the incident solar-like radiation. Finally spectral measurements of Apollo 15 and 16 bulk lunar soils are compared with Diviner thermal infrared observations of the Apollo 15 and 16 sam- pling sites. This comparison allows us to constrain the temperature and pressure conditions that best simulate the near-surface environment of the Moon for future laboratory measurements and to better interpret lunar surface compositions as observed by Diviner.
- Published
- 2017
21. A new experimental setup for making thermal emission measurements in a simulated lunar environment
- Author
-
Jon Temple, Neil Bowles, K. L. Donaldson Hanna, Benjamin T. Greenhagen, Ian Thomas, and S. B. Calcutt
- Subjects
Physics ,Radiometer ,business.industry ,Bolometer ,law.invention ,Temperature gradient ,Optics ,law ,Emissivity ,Calibration ,Emission spectrum ,Spectral resolution ,business ,Instrumentation ,Diviner ,Remote sensing - Abstract
One of the key problems in determining lunar surface composition for thermal-infrared measurements is the lack of comparable laboratory-measured spectra. As the surface is typically composed of fine-grained particulates, the lunar environment induces a thermal gradient within the near sub-surface, altering the emission spectra: this environment must therefore be simulated in the laboratory, considerably increasing the complexity of the measurement. Previous measurements have created this thermal gradient by either heating the cup in which the sample sits or by illuminating the sample using a solar-like source. This is the first setup able to measure in both configurations, allowing direct comparisons to be made between the two. Also, measurements across a wider spectral range and at a much higher spectral resolution can be acquired using this new setup. These are required to support new measurements made by the Diviner Lunar Radiometer, the first multi-spectral thermal-infrared instrument to orbit the Moon. Results from the two different heating methods are presented, with measurements of a fine-grained quartz sample compared to previous similar measurements, plus measurements of a common lunar highland material, anorthite. The results show that quartz gives the same results for both methods of heating, as predicted by previous studies, though the anorthite spectra are different. The new calibration pipeline required to convert the raw data into emissivity spectra is described also
- Published
- 2019
22. 82nd Annual Meeting of The Meteoritical Society (2019)
- Author
-
E. C. Brown, Neil Bowles, V. E. Hamilton, Osiris-Rex Team, A. D. Rogers, K. L. Donaldson Hanna, Dante S. Lauretta, and Beth E. Clark
- Subjects
Geophysics ,Thermal infrared ,Materials science ,Space and Planetary Science ,0103 physical sciences ,010306 general physics ,010303 astronomy & astrophysics ,01 natural sciences ,Remote sensing - Published
- 2019
23. SEIS: Insight’s Seismic Experiment for Internal Structure of Mars
- Author
-
L. Perrin, C. Bonjour, N. Toulemont, Jean-Luc Berenguer, G. Perez, James Wookey, A. G. Mukherjee, Hallie Gengl, Edward A. Miller, Delphine Faye, Antoine Mocquet, J. Sicre, B. Vella, D. Dilhan, C. Larigauderie, John C. Bousman, M. Nonon, Y. Bennour, Véronique Dehant, Jeffrey W. Umland, T. Nebut, D. Hernandez, M. Eberhardt, Vincent Conejero, Rudolf Widmer-Schnidrig, Philippe Lognonné, G. de los Santos, S. A. D’Agostino, Savas Ceylan, Justin N. Maki, G. Aveni, P. Revuz, S. de Raucourt, C. Aicardi, Clément Perrin, A. K. Delahunty, Constanza Pardo, Domenico Giardini, L. Pou, Robert J. Calvet, D. Savoie, O. Robert, V. Gharakanian, S. Ben Charef, Constantinos Charalambous, Kerry Klein, S. M. Madzunkov, J. M. Desmarres, Sue Smrekar, S. B. Calcutt, F. Grinblat, Nicholas A Teanby, I. M. Standley, Naomi Murdoch, Brigitte Knapmeyer-Endrun, M. Deleuze, C. Doucet, William T. Pike, Tom L. Hoffman, F. Mialhe, Cecily M. Sunday, J. Paredes-Garcia, Matthew P. Golombek, P. Bhandari, Huafeng Liu, B. Pouilloux, E. Blanco, Gabriel Pont, Simon Stähler, M. E. Johnson, Nicolas Verdier, L. Luno, Ned W. Ferraro, R. Perez, Mélanie Drilleau, F. Ijpelaan, B. Lecomte, M. van Driel, A. Sauron, I. Estève, Mark P. Panning, David Mimoun, P. A. Dandonneau, B. Kenda, T. Gabsi, W. Raff, P. Boutte, T. Warren, Joan Ervin, Fabian Euchner, S. Tillier, K. J. Hurst, Stephen Larson, Davor Mance, Mark A. Wieczorek, J. A. Rodriguez-Manfredi, Justin Lin, Jaime Singer, M. Monecke, Robert W. Denise, E.-P. Miettinen, Maren Böse, E. Locatelli, I. Savin de Larclause, J. Gagnepain-Beyneix, L. Khachikyan, Philippe Laudet, T. Carlier, Alexander E. Stott, Neil Bowles, Brian Bone, C. Imbert, Sharon Kedar, A. Rosak, Fred Calef, O. Pot, O. M. Avalos, P. Labrot, Jeroen Tromp, Lucile Fayon, C. Moreau, J. Baroukh, William B. Banerdt, M. Bierwirth, Ranah Irshad, M. André, Christopher T. Russell, S. L. Marshall, M. Parise, J.-R. Meyer, P. Pasquier, N. Faye-Refalo, Ingrid Daubar, M. A. Balzer, R. Gonzalez, M. Hetzel, K. Brethomé, Y. Pahn, Raphaël F. Garcia, J. tenPierick, U. R. Christensen, Farah Alibay, Renee Weber, Robert G. Deen, Eléonore Stutzmann, J. Temple, Don Banfield, A. Bouisset, D. B. Klein, A. Borrien, Ashitey Trebi-Ollennu, R. Llorca-Cejudo, L. J. Facto, J. M. Mouret, Alexis Paillet, Peter Zweifel, P. Bruneau, Catherine L. Johnson, C. Brysbaert, J. E. Feldman, A. Kramer, Luigi Ferraioli, Jane Hurley, Taichi Kawamura, Nicholas Onufer, W. Kühne, Eric Beucler, Amir Khan, M. Sodki, L. Kerjean, A. Sylvestre-Baron, C. Desfoux, C. Yana, John Clinton, J. R. Willis, Juan Villalvazo, Pierre Delage, Mihail P. Petkov, M. C. Wallace, T. Camus, Ioannis G. Mikellides, Institut de Physique du Globe de Paris (IPGP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS), Institute of Geophysics [ETH Zürich], Department of Earth Sciences [Swiss Federal Institute of Technology - ETH Zürich] (D-ERDW), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich)- Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Department of Mechanical Engineering [Imperial College London], Imperial College London, Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research (MPS), Max-Planck-Gesellschaft, Centre National d'Études Spatiales [Toulouse] (CNES), Geological Institute (ETHZ), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), University of Oxford, Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), NASA Marshall Space Flight Center (MSFC), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Laboratoire de Mecanique des Fluides et d'Acoustique (LMFA), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Department of Atmospheric, Oceanic and Planetary Physics [Oxford] (AOPP), Advanced Technology and Research, Space Science and Technology Department [Didcot] (RAL Space), STFC Rutherford Appleton Laboratory (RAL), Science and Technology Facilities Council (STFC)-Science and Technology Facilities Council (STFC), Clarendon Laboratory [Oxford], Huazhong University of Science and Technology [Wuhan] (HUST), Kinemetrics, Cornell University [New York], Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), University of California [Los Angeles] (UCLA), University of California (UC), Institut of GeophysicsETHZ, Géoazur (GEOAZUR 7329), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud]), Swiss Seismological Service, Royal Observatory of Belgium [Brussels] (ROB), Géotechnique (cermes), Laboratoire Navier (navier umr 8205), Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), University of British Columbia (UBC), Planetary Science Institute [Tucson] (PSI), Laboratoire national de métrologie et d'essais - Systèmes de Référence Temps-Espace (LNE - SYRTE), Systèmes de Référence Temps Espace (SYRTE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), University of Bristol [Bristol], Department of Geosciences [Princeton], Princeton University, Joseph Louis LAGRANGE (LAGRANGE), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Universität Stuttgart [Stuttgart], School of Earth Sciences [Bristol], Centre National de la Recherche Scientifique (CNRS)-Université de La Réunion (UR)-Université Paris Diderot - Paris 7 (UPD7)-IPG PARIS-Institut national des sciences de l'Univers (INSU - CNRS), Max-Planck-Institut für Sonnensystemforschung (MPS), University of Oxford [Oxford], Max Planck Institute for Solar System Research (MPS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), University of California, INSTITUT OF GEOPHYSICS ETHZ, Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Karlsruhe Institute of Technology and Stuttgart University, Institut Supérieur de l'Aéronautique et de l'Espace - ISAE-SUPAERO (FRANCE), California Institute of Technology (CALTECH)-NASA, Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud]), Université Nice Sophia Antipolis (... - 2019) (UNS), Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Département Electronique, Optronique et Signal (DEOS), Department of Earth Sciences [ETH Zürich] (D-ERDW), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich)-Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich), Laboratoire de Planétologie et Géodynamique UMR6112 (LPG), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Université d'Angers (UA), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Cornell University, Consejo Superior de Investigaciones Científicas [Spain] (CSIC)-Instituto Nacional de Técnica Aeroespacial (INTA), Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Centre National de la Recherche Scientifique (CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA), Royal Observatory of Belgium [Brussels], PSL Research University (PSL)-PSL Research University (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Centre National de la Recherche Scientifique (CNRS), School of Earth Sciences University of Bristol, Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Observatoire de la Côte d'Azur, and Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Seismometer ,DISSIPATIVE FACTOR ,010504 meteorology & atmospheric sciences ,FREE OSCILLATIONS ,BULK COMPOSITION ,Mars ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Astronomy & Astrophysics ,01 natural sciences ,Transfer function ,Article ,NETWORK SCIENCE ,Autre ,0103 physical sciences ,0201 Astronomical and Space Sciences ,INTERIOR STRUCTURE ,ddc:530 ,Ground segment ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,InSight ,Data processing ,Science & Technology ,Physics ,Bandwidth (signal processing) ,Mars seismology ,Astronomy and Astrophysics ,Moment magnitude scale ,SINGLE-STATION ,THERMAL EVOLUTION ,Mars Exploration Program ,Geodesy ,Space and Planetary Science ,Physical Sciences ,WAVE PROPAGATION ,ELYSIUM PLANITIA ,[SDU.OTHER]Sciences of the Universe [physics]/Other ,Robotic arm ,SEIS ,Geology ,METEORITE IMPACTS - Abstract
