1. PUF Proteins as Critical RNA-Binding Proteins in TriTryp Parasites: A Review Article
- Author
-