By the end of 2018, 42 years after the landing of the two Viking seismometers on Mars, InSight will deploy onto Mars’ surface the SEIS (Seismic Experiment for Internal Structure) instrument; a six-axes seismometer equipped with both a long-period three-axes Very Broad Band (VBB) instrument and a three-axes short-period (SP) instrument. These six sensors will cover a broad range of the seismic bandwidth, from 0.01 Hz to 50 Hz, with possible extension to longer periods. Data will be transmitted in the form of three continuous VBB components at 2 sample per second (sps), an estimation of the short period energy content from the SP at 1 sps and a continuous compound VBB/SP vertical axis at 10 sps. The continuous streams will be augmented by requested event data with sample rates from 20 to 100 sps. SEIS will improve upon the existing resolution of Viking’s Mars seismic monitoring by a factor of ∼2500 at 1 Hz and ∼200000 at 0.1 Hz. An additional major improvement is that, contrary to Viking, the seismometers will be deployed via a robotic arm directly onto Mars’ surface and will be protected against temperature and wind by highly efficient thermal and wind shielding. Based on existing knowledge of Mars, it is reasonable to infer a moment magnitude detection threshold of Mw∼3 at 40∘ epicentral distance and a potential to detect several tens of quakes and about five impacts per year. In this paper, we first describe the science goals of the experiment and the rationale used to define its requirements. We then provide a detailed description of the hardware, from the sensors to the deployment system and associated performance, including transfer functions of the seismic sensors and temperature sensors. We conclude by describing the experiment ground segment, including data processing services, outreach and education networks and provide a description of the format to be used for future data distribution., Space Science Reviews, 215 (1), ISSN:1572-9672, ISSN:0038-6308
- Published
- 2019
24. Remote-sensing Characterisation of Major Solar System Bodies with the Twinkle Space Telescope
- Author
-
Marcell Tessenyi, Sean S. Lindsay, C. Arena, Neil Bowles, Billy Edwards, Giovanna Tinetti, and Giorgio Savini
- Subjects
Solar System ,Outer planets ,Dwarf planet ,FOS: Physical sciences ,01 natural sciences ,010309 optics ,Spitzer Space Telescope ,Observatory ,Planet ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,Instrumentation ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Physics ,Earth and Planetary Astrophysics (astro-ph.EP) ,Mechanical Engineering ,Astronomy ,Astronomy and Astrophysics ,Electronic, Optical and Magnetic Materials ,Pluto ,Space and Planetary Science ,Control and Systems Engineering ,Asteroid ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Remote-sensing observations of Solar System objects with a space telescope offer a key method of understanding celestial bodies and contributing to planetary formation and evolution theories. The capabilities of Twinkle, a space telescope in a low Earth orbit with a 0.45-m mirror, to acquire spectroscopic data of Solar System targets in the visible and infrared are assessed. Twinkle is a general observatory that provides on-demand observations of a wide variety of targets within wavelength ranges that are currently not accessible using other space telescopes or that are accessible only to oversubscribed observatories in the short-term future. We determine the periods for which numerous Solar System objects could be observed and find that Solar System objects are regularly observable. The photon flux of major bodies is determined for comparison to the sensitivity and saturation limits of Twinkle's instrumentation and we find that the satellite's capability varies across the three spectral bands (0.4 to 1, 1.3 to 2.42, and 2.42 to 4.5 μm). We find that for a number of targets, including the outer planets, their large moons, and bright asteroids, the model created predicts that with short exposure times, high-resolution spectra (R ~ 250, λ < 2.42 μm; R ~ 60, λ > 2.42 μm) could be obtained with signal-to-noise ratio (SNR) of > 100 with exposure times of 10 would be achievable in 300 s (or less) for spectra at Twinkle's native resolution. Fainter or smaller targets (e.g., Pluto) may require multiple observations if resolution or data quality cannot be sacrificed. Objects such as the outer dwarf planet Eris are deemed too small, faint or distant for Twinkle to obtain photometric or spectroscopic data of reasonable quality (SNR > 10) without requiring large amounts of observation time. Despite this, the Solar System is found to be permeated with targets that could be readily observed by Twinkle.
- Published
- 2019
- Full Text
- View/download PDF
25. Analysis of gaseous ammonia (NH3) absorption in the visible spectrum of Jupiter - Update
- Author
-
Sergey N. Yurchenko, S. B. Calcutt, Jonathan Tennyson, Ryan Garland, Phillip A. Coles, Ashwin Braude, Neil Bowles, and Patrick G. J. Irwin
- Subjects
Physics ,Earth and Planetary Astrophysics (astro-ph.EP) ,Very Large Telescope ,Solar System ,010504 meteorology & atmospheric sciences ,Atmosphere of Jupiter ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,01 natural sciences ,Spectral line ,Exoplanet ,Astrobiology ,law.invention ,Jupiter ,Telescope ,Planet ,law ,Space and Planetary Science ,0103 physical sciences ,Astrophysics::Earth and Planetary Astrophysics ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Astrophysics - Earth and Planetary Astrophysics ,0105 earth and related environmental sciences - Abstract
An analysis of currently available ammonia (NH$_3$) visible-to-near-infrared gas absorption data was recently undertaken by Irwin et al. (Icarus, 302 (2018) 426) to help interpret Very Large Telescope (VLT) MUSE observations of Jupiter from 0.48 - 0.93 $\mu$m, made in support of the NASA/Juno mission. Since this analysis a newly revised set of ammonia line data, covering the previously poorly constrained range 0.5 - 0.833 $\mu$m, has been released by the ExoMol project, "C2018" (Coles et al., JQSRT 219, 199 - 122, 2018), which demonstrates significant advantages over previously available data sets, and providing for the first time complete line data for the previously poorly constrained 5520- and 6475-\AA\ bands of NH$_3$. In this paper we compare spectra calculated using the ExoMol-C2018 data set (Coles et al., JQSRT 219, 199 - 122, 2018) with spectra calculated from previous sources to demonstrate its advantages. We conclude that at the present time the ExoMol-C2018 dataset provides the most reliable ammonia absorption source for analysing low- to medium-resolution spectra of Jupiter in the visible/near-IR spectral range, but note that the data are less able to model high-resolution spectra owing to small, but significant inaccuracies in the line wavenumber estimates. This work is of significance not only for solar system planetary physics, but for future proposed observations of Jupiter-like planets orbiting other stars, such as with NASA's planned Wide-Field Infrared Survey Telescope (WFIRST)., Comment: 12 Figures
- Published
- 2018
26. Updates to the Oxford Space Environment Goniometer to measure visible wavelength bidirectional reflectance distribution functions in ambient conditions
- Author
-
R. J. Curtis, Tristram Warren, and Neil Bowles
- Subjects
Materials science ,business.industry ,Scattering ,Laser ,Regolith ,law.invention ,Wavelength ,Optics ,law ,Goniometer ,Emissivity ,business ,Instrumentation ,Visible spectrum ,Space environment - Abstract
Understanding how the surfaces of airless planetary bodies-such as the Moon-scatter visible light enables constraints to be placed on their surface properties and top boundary layer inputs to be set within thermal models. Remote sensing instruments-such as Diviner onboard the Lunar Reconnaissance Orbiter-measure thermal emission and visible light scattering functions across visible (∼0.38-0.7 µm) to thermal infrared (TIR) wavelengths (∼0.7-350 μm). To provide ground support measurements for such instruments, the Oxford Space Environment Goniometer (OSEG) was built. Initially, the OSEG focused on measuring TIR directional emissivity functions for regolith and regolith simulant samples in a simulated space environment, but it has recently been modified to measure visible wavelength Bidirectional Reflectance Distribution Functions (BRDFs) of samples in ambient conditions. Laboratory-measured BRDFs can be used (1) to test and to help interpret models-such as the Hapke photometric model-and (2) as visible scattering function inputs for thermal models. This paper describes the modifications to and initial calibration measurements taken by the Visible Oxford Space Environment Goniometer with a 532 nm laser, and details how this setup can be used to measure BRDFs of regolith and regolith simulant samples of airless planetary bodies.
- Published
- 2021
27. Constraints on olivine-rich rock types on the Moon as observed by Diviner and M3 : Implications for the formation of the lunar crust
- Author
-
Benjamin T. Greenhagen, Paul G. Lucey, Jessica A. Arnold, Ian Thomas, E. Song, Timothy D. Glotch, and Neil Bowles
- Subjects
Kaguya ,Olivine ,010504 meteorology & atmospheric sciences ,Albedo ,engineering.material ,01 natural sciences ,Space weathering ,law.invention ,VNIR ,Orbiter ,Geophysics ,Space and Planetary Science ,Geochemistry and Petrology ,law ,0103 physical sciences ,Earth and Planetary Sciences (miscellaneous) ,Emissivity ,engineering ,010303 astronomy & astrophysics ,Geology ,0105 earth and related environmental sciences ,Diviner ,Remote sensing - Abstract
We place upper limits on lunar olivine abundance using midinfrared (5–25 µm) data from the Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment (Diviner) along with effective emissivity spectra of mineral mixtures in a simulated lunar environment. Olivine-bearing, pyroxene-poor lithologies have been identified on the lunar surface with visible-near-infrared (VNIR) observations. Since the Kaguya Spectral Profiler (SP) VNIR survey of olivine-rich regions is the most complete to date, we focus this work on exposures identified by that study. We first confirmed the locations with VNIR data from the Moon Mineralogy Mapper (M3) instrument. We then developed a Diviner olivine index from our laboratory data which, along with M3and Lunar Reconnaissance Orbiter Camera wide-angle camera data, was used to select the geographic area over which Diviner emissivity data were extracted. We calculate upper limits on olivine abundance for these areas using laboratory emissivity spectra of anorthite-forsterite mixtures acquired under lunar-like conditions. We find that these exposures have widely varying olivine content. In addition, after applying an albedo-based space weathering correction to the Diviner data, we find that none of the areas are unambiguously consistent with concentrations of forsterite exceeding 90 wt %, in contrast to the higher abundance estimates derived from VNIR data. ©2016. American Geophysical Union.
- Published
- 2016
28. The Red Edge Problem in asteroid band parameter analysis
- Author
-
Sean S. Lindsay, Neil Bowles, T. L. Dunn, and Joshua P. Emery
- Subjects
Physics ,business.industry ,Detector ,Red edge ,Astrophysics ,010502 geochemistry & geophysics ,01 natural sciences ,Spectral line ,Wavelength ,Geophysics ,Optics ,Space and Planetary Science ,Asteroid ,0103 physical sciences ,Calibration ,Point (geometry) ,business ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Ordinary chondrite - Abstract
Near-infrared reflectance spectra of S-type asteroids contain two absorptions at 1 and 2 μm (band I and II) that are diagnostic of mineralogy. A parameterization of these two bands is frequently employed to determine the mineralogy of S(IV) asteroids through the use of ordinary chondrite calibration equations that link the mineralogy to band parameters. The most widely used calibration study uses a Band II terminal wavelength point (red edge) at 2.50 μm. However, due to the limitations of the NIR detectors on prominent telescopes used in asteroid research, spectral data for asteroids are typically only reliable out to 2.45 μm. We refer to this discrepancy as “The Red Edge Problem.” In this report, we evaluate the associated errors for measured band area ratios (BAR = Area BII/BI) and calculated relative abundance measurements. We find that the Red Edge Problem is often not the dominant source of error for the observationally limited red edge set at 2.45 μm, but it frequently is for a red edge set at 2.40 μm. The error, however, is one sided and therefore systematic. As such, we provide equations to adjust measured BARs to values with a different red edge definition. We also provide new ol/(ol+px) calibration equations for red edges set at 2.40 and 2.45 μm.
- Published
- 2016
29. The Oxford 3D thermophysical model with application to PROSPECT/Luna 27 study landing sites
- Author
-
O. G. King, Neil Bowles, R. Trautner, Elliot Sefton-Nash, Tristram Warren, and Richard Fisackerly
- Subjects
Radiometer ,010504 meteorology & atmospheric sciences ,Scattering ,Astronomy and Astrophysics ,Exponential density ,Atmospheric sciences ,01 natural sciences ,Stability (probability) ,law.invention ,Orbiter ,Impact crater ,Space and Planetary Science ,law ,0103 physical sciences ,Thermal model ,010303 astronomy & astrophysics ,Geology ,0105 earth and related environmental sciences ,Diviner - Abstract
A 3D thermal model that includes a discrete subsurface exponential density profile, surface shadowing and scattering effects has been developed to simulate surface and subsurface temperatures across the Moon. Comparisons of the modelled surface temperatures with the Lunar Reconnaissance Orbiter’s Diviner Lunar Radiometer Experiment (“Diviner”) measured temperatures show significant improvements in model accuracy from the inclusion of shadowing and scattering effects, with model errors reduced from ~10 K to ~2 K for mid-latitude craters. The 3D thermal model is used to investigate ice stability at potential landing sites near the lunar south pole, studied for Roscosmos’ ‘Luna Resource’ (Luna 27) lander mission on which the ESA PROSPECT payload is planned to fly. Water ice is assumed to be stable for long periods of time (>1 Gyr) if temperatures remain below 112 K over diurnal and seasonal cycles. Simulations suggest ice can be stable at the surface in regions near to potential landing sites in permanently shaded regions and can be stable below the surface in partly shaded regions such as pole-facing slopes. The simulated minimum constant subsurface temperature (where the seasonal temperature cycle is attenuated) typically occurs at a depth of ~50 cm and therefore the minimum depth where ice can be stable is A 3D thermal model that includes a discrete subsurface exponential density profile, surface shadowing and scattering effects has been developed to simulate surface and subsurface temperatures across the Moon. Comparisons of the modelled surface temperatures with the Lunar Reconnaissance Orbiter’s Diviner Lunar Radiometer Experiment (“Diviner”) measured temperatures show significant improvements in model accuracy from the inclusion of shadowing and scattering effects, with model errors reduced from ~10 K to ~2 K for mid-latitude craters. The 3D thermal model is used to investigate ice stability at potential landing sites near the lunar south pole, studied for Roscosmos’ ‘Luna Resource’ (Luna 27) lander mission on which the ESA PROSPECT payload is planned to fly. Water ice is assumed to be stable for long periods of time (>1 Gyr) if temperatures remain below 112 K over diurnal and seasonal cycles. Simulations suggest ice can be stable at the surface in regions near to potential landing sites in permanently shaded regions and can be stable below the surface in partly shaded regions such as pole-facing slopes. The simulated minimum constant subsurface temperature (where the seasonal temperature cycle is attenuated) typically occurs at a depth of ~50 cm and therefore the minimum depth where ice can be stable is 0
- Published
- 2020
30. Isolation of seismic signal from InSight/SEIS-SP microseismometer measurements
- Author
-
Naomi Murdoch, Tristram Warren, David Mimoun, Neil Bowles, Jane Hurley, S. B. Calcutt, Nicholas A Teanby, William T. Pike, Institut Supérieur de l'Aéronautique et de l'Espace - ISAE-SUPAERO (FRANCE), University of Bristol (UNITED KINGDOM), Imperial College London (UNITED KINGDOM), Science and Technology Facilities Council - STFC (UNITED KINGDOM), University of Oxford (UNITED KINGDOM), STFC Rutherford Appleton Laboratory (RAL), Science and Technology Facilities Council (STFC), Département Electronique, Optronique et Signal (DEOS), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), University of Bristol [Bristol], University of Oxford [Oxford], and Imperial College London
- Subjects
Seismometer ,Decorrelation ,010504 meteorology & atmospheric sciences ,Mars ,01 natural sciences ,7. Clean energy ,Shield ,0103 physical sciences ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Remote sensing ,InSight ,Martian ,[SCCO.NEUR]Cognitive science/Neuroscience ,Suite ,Neurosciences ,Astronomy and Astrophysics ,Inversion (meteorology) ,Mars Exploration Program ,Regolith ,13. Climate action ,Space and Planetary Science ,Noise ,Geology - Abstract
International audience; The InSight mission is due to launch in May 2018, carrying a payload of novel instruments designed and tested to probe the interior of Mars whilst deployed directly on the Martian regolith and partially isolated from the Martian environment by the Wind and Thermal Shield. Central to this payload is the seismometry package SEIS consisting of two seismometers, which is supported by a suite of environmental/meteorological sensors (Temperature and Wind Sensor for InSight TWINS; and Auxiliary Payload Sensor Suite APSS). In this work, an optimal estimations inversion scheme which aims to decorrelate the short-period seismometer (SEIS-SP) signal due to seismic activity alone from the environmental signal and random noise is detailed, and tested on both simulated and Viking data. This scheme also applies a module to identify measurements contaminated by Single Event Phenomena (SEP). This scheme will be deployed as the pre-processing pipeline for all SEIS-SP data prior to release to the scientific community for analysis.
- Published
- 2018
31. CASTAway: An asteroid main belt tour and survey
- Author
-
Henning Haack, Nicolas Thomas, Joan Pau Sánchez, J. de León, Andreas Nathues, Francesca E. DeMeo, Aurelie Guilbert-Lepoutre, A. Gibbings, Ian Thomas, Ákos Kereszturi, Fraser Clarke, Neil Bowles, Tristram Warren, C. M. Marriner, J. Leif Jorgensen, Matthias Tecza, V. Da Deppo, Naomi Murdoch, Alena Probst, Paul Eccleston, Andrew S. Rivkin, Ian Tosh, Sonia Fornasier, Thomas Andert, P. Pravec, K. L. Donaldson Hanna, Jessica A. Arnold, Mikael Granvik, Kjartan M. Kinch, Enzo Pascale, Benoit Carry, Ann Carine Vandaele, Colin Snodgrass, Giampiero Naletto, John K. Davies, Benjamin T. Greenhagen, Rhian H. Jones, Katherine H. Joy, Simon F. Green, Jessica Agarwal, Javier Licandro, J.M. Barnes, Laurent Jorda, Manish R. Patel, S. B. Calcutt, Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Institut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Joseph Louis LAGRANGE (LAGRANGE), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Observatoire de la Côte d'Azur (OCA), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Univers, Transport, Interfaces, Nanostructures, Atmosphère et environnement, Molécules (UMR 6213) (UTINAM), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Département Electronique, Optronique et Signal (DEOS), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), PSL Research University (PSL)-PSL Research University (PSL)-Université de Lille-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Nice Sophia Antipolis (... - 2019) (UNS), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut Supérieur de l'Aéronautique et de l'Espace - ISAE-SUPAERO (FRANCE), Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), School of Physical Sciences [Milton Keynes], The Open University [Milton Keynes] (OU), Department of Mechanical and Aerospace Engineering [Glasgow], University of Strathclyde, Space Science and Technology Department [Didcot] (RAL Space), STFC Rutherford Appleton Laboratory (RAL), Science and Technology Facilities Council (STFC)-Science and Technology Facilities Council (STFC), Institut für Raumfahrttechnik, Universität der Bundeswehr München [Neubiberg] = Bundeswehr University, Laboratoire des Mécanismes et Transfert en Géologie (LMTG), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Centro di Ateneo di Studi e Attività Spaziali 'Giuseppe Colombo' (CISAS), Universita degli Studi di Padova, Belgian Institute for Space Aeronomy / Institut d'Aéronomie Spatiale de Belgique (BIRA-IASB), FIME, Universidad Autonoma de Nuevo leon, Universidad Autonoma de Madrid (UAM), Institut universitaire des systèmes thermiques industriels (IUSTI), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), CNR Institute for Photonics and Nanotechnologies (IFN), Consiglio Nazionale delle Ricerche [Roma] (CNR), European Space Astronomy Centre (ESAC), European Space Agency (ESA), Collegium Budapest (Institute for Advanced Study) (CB), Department of Earth, Atmospheric and Planetary Sciences [MIT, Cambridge] (EAPS), Massachusetts Institute of Technology (MIT), Université de Franche-Comté (UFC)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Ondřejov Observatory of the Prague Astronomical Institute, Czech Academy of Sciences [Prague] (ASCR), Vetco Gray (VG), Vetco Gray, Cardiff University, Instituto de Astrofisica de Canarias (IAC), University of Oxford [Oxford], Department of Physics, Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES), and Universität der Bundeswehr München [Neubiberg]
- Subjects
[SPI.OTHER]Engineering Sciences [physics]/Other ,Atmospheric Science ,Solar System ,010504 meteorology & atmospheric sciences ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,CERES ,7. Clean energy ,01 natural sciences ,Star tracker ,law.invention ,Astrobiology ,MAGNITUDE ,Autre ,law ,P/2010 A2 ,SPACE-TELESCOPE ,Survey ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS ,Earth and Planetary Astrophysics (astro-ph.EP) ,SPECTROSCOPY ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,Remote sensing ,Main Asteroid Belt ,survey ,flyby ,mapping ,remote sensing ,Geophysics ,Mapping ,Asteroid ,Asteroid belt ,ROSETTA ,Geology ,SURFACE ,Flyby ,Aerospace Engineering ,Space and Planetary Science ,FOS: Physical sciences ,Context (language use) ,Telescope ,SOLAR-SYSTEM ,0103 physical sciences ,0105 earth and related environmental sciences ,21 LUTETIA ,Spacecraft ,business.industry ,Payload ,ICE ,Astronomy ,Astronomy and Astrophysics ,115 Astronomy, Space science ,13. Climate action ,General Earth and Planetary Sciences ,business ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Earth and Planetary Astrophysics - Abstract
CASTAway is a mission concept to explore our Solar System's main asteroid belt. Asteroids and comets provide a window into the formation and evolution of our Solar System and the composition of these objects can be inferred from space-based remote sensing using spectroscopic techniques. Variations in composition across the asteroid populations provide a tracer for the dynamical evolution of the Solar System. The mission combines a long-range (point source) telescopic survey of over 10,000 objects, targeted close encounters with 10 to 20 asteroids and serendipitous searches to constrain the distribution of smaller (e.g. 10 m) size objects into a single concept. With a carefully targeted trajectory that loops through the asteroid belt, CASTAway would provide a comprehensive survey of the main belt at multiple scales. The scientific payload comprises a 50 cm diameter telescope that includes an integrated low-resolution (R = 30 to 100) spectrometer and visible context imager, a thermal (e.g. 6 to 16 microns) imager for use during the flybys, and modified star tracker cameras to detect small (approx. 10 m) asteroids. The CASTAway spacecraft and payload have high levels of technology readiness and are designed to fit within the programmatic and cost caps for a European Space Agency medium class mission, whilst delivering a significant increase in knowledge of our Solar System., 40 pages, accepted by Advances in Space Research October 2017
- Published
- 2018
32. The Long wave (11–16 μm) spectrograph for the EChO M3 Mission Candidate study
- Author
-
D. Freeman, Pgj Irwin, Marc Ferlet, Jon Temple, M. Tecza, S. B. Calcutt, Joanna K. Barstow, Leigh N. Fletcher, Neil Bowles, and Jane Hurley
- Subjects
Physics ,Zodiacal light ,Spectrometer ,business.industry ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Astronomy and Astrophysics ,Exoplanet ,law.invention ,Telescope ,Optics ,Space and Planetary Science ,law ,Beam expander ,Astrophysics::Earth and Planetary Astrophysics ,Prism ,Infrared detector ,business ,Spectrograph - Abstract
The results for the design study of the Long Wave Infrared Module (LWIR), a goal spectroscopic channel for the EChO ESA medium class candidate mission, are presented. The requirements for the LWIR module were to provide coverage of the 11–16 μm spectral range at a moderate resolving power of at least R = 30, whilst minimising noise contributions above photon due to the thermal background of the EChO instrument and telescope, and astrophysical sources such as the zodiacal light. The study output module design is a KRS-6 prism spectrograph with aluminium mirror beam expander and coated germanium lenses for the final focusing elements. Thermal background considerations led to enclosing the beam in a baffle cooled to approximately 25–29 K. To minimise diffuse astrophysical background contributions due to the zodiacal light, anamorphic designs were considered in addition to the elliptical input beam provided by the EChO telescope. Given the requirement that measurements in this waveband place on the performance of the infrared detector array, an additional study on the likely scientific return with lower resolving power (R
- Published
- 2015
33. The transit spectra of Earth and Jupiter
- Author
-
Joanna K. Barstow, Neil Bowles, Patrick G. J. Irwin, Suzanne Aigrain, Jae-Min Lee, and Leigh N. Fletcher
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,Secondary atmosphere ,FOS: Physical sciences ,Astronomy ,Astronomy and Astrophysics ,Exoplanet ,Jupiter ,Space and Planetary Science ,Planet ,Hot Jupiter ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Transit (astronomy) ,Planetary mass ,Jupiter mass ,Astrophysics - Earth and Planetary Astrophysics - Abstract
In recent years, an increasing number of observations have been made of the transits of ‘Hot Jupiters’, such as HD 189733b, about their parent stars from the visible through to mid-infrared wavelengths, which have been modelled to derive the likely atmospheric structure and composition of these planets. As measurement techniques improve, the measured transit spectra of ‘Super-Earths’ such as GJ 1214b are becoming better constrained, allowing model atmospheric states to be fitted for this class of planet also. While it is not yet possible to constrain the atmospheric states of small planets such as the Earth or cold planets like Jupiter, it is hoped that this might become practical in the coming decades and if so, it is of interest to determine what we might infer from such measurements. In this work we have constructed atmospheric models of the Solar System planets from 0.4 to 15.5 μm that are consistent with ground-based and satellite observations and from these calculate the primary transit and secondary eclipse spectra (with respect to the Sun and typical M-dwarfs) that would be observed by a ‘remote observer’, many light years away. From these spectra we test what current retrieval models might infer about their atmospheric states and compare these with the ‘ground truths’ in order to assess: (a) the inherent uncertainties in transit spectra observations; (b) the relative merits of primary transit and secondary eclipse spectra; and (c) the advantages of acquiring directly imaged spectra of these planets. We find that observing secondary eclipses of the Solar System would not give sufficient information for determining atmospheric properties with 10 m-diameter telescopes from a distance of 10 light years, but that primary transits give much better information. We find that a single transit of Jupiter in front of the Sun could potentially be used to determine temperature and stratospheric composition, but for the Earth the mean atmospheric composition could only be determined if it were orbiting a much smaller M-dwarf. For both Jupiter and Earth we note that direct imaging with sufficient nulling of the light from the parent star theoretically provides the best method of determining the atmospheric properties of such planets.
- Published
- 2014
34. Global assessment of pure crystalline plagioclase across the Moon and implications for the evolution of the primary crust
- Author
-
K. L. Donaldson Hanna, John F. Mustard, Ian Thomas, Benjamin T. Greenhagen, Carle M. Pieters, Neil Bowles, and L. C. Cheek
- Subjects
Geochemistry ,Crust ,engineering.material ,Anorthite ,Anorthosite ,Geophysics ,Impact crater ,Lunar magma ocean ,Geology of the Moon ,Space and Planetary Science ,Geochemistry and Petrology ,Earth and Planetary Sciences (miscellaneous) ,engineering ,Plagioclase ,Geology ,Diviner - Abstract
Recent advancements in visible to near infrared orbital measurements of the lunar surface have allowed the character and extent of the primary anorthositic crust to be studied at unprecedented spatial and spectral resolutions. Here we assess the lunar primary anorthositic crust in global context using a spectral parameter tool for Moon Mineralogy Mapper data to identify and map Fe-bearing crystalline plagioclase based on its diagnostic 1.25 µm absorption band. This allows plagioclase-dominated rocks, specifically anorthosites, to be unambiguously identified as well as distinguished from lithologies with minor to trace amounts of mafic minerals. Low spatial resolution global mosaics and high spatial resolution individual data strips covering more than 650 targeted craters were analyzed to identify and map the mineralogy of spectrally pure regions as small as ~400 m in size. Spectrally, pure plagioclase is identified in approximately 450 targets located across the lunar surface. Diviner thermal infrared (TIR) data are analyzed for 37 of these nearly monomineralic regions in order to understand the compositional variability of plagioclase (An#) in these areas. The average An# for each spectrally pure region is estimated using new laboratory measurements of a well-characterized anorthite (An96) sample. Diviner TIR results suggest that the plagioclase composition across the lunar highlands is relatively uniform, high in calcium content, and consistent with plagioclase compositions found in the ferroan anorthosites (An94–98). Our results confirm that spectrally pure anorthosite is widely distributed across the lunar surface, and most exposures of the ancient anorthositic crust are concentrated in regions of thicker crust surrounding impact basins on the lunar nearside and farside. In addition, the scale of the impact basins and the global nature and distribution of pure plagioclase requires a coherent zone of anorthosite of similar composition in the lunar crust supporting its formation from a single differentiation event like a magma ocean. Our identifications of pure anorthosite combined with the GRAIL crustal thickness model suggest that pure anorthosite is currently observed at a range of crustal thickness values between 9 and 63 km and that the primary anorthositic crust must have been at least 30 km thick.
- Published
- 2014
35. Seismic Coupling of Short-Period Wind Noise Through Mars’ Regolith for NASA’s InSight Lander
- Author
-
Nicholas A Teanby, Jane Hurley, Neil Bowles, Robert Myhill, S. B. Calcutt, Jennifer Stevanović, James Wookey, Naomi Murdoch, William T. Pike, Institut Supérieur de l'Aéronautique et de l'Espace - ISAE-SUPAERO (FRANCE), University of Bristol (UNITED KINGDOM), Imperial College London (UNITED KINGDOM), Science and Technology Facilities Council - STFC (UNITED KINGDOM), University of Oxford (UNITED KINGDOM), and Département d'Electronique, Optronique et Signal - DEOS (Toulouse, France)
- Subjects
Physics ,Seismometer ,010504 meteorology & atmospheric sciences ,geophysics ,Mars ,Astronomy and Astrophysics ,Geometry ,Mars Exploration Program ,Seismic noise ,seismology ,01 natural sciences ,Regolith ,Noise floor ,Planetary science ,Autre ,Space and Planetary Science ,0103 physical sciences ,Thermal ,010303 astronomy & astrophysics ,Order of magnitude ,0105 earth and related environmental sciences - Abstract
NASA’s InSight lander will deploy a tripod-mounted seismometer package onto the surface of Mars in late 2018. Mars is expected to have lower seismic activity than the Earth, so minimisation of environmental seismic noise will be critical for maximising observations of seismicity and scientific return from the mission. Therefore, the seismometers will be protected by a Wind and Thermal Shield (WTS), also mounted on a tripod. Nevertheless, wind impinging on the WTS will cause vibration noise, which will be transmitted to the seismometers through the regolith (soil). Here we use a 1:1-scale model of the seismometer and WTS, combined with field testing at two analogue sites in Iceland, to determine the transfer coefficient between the two tripods and quantify the proportion of WTS vibration noise transmitted through the regolith to the seismometers. The analogue sites had median grain sizes in the range 0.3–1.0 mm, surface densities of $1.3\mbox{--}1.8~\mbox{g}\,\mbox{cm}^{-3}$ , and an effective regolith Young’s modulus of $2.5^{+1.9}_{-1.4}~\mbox{MPa}$ . At a seismic frequency of 5 Hz the measured transfer coefficients had values of 0.02–0.04 for the vertical component and 0.01–0.02 for the horizontal component. These values are 3–6 times lower than predicted by elastic theory and imply that at short periods the regolith displays significant anelastic behaviour. This will result in reduced short-period wind noise and increased signal-to-noise. We predict the noise induced by turbulent aerodynamic lift on the WTS at 5 Hz to be $\sim2\times10^{-10}~\mbox{ms}^{-2}\,\mbox{Hz}^{-1/2}$ with a factor of 10 uncertainty. This is at least an order of magnitude lower than the InSight short-period seismometer noise floor of $10^{-8}~\mbox{ms}^{-2}\,\mbox{Hz}^{-1/2}$ .
- Published
- 2016
36. Asteroid electrostatic instrumentation and modelling
- Author
-
D Keane, E C Sawyer, Neil Bowles, E Urbak, and Karen Aplin
- Subjects
History ,Spacecraft ,business.industry ,Instrumentation ,Space exploration ,Computer Science Applications ,Education ,Astrobiology ,Geography ,Sample return mission ,Asteroid ,Electrostatic levitation ,Sample collection ,business - Abstract
Asteroid surface material is expected to become photoelectrically charged, and is likely to be transported through electrostatic levitation. Understanding any movement of the surface material is relevant to proposed space missions to return samples to Earth for detailed isotopic analysis. Motivated by preparations for the Marco Polo sample return mission, we present electrostatic modelling for a real asteroid, Itokawa, for which detailed shape information is available, and verify that charging effects are likely to be significant at the terminator and at the edges of shadow regions for the Marco Polo baseline asteroid, 1999JU3. We also describe the Asteroid Charge Experiment electric field instrumentation intended for Marco Polo. Finally, we find that the differing asteroid and spacecraft potentials on landing could perturb sample collection for the short landing time of 20min that is currently planned.
- Published
- 2016
37. Band parameters for self-broadened ammonia gas in the range 0.74 to 5.24 mu m to support measurements of the atmosphere of the planet Jupiter
- Author
-
Jon Temple, Neil Bowles, Patrick G. J. Irwin, and S. B. Calcutt
- Subjects
Physics ,Solar System ,Spectrometer ,business.industry ,Astronomy and Astrophysics ,Jovian ,Spectral line ,Computational physics ,Atmosphere ,Jupiter ,Optics ,Space and Planetary Science ,Planet ,Astrophysics::Earth and Planetary Astrophysics ,business ,Spectroscopy - Abstract
We present new measurements and modelling of low-resolution transmission spectra of self-broadened ammonia gas, one of the most important absorbers found in the near-infrared spectrum of the planet Jupiter. These new spectral measurements were specifically designed to support measurements of Jupiter's atmosphere made by the Near-Infrared Mapping Spectrometer (NIMS) which was part of the Galileo mission that orbited Jupiter from 1995 to September 2003. To reach approximate jovian conditions in the lab, a new gas spectroscopy facility was developed and used to measure self-broadened ammonia spectra from 0.74 to 5.2 μm, virtually the complete range of the NIMS instrument, for the first time. Spectra were recorded at temperatures varying from 300 to 215 K, pressures from 1000 to 33 mb and using three different path lengths (10.164, 6.164 and 2.164 m). The spectra were then modelled using a series of increasingly complex physically based transmittance functions. © 2008 Elsevier Inc. All rights reserved.
- Published
- 2016
38. Latitudinal variations of HCN, HC3N, and C2N2 in Titan's stratosphere derived from cassini CIRS data
- Author
-
R. de Kok, Nicholas A Teanby, Bruno Bézard, Fredric W. Taylor, Conor A. Nixon, F. M. Flasar, Neil Bowles, A. Coustenis, S. B. Calcutt, Leigh N. Fletcher, Carly Howett, Pgj Irwin, Clarendon Laboratory, Atmospheric, Oceanic & Planetary Physics, Department of Physics, University of Oxford, Parks Road, Oxford, Department of Astronomy, University of Maryland, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Pôle Planétologie du LESIA, Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), and NASA/Goddard Space Flight Center (NASA/GSFC)
- Subjects
Atmospheres ,Atmospheres, composition ,Astronomy and Astrophysics ,Atmospheric sciences ,Latitude ,Atmosphere ,symbols.namesake ,Space and Planetary Science ,Polar vortex ,composition ,Mixing ratio ,symbols ,Environmental science ,Spectral resolution ,Titan (rocket family) ,Longitude ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Titan ,Stratosphere - Abstract
International audience; Mid- and far-infrared spectra from the Composite InfraRed Spectrometer (CIRS) have been used to determine volume mixing ratios of nitriles in Titan's atmosphere. HCN, HC 3N, C 2H 2, and temperature were derived from 2.5 cm -1 spectral resolution mid-IR mapping sequences taken during three flybys, which provide almost complete global coverage of Titan for latitudes south of 60° N. Three 0.5 cm -1 spectral resolution far-IR observations were used to retrieve C 2N 2 and act as a check on the mid-IR results for HCN. Contribution functions peak at around 0.5-5 mbar for temperature and 0.1-10 mbar for the chemical species, well into the stratosphere. The retrieved mixing ratios of HCN, HC 3N, and C 2N 2 show a marked increase in abundance towards the north, whereas C 2H 2 remains relatively constant. Variations with longitude were much smaller and are consistent with high zonal wind speeds. For 90°-20° S the retrieved HCN abundance is fairly constant with a volume mixing ratio of around 1 × 10 -7 at 3 mbar. More northerly latitudes indicate a steady increase, reaching around 4 × 10 -7 at 60° N, where the data coverage stops. This variation is consistent with previous measurements and suggests subsidence over the northern (winter) pole at approximately 2 × 10 -4 m s -1. HC 3N displays a very sharp increase towards the north pole, where it has a mixing ratio of around 4 × 10 -8 at 60° N at the 0.1-mbar level. The difference in gradient for the HCN and HC 3N latitude variations can be explained by HC 3N's much shorter photochemical lifetime, which prevents it from mixing with air at lower latitude. It is also consistent with a polar vortex which inhibits mixing of volatile rich air inside the vortex with that at lower latitudes. Only one observation was far enough north to detect significant amounts of C 2N 2, giving a value of around 9 × 10 -10 at 50° N at the 3-mbar level.
- Published
- 2016
39. Lunar regolith thermal gradients and emission spectra: Modeling and validation
- Author
-
Ian Thomas, Neil Bowles, and L. Millán
- Subjects
Atmospheric Science ,Materials science ,Ecology ,Paleontology ,Soil Science ,Boundary (topology) ,Forestry ,Geophysics ,Aquatic Science ,Solar illumination ,Oceanography ,Regolith ,Computational physics ,Thermal conductivity ,Space and Planetary Science ,Geochemistry and Petrology ,Thermal ,Earth and Planetary Sciences (miscellaneous) ,Particle size ,Emission spectrum ,Earth-Surface Processes ,Water Science and Technology - Abstract
The retrieval of surface composition from IR measurements of airless bodies requires a model capable of computing the significant thermal gradients present in the top few hundred microns of the regolith. In this study we introduce a model which reproduces most of the features found in controlled experiments made in the simulated lunar environment emission chamber (SLEEC). Although the model presented here is forced by a lower boundary held at a fixed temperature, we conclude that a similar algorithm driven by solar illumination may be used as a forward model to retrieve composition, particle size and effective thermal conductivity from IR measurements of airless bodies. Copyright 2011 by the American Geophysical Union.
- Published
- 2016
40. Characterising Saturn's vertical temperature structure from Cassini/CIRS
- Author
-
S. B. Calcutt, P. Parrish, Nicholas A Teanby, R. de Kok, Neil Bowles, Patrick G. J. Irwin, Fredric W. Taylor, Carly Howett, Leigh N. Fletcher, and Glenn S. Orton
- Subjects
Atmospheres ,Equator ,Northern Hemisphere ,Astronomy and Astrophysics ,Atmospheric sciences ,Latitude ,Troposphere ,Saturn ,composition ,Space and Planetary Science ,structure ,Tropopause ,Southern Hemisphere ,Stratosphere ,Geology - Abstract
Thermal infrared spectra of Saturn from 10-1400 cm-1 at 15 cm-1 spectral resolution and a spatial resolution of 1°-2° latitude have been obtained by the Cassini Composite Infrared Spectrometer [Flasar, F.M., and 44 colleagues, 2004. Space Sci. Rev. 115, 169-297]. Many thousands of spectra, acquired over eighteen-months of observations, are analysed using an optimal estimation retrieval code [Irwin, P.G.J., Parrish, P., Fouchet, T., Calcutt, S.B., Taylor, F.W., Simon-Miller, A.A., Nixon, C.A., 2004. Icarus 172, 37-49] to retrieve the temperature structure and para-hydrogen distribution over Saturn's northern (winter) and southern (summer) hemispheres. The vertical temperature structure is analysed in detail to study seasonal asymmetries in the tropopause height (65-90 mbar), the location of the radiative-convective boundary (350-500 mbar), and the variation with latitude of a temperature knee (between 150 and 300 mbar) which was first observed in inversions of Voyager/IRIS spectra [Hanel, R., and 15 colleagues, 1981. Science 212, 192-200; Hanel, R., Conrath, B., Flasar, F.M., Kunde, V., Maguire, W., Pearl, J.C., Pirraglia, J., Samuelson, R., Cruikshank, D.P., Gautier, D., Gierasch, P.J., Horn, L., Ponnamperuma, C., 1982. Science 215, 544-548]. Uncertainties due to both the modelling of spectral absorptions (collision-induced absorption coefficients, tropospheric hazes, helium abundance) and the nature of our retrieval algorithm are quantified. Temperatures in the stratosphere near 1 mbar show a 25-30 K temperature difference between the north pole and south pole. This asymmetry becomes less pronounced with depth as the radiative time constant for the atmospheric response increases at deeper pressure levels. Hemispherically-symmetric small-scale temperature structures associated with zonal winds are superimposed onto the temperature asymmetry for pressures greater than 100 mbar. The para-hydrogen fraction in the 100-400 mbar range is greater than equilibrium predictions for the southern hemisphere and parts of the northern hemisphere, and less than equilibrium predictions polewards of 40° N. The temperature knee between 150-300 mbar is larger in the summer hemisphere than in the winter, smaller and higher at the equator, deeper and larger in the equatorial belts and small at the poles. Solar heating on tropospheric haze is proposed as a possible mechanism for this effect; the increased efficiency of ortho- to para-hydrogen conversion in the southern hemisphere is consistent with the presence of larger aerosols in the summer hemisphere, which we demonstrate to be qualitatively consistent with previous studies of Saturn's tropospheric aerosol distribution. © 2007 Elsevier Inc. All rights reserved.
- Published
- 2016
41. Moon Zoo: Citizen science in lunar exploration
- Author
-
Michelle R. Kirchoff, Shoshana Weider, Matthew R. Balme, Kevin Schawinski, Clark R. Chapman, Arfon M. Smith, J. A. Carter, Mark Subbarao, Noah E. Petro, Ian A. Crawford, Cari Corrigan, A. C. Cook, Barach Blumberg, Doris Daou, L. Fortson, Mark Hammergren, Ryan Balfanz, Neil Bowles, Chris Lintott, Mark Sands, John F. Wallin, I. Antonenko, Roberto Bugiolacchi, Peter Grindrod, Stuart J. Robbins, Delia Santiago, Steven P. Bamford, Doug Roberts, and Katherine H. Joy
- Subjects
Astrophysics::Instrumentation and Methods for Astrophysics ,Media studies ,Astronomy and Astrophysics ,Regolith ,Physics::History of Physics ,Computer Science::Computers and Society ,Physics::Geophysics ,Geophysics ,Geochemistry and Petrology ,Political science ,Physics::Space Physics ,Citizen science ,Astrophysics::Earth and Planetary Astrophysics ,Computer Science::Databases - Abstract
The Moon Zoo Team describe how citizen scientists can get involved and explore the Moon online. © 2011 Royal Astronomical Society.
- Published
- 2016
42. Temperatures, winds, and composition in the saturnian system
- Author
-
Gordon L. Bjoraker, John C. Pearl, Daniel Gautier, Tobias Owen, R. K. Achterberg, Nicholas A Teanby, S. B. Calcutt, V. G. Kunde, Athena Coustenis, C. Ferrari, Mark R. Showalter, Antonella Barucci, Neil Bowles, E. H. Wishnow, Patrick G. J. Irwin, B. Wallis, Linda Spilker, Regis Courtin, John R. Spencer, Scott G. Edgington, F. M. Flasar, Conor A. Nixon, M. E. Segura, Peter L. Read, Amy A. Simon-Miller, Thierry Fouchet, S. Pilorz, Bruno Bézard, Paul N. Romani, A. A. Mamoutkine, Paul J. Schinder, Emmanuel Lellouch, Robert E. Samuelson, Barney J. Conrath, Ronald Carlson, Peter J. Gierasch, Mian M. Abbas, John C. Brasunas, François Raulin, R. Prangé, Fredric W. Taylor, Glenn S. Orton, D. E. Jennings, Darrell F. Strobel, A. Marten, Peter A. R. Ade, National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center, Code 693, Greenbelt, Science Systems and Applications, Inc., 5900 Princess Garden Parkway, Suite 300, Lanham, Department of Astronomy, Cornell University, Department of Astronomy, University of Maryland, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Physique des plasmas, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Pôle Planétologie du LESIA, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Jet Propulsion Laboratory, California Institute of Technology (JPL), Department of Space Studies, Southwest Research Institute, Atmospheric, Oceanic and Planetary Physics, Department of Physics, Clarendon Laboratory, University of Oxford, Institute for Astronomy, University of Hawaii, QSS Group, NASA Ames Research Center (NASA Ames), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Department of Earth and Planetary Sciences, Johns Hopkins University, Marshall Space Flight Center, NASA, Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Department of Physics and Astronomy, Cardiff University, Lawrence Livermore National Laboratory (LLNL), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), and Cardiff University
- Subjects
Extraterrestrial Environment ,Wind ,Atmospheric sciences ,Atmosphere ,Jupiter ,Saturn ,Radiative transfer ,Astrophysics::Solar and Stellar Astrophysics ,Spacecraft ,Stratosphere ,Saturn's hexagon ,Physics::Atmospheric and Oceanic Physics ,Multidisciplinary ,Spectrum Analysis ,Temperature ,Astrophysics::Instrumentation and Methods for Astrophysics ,Atmospheric temperature ,Regolith ,Carbon ,Physics::Space Physics ,Astrophysics::Earth and Planetary Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Methane ,Geology ,Hydrogen - Abstract
International audience; Stratospheric temperatures on Saturn imply a strong decay of the equatorial winds with altitude. If the decrease in winds reported from recent Hubble Space Telescope images is not a temporal change, then the features tracked must have been at least 130 kilometers higher than in earlier studies. Saturn's south polar stratosphere is warmer than predicted from simple radiative models. The C/H ratio on Saturn is seven times solar, twice Jupiter's. Saturn's ring temperatures have radial variations down to the smallest scale resolved (100 kilometers). Diurnal surface temperature variations on Phoebe suggest a more porous regolith than on the jovian satellites.
- Published
- 2016
43. The lunar reconnaissance orbiter diviner lunar radiometer experiment
- Author
-
Neil Bowles, Benjamin T. Greenhagen, David A. Paige, J. Bulharowski, L. A. Soderblom, Ian Thomas, John T. Schofield, S. Loring, Bruce C. Murray, D. J. Preston, S. B. Calcutt, Fredric W. Taylor, K. J. Snook, Ashwin R. Vasavada, Marc C. Foote, Carlton C. Allen, E. M. de Jong, B. Jau, M. T. Sullivan, Daniel J. McCleese, Wayne Hartford, C. Avis, and Bruce M. Jakosky
- Subjects
Radiometer ,Infrared ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy and Astrophysics ,Silicate ,Physics::History of Physics ,Astrobiology ,law.invention ,Physics::Geophysics ,chemistry.chemical_compound ,Orbiter ,Planetary science ,chemistry ,law ,Space and Planetary Science ,Thermal ,Physics::Space Physics ,Environmental science ,Astrophysics::Earth and Planetary Astrophysics ,Lunar Laser Ranging experiment ,Diviner ,Remote sensing - Abstract
The Diviner Lunar Radiometer Experiment on NASA's Lunar Reconnaissance Orbiter will be the first instrument to systematically map the global thermal state of the Moon and its diurnal and seasonal variability. Diviner will measure reflected solar and emitted infrared radiation in nine spectral channels with wavelengths ranging from 0.3 to 400 microns. The resulting measurements will enable characterization of the lunar thermal environment, mapping surface properties such as thermal inertia, rock abundance and silicate mineralogy, and determination of the locations and temperatures of volatile cold traps in the lunar polar regions. © The author(s) 2009.
- Published
- 2016
44. EnVision: Taking the pulse of our twin planet
- Author
-
Colin Wilson, Philippe Paillou, Lionel Wilson, Daphne Stam, Karl L. Mitchell, David Waltham, Sanjay S. Limaye, Joern Helbert, Manish R. Patel, Juliet Biggs, Philippa J. Mason, Matthew J. Genge, Jan-Erik Wahlund, Tamsin A. Mather, Chris Cochrane, Franck Montmessin, Upendra N. Singh, Fabio Rocca, Marina Galand, Neil Bowles, David Hall, R. C. Ghail, Imperial College London, Department of Atmospheric, Oceanic and Planetary Physics [Oxford] ( AOPP ), University of Oxford [Oxford], Astrium [Portsmouth], EADS - European Aeronautic Defense and Space, German Aerospace Center ( DLR ), IMPEC - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales ( LATMOS ), Université de Versailles Saint-Quentin-en-Yvelines ( UVSQ ) -Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Versailles Saint-Quentin-en-Yvelines ( UVSQ ) -Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Department of Physics [Madison], University of Wisconsin-Madison [Madison], The Open University [Milton Keynes] ( OU ), SRON Netherlands Institute for Space Research ( SRON ), Swedish Institute of Space Physics [Uppsala] ( IRF ), Politecnico di Milano [Milan], Royal Holloway [University of London] ( RHUL ), Department of Earth Sciences [Oxford], University of Bristol [Bristol], Observatoire aquitain des sciences de l'univers ( OASU ), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire d'Astrophysique de Bordeaux [Pessac] ( LAB ), Université de Bordeaux ( UB ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Université Sciences et Technologies - Bordeaux 1, Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux ( L3AB ), Jet Propulsion Laboratory ( JPL ), NASA-California Institute of Technology ( CALTECH ), Lancaster University, NASA Langley Research Center [Hampton] ( LaRC ), Department of Atmospheric, Oceanic and Planetary Physics [Oxford] (AOPP), University of Oxford, German Aerospace Center (DLR), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), University of Wisconsin-Madison, The Open University [Milton Keynes] (OU), SRON Netherlands Institute for Space Research (SRON), Swedish Institute of Space Physics [Uppsala] (IRF), Politecnico di Milano [Milan] (POLIMI), Royal Holloway [University of London] (RHUL), Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1 (UB), Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux (L3AB), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), NASA Langley Research Center [Hampton] (LaRC), and Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010504 meteorology & atmospheric sciences ,[PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,7. Clean energy ,01 natural sciences ,010305 fluids & plasmas ,Physics::Geophysics ,Atmosphere ,Atmosphere of Venus ,LIDAR ,InSAR ,Venus atmosphere ,Venus ionosphere ,Planet ,0103 physical sciences ,Altimeter ,Physics::Atmospheric and Oceanic Physics ,0105 earth and related environmental sciences ,Remote sensing ,Astronomy and Astrophysics ,Venus ,[ SDU.ASTR.EP ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Exoplanet ,Lidar ,[ PHYS.ASTR.EP ] Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,13. Climate action ,Space and Planetary Science ,Physics::Space Physics ,Astrophysics::Earth and Planetary Astrophysics ,Ionosphere ,Interplanetary spaceflight ,Geology ,Venus tectonics ,Venus tectonics Venus atmosphere Venus ionosphere InSAR LIDAR - Abstract
EnVision is an ambitious but low-risk response to ESA's call for a medium-size mission opportunity for a launch in 2022. Venus is the planet most similar to Earth in mass, bulk properties and orbital distance, but has evolved to become extremely hostile to life. EnVision's 5-year mission objectives are to determine the nature of and rate of change caused by geological and atmospheric processes, to distinguish between competing theories about its evolution and to help predict the habitability of extrasolar planets. Three instrument suites will address specific surface, atmosphere and ionosphere science goals. The Surface Science Suite consists of a 2.2 m 2 radar antenna with Interferometer, Radiometer and Altimeter operating modes, supported by a complementary IR surface emissivity mapper and an advanced accelerometer for orbit control and gravity mapping. This suite will determine topographic changes caused by volcanic, tectonic and atmospheric processes at rates as low as 1 mm a -1. The Atmosphere Science Suite consists of a Doppler LIDAR for cloud top altitude, wind speed and mesospheric structure mapping, complemented by IR and UV spectrometers and a spectrophotopolarimeter, all designed to map the dynamic features and compositions of the clouds and middle atmosphere to identify the effects of volcanic and solar processes. The Ionosphere Science Suite uses a double Langmiur probe and vector magnetometer to understand the behaviour and long-term evolution of the ionosphere and induced magnetosphere. The suite also includes an interplanetary particle analyser to determine the delivery rate of water and other components to the atmosphere. © 2011 Springer Science+Business Media B.V.
- Published
- 2016
45. The meridional phosphine distribution in Saturn's upper troposphere from Cassini/CIRS observations
- Author
-
Leigh N. Fletcher, Nicholas A Teanby, S. B. Calcutt, R. de Kok, Fredric W. Taylor, Neil Bowles, Glenn S. Orton, Pgj Irwin, Carly Howett, and P. Parrish
- Subjects
Atmospheres ,Infrared ,Equator ,Subsidence (atmosphere) ,Astronomy and Astrophysics ,Zonal and meridional ,Atmospheric sciences ,Troposphere ,Atmosphere ,Saturn ,composition ,Space and Planetary Science ,Middle latitudes ,Environmental science - Abstract
The Cassini Composite Infrared Spectrometer (CIRS) has been used to derive the vertical and meridional variation of temperature and phosphine (PH3) abundance in Saturn's upper troposphere. PH3 has a significant effect on the measured radiances in the thermal infrared and between May 2004 and September 2005 CIRS recorded thousands of spectra in both the far (10-600 cm-1) and mid (600-1400 cm-1) infrared, at a variety of latitudes covering the southern hemisphere. Low spectral resolution (15 cm-1) data has been used to constrain the temperature structure of the troposphere between 100 and 500 mbar. The vertical distributions of phosphine and ammonia were retrieved from far-infrared spectra at the highest spectral resolution (0.5 cm-1), and lower resolution (2.5 cm-1) mid-infrared data were used to map the meridional variation in the abundance of phosphine in the 250-500 mbar range. Temperature variations at the 250 mbar level are shown to occur on the same scale as the prograde and retrograde jets in Saturn's atmosphere [Porco, C.C., and 34 colleagues, 2005. Science 307, 1243-1247]. The PH3 abundance at 250 mbar is found to be enhanced at the equator when compared with mid-latitudes. At mid latitudes we see anti-correlation between temperature and PH3 abundance at 250 mbar, phosphine being enhanced at 45° S and depleted at 25 and 55° S. The vertical distribution is markedly different polewards of 60-65° S, with depleted PH3 at 500 mbar but a slower decline in abundance with altitude when compared with the mid-latitudes. This variation is similar to the variations of cloud and aerosol parameters observed in the visible and near infrared, and may indicate the subsidence of tropospheric air at polar latitudes, coupled with a diminished sunlight penetration depth reducing the rate of PH3 photolysis in the polar region. © 2006 Elsevier Inc. All rights reserved.
- Published
- 2016
46. The science of ARIEL (Atmospheric Remote-sensing Infrared Exoplanet Large-survey)
- Author
-
Manuel Güdel, Ignasi Ribas, P. Malaguti, M. R. Zapatero-Osorio, L. Puig, Neil Bowles, Franck Selsis, Emanuele Pace, A. Coustenis, Michiel Min, Jean-Philippe Beaulieu, M. Rataj, G. S. Wright, Göran Pilbratt, William Taylor, Tom Ray, Paulina Wolkenberg, Ingo Waldmann, Matthew Joseph Griffin, V. Coudé du Foresto, Marco Rocchetto, Tiziano Zingales, François Forget, Joanna K. Barstow, Olivia Venot, T. Encrenaz, Diego Turrini, Jérémy Leconte, Bart Vandenbussche, Paul Hartogh, P. O. Lagage, Giuseppina Micela, A. Heske, Marc Ollivier, Pierre Drossart, Enzo Pascale, M. Friswell, A. Moneti, Subhajit Sarkar, Giovanna Tinetti, Jonathan Tennyson, Juan Carlos Morales, Paul Eccleston, Leen Decin, University College of London [London] (UCL), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research (MPS), Max-Planck-Gesellschaft, ECLIPSE 2016, Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), INAF - Osservatorio Astronomico di Palermo (OAPa), Istituto Nazionale di Astrofisica (INAF), Institut de Génomique Fonctionnelle de Lyon (IGFL), École normale supérieure de Lyon (ENS de Lyon)-Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), European Space Research and Technology Centre (ESTEC), Agence Spatiale Européenne = European Space Agency (ESA), University of Valencia, Space Research Centre of Polish Academy of Sciences (CBK), Polska Akademia Nauk = Polish Academy of Sciences (PAN), Institut d'Astrophysique de Paris (IAP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institute for Astronomy [Vienna], University of Vienna [Vienna], Astronomical Institute Anton Pannekoek (AI PANNEKOEK), University of Amsterdam [Amsterdam] (UvA), Dpto. de Organización de Empresas, Escuela Técnica Superior de Ingeniería Industrial de Barcelona, Universitat Politècnica de Catalunya [Barcelona] (UPC), Department of Physics and Astronomy [Leicester], University of Leicester, Department of Atmospheric, Oceanic and Planetary Physics [Oxford] (AOPP), University of Oxford, Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), College of Engineering, Swansea Univ, School of Physics and Astronomy [Cardiff], Cardiff University, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Università degli studi di Verona = University of Verona (UNIVR), Department of Physics and Astronomy [UCL London], Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), McMaster University [Hamilton, Ontario], Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Max Planck Institute for Solar System Research (MPS), École normale supérieure - Lyon (ENS Lyon)-Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL), European Space Agency (ESA), Polska Akademia Nauk (PAN), University of Oxford [Oxford], École normale supérieure - Paris (ENS Paris)-École normale supérieure - Paris (ENS Paris), Università degli Studi di Verona, University College of London [London] ( UCL ), Laboratoire d'études spatiales et d'instrumentation en astrophysique ( LESIA ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), Max Planck Institute for Solar System Research ( MPS ), Laboratoire d'Astrophysique de Bordeaux [Pessac] ( LAB ), Université de Bordeaux ( UB ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Bordeaux ( UB ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), INAF - Osservatorio Astronomico di Palermo ( OAPa ), Istituto Nazionale di Astrofisica ( INAF ), Institut de Génomique Fonctionnelle de Lyon ( IGFL ), École normale supérieure - Lyon ( ENS Lyon ) -Institut National de la Recherche Agronomique ( INRA ) -Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique ( CNRS ), European Space Research and Technology Centre ( ESTEC ), European Space Agency ( ESA ), Space Research Centre [Warsaw] ( CBK ), Polska Akademia Nauk ( PAN ), Institut d'Astrophysique de Paris ( IAP ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Astronomical Institute Anton Pannekoek ( AI PANNEKOEK ), University of Amsterdam [Amsterdam] ( UvA ), Universidad Politécnica de Cataluña, Department of Atmospheric, Oceanic and Planetary Physics [Oxford] ( AOPP ), Laboratoire de Météorologie Dynamique (UMR 8539) ( LMD ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -École polytechnique ( X ) -École des Ponts ParisTech ( ENPC ) -Centre National de la Recherche Scientifique ( CNRS ) -Département des Géosciences - ENS Paris, École normale supérieure - Paris ( ENS Paris ) -École normale supérieure - Paris ( ENS Paris ), School of Physics & Astronomy [Cardiff], Institut de Recherches sur les lois Fondamentales de l'Univers ( IRFU ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay, K.U.Leuven, Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)-École normale supérieure - Lyon (ENS Lyon), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École des Ponts ParisTech (ENPC)-École polytechnique (X)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), and University of Verona (UNIVR)
- Subjects
[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Orbital mechanics ,Stellar classification ,7. Clean energy ,01 natural sciences ,Space missions ,Space exploration ,Astrobiology ,law.invention ,010309 optics ,Telescope ,law ,Planet ,0103 physical sciences ,Electronic ,Atmospheric science ,Exoplanets ,IR spectroscopy ,Electronic, Optical and Magnetic Materials ,Condensed Matter Physics ,Computer Science Applications1707 Computer Vision and Pattern Recognition ,Applied Mathematics ,Electrical and Electronic Engineering ,Optical and Magnetic Materials ,010303 astronomy & astrophysics ,Physics ,space missions ,atmospheric science ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Planetary system ,[ SDU.ASTR.EP ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Exoplanet ,13. Climate action ,Terrestrial planet ,Astrophysics::Earth and Planetary Astrophysics - Abstract
International audience; The Atmospheric Remote-Sensing Infrared Exoplanet Large-survey (ARIEL) is one of the three candidate missions selected by the European Space Agency (ESA) for its next medium-class science mission due for launch in 2026. The goal of the ARIEL mission is to investigate the atmospheres of several hundred planets orbiting distant stars in order to address the fundamental questions on how planetary systems form and evolve. During its four (with a potential extension to six) years mission ARIEL will observe 500+ exoplanets in the visible and the infrared with its meter-class telescope in L2. ARIEL targets will include gaseous and rocky planets down to the Earth-size around different types of stars. The main focus of the mission will be on hot and warm planets orbiting close to their star, as they represent a natural laboratory in which to study the chemistry and formation of exoplanets. The ARIEL mission concept has been developed by a consortium of more than 50 institutes from 12 countries, which include UK, France, Italy, Germany, the Netherlands, Poland, Spain, Belgium, Austria, Denmark, Ireland and Portugal. The analysis of the ARIEL spectra and photometric data in the 0.5-7.8 micron range will allow to extract the chemical fingerprints of gases and condensates in the planets' atmospheres, including the elemental composition for the most favorable targets. It will also enable the study of thermal and scattering properties of the atmosphere as the planet orbit around the star. ARIEL will have an open data policy, enabling rapid access by the general community to the high-quality exoplanet spectra that the core survey will deliver.
- Published
- 2016
47. Space weathering effects in Diviner Lunar Radiometer multispectral infrared measurements of the lunar Christiansen Feature: Characteristics and mitigation
- Author
-
Benjamin T. Greenhagen, Myriam Lemelin, Timothy D. Glotch, Kerri Donaldson Hanna, Neil Bowles, E. Song, Jessica A. Arnold, David A. Paige, and Paul G. Lucey
- Subjects
Radiometer ,010504 meteorology & atmospheric sciences ,Infrared observations ,Solar wind ,Multispectral image ,Astronomy and Astrophysics ,Albedo ,01 natural sciences ,Space weathering ,law.invention ,Wavelength ,Orbiter ,law ,Space and Planetary Science ,0103 physical sciences ,Moon, surface ,Moon ,010303 astronomy & astrophysics ,Geology ,0105 earth and related environmental sciences ,Remote sensing ,Diviner ,Lunar swirls - Abstract
Multispectral infrared measurements by the Diviner Lunar Radiometer Experiment on the Lunar Renaissance Orbiter enable the characterization of the position of the Christiansen Feature, a thermal infrared spectral feature that laboratory work has shown is proportional to the bulk silica content of lunar surface materials. Diviner measurements show that the position of this feature is also influenced by the changes in optical and physical properties of the lunar surface with exposure to space, the process known as space weathering. Large rayed craters and lunar swirls show corresponding Christiansen Feature anomalies. The space weathering effect is likely due to differences in thermal gradients in the optical surface imposed by the space weathering control of albedo. However, inspected at high resolution, locations with extreme compositions and Christiansen Feature wavelength positions – silica-rich and olivine-rich areas – do not have extreme albedos, and fall off the albedo- Christiansen Feature wavelength position trend occupied by most of the Moon. These areas demonstrate that the Christiansen Feature wavelength position contains compositional information and is not solely dictated by albedo. An optical maturity parameter derived from near-IR measurements is used to partly correct Diviner data for space weathering influences.
- Published
- 2016
48. Dual-telescope multi-channel thermal-infrared radiometer for outer planet fly-by missions
- Author
-
M. E. Segura, Garrett West, Michael Amato, Carly Howett, S. B. Calcutt, Neil Bowles, Julie A. Rathbun, Patrick G. J. Irwin, G. Quilligan, Mark J. Loeffler, Donald E. Jennings, Wen-Ting Hsieh, Michael T. Mellon, Jane Hurley, Conor A. Nixon, E. Kessler, Nathaniel E. Putzig, J. N. Spitale, Terry Hurford, B. Lakew, Anthony Nicoletti, Shahid Aslam, John R. Spencer, Joseph M. Howard, and Tilak Hewagama
- Subjects
Infrared astronomy ,Radiometer ,010504 meteorology & atmospheric sciences ,Spacecraft ,business.industry ,Astrophysics::Instrumentation and Methods for Astrophysics ,Aerospace Engineering ,Field of view ,Spectral bands ,01 natural sciences ,law.invention ,Optical axis ,Telescope ,Optics ,law ,0103 physical sciences ,Astrophysics::Earth and Planetary Astrophysics ,business ,010303 astronomy & astrophysics ,Image resolution ,Geology ,0105 earth and related environmental sciences ,Remote sensing - Abstract
The design of a versatile dual-telescope thermal-infrared radiometer spanning the spectral wavelength range 8–200 µm, in five spectral pass bands, for outer planet fly-by missions is described. The dual-telescope design switches between a narrow-field-of-view and a wide-field-of-view to provide optimal spatial resolution images within a range of spacecraft encounters to the target. The switchable dual-field-of-view system uses an optical configuration based on the axial rotation of a source-select mirror along the optical axis. The optical design, spectral performance, radiometric accuracy, and retrieval estimates of the instrument are discussed. This is followed by an assessment of the surface coverage performance at various spatial resolutions by using the planned NASA Europa Mission 13-F7 fly-by trajectories as a case study.
- Published
- 2016
49. Investigation of new band parameters with temperature dependence for self-broadened methane gas in the range 9000 to 14,000cm−1 (0.71 to 1.1μm)
- Author
-
K. Smith, G. Williams, S. B. Calcutt, Neil Bowles, Patrick G. J. Irwin, and R. Passmore
- Subjects
Radiation ,Materials science ,Outer planets ,business.industry ,Near-infrared spectroscopy ,Residual ,Atomic and Molecular Physics, and Optics ,Spectral line ,Jovian ,Methane ,Computational physics ,chemistry.chemical_compound ,symbols.namesake ,Optics ,chemistry ,Planet ,symbols ,business ,Titan (rocket family) ,Spectroscopy - Abstract
This paper describes new measurements and modelling of the absorption of methane gas, one of the most important gases observed in the atmospheres of the outer planets and Titan, between 9000 and 14,000 cm −1 (0.7 to 1.1 μm) and compares them with current best available spectral models. A series of methane spectra were measured at the UK's Natural Environment Research Council (NERC) Molecular Spectroscopy Facility (based at the Rutherford Appleton Laboratory, Oxfordshire, UK) using a Bruker 125HR Fourier transform spectrometer. To approximate the conditions found in outer planet atmospheres, the spectra were measured over a wide range of pressures (5 bar to 38 mbar) and temperatures (290–100 K) with path lengths of 19.3, 17.6, 16.0 and 14.4 m. The spectra were recorded at a moderate resolution of 0.12 cm −1 and then averaged to 10 cm −1 resolution prior to fitting a series of increasingly complex band-models including temperature dependence. Using the most complex model, a Goody line distribution with a Voigt line shape and two lower energy state levels, the typical rms residual error in the fit is between 0.01 and 0.02 in the wings of the main absorption bands. The new spectral parameters were then compared with the measured spectra and spectra calculated using existing data and shown to be able to accurately reproduce the measured absorption. The improvement in the temperature dependence included in the model is demonstrated by comparison with existing cold methane spectral data for a typical Jovian path.
- Published
- 2012
50. Highly Silicic Compositions on the Moon
- Author
-
Carlton Allen, Benjamin T. Greenhagen, Ian Thomas, Michael B. Wyatt, Timothy D. Glotch, Neil Bowles, David A. Paige, Kerri Donaldson Hanna, Paul G. Lucey, Richard C. Elphic, and Joshua L. Bandfield
- Subjects
Basalt ,Multidisciplinary ,Geochemistry ,Mineralogy ,Silicic ,engineering.material ,Feldspar ,Igneous rock ,visual_art ,Magma ,visual_art.visual_art_medium ,engineering ,Plagioclase ,Alkali feldspar ,Geology ,Diviner - Abstract
Lunar Reconnaissance The Lunar Reconnaissance Orbiter reached lunar orbit on 23 June 2009. Global data acquired since then now tell us about the impact history of the Moon and the igneous processes that shaped it. Using the Lunar Orbiter Laser Altimeter, Head et al. (p. 1504 ; see the cover) provide a new catalog of large lunar craters. In the lunar highlands, large-impact craters have obliterated preexisting craters of similar size, implying that crater counts in this region cannot be used effectively to determine the age of the underlying terrain. Crater counts based on the global data set indicate that the nature of the Moon's impactor population has changed over time. Greenhagen et al. (p. 1507 ) and Glotch et al. (p. 1510 ) analyzed data from the Diviner Lunar Radiometer Experiment, which measures emitted thermal radiation and reflected solar radiation at infrared wavelengths. The silicate mineralogy revealed suggests the existence of more complex igneous processes on the Moon than previously assumed.
- Published
- 2010
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.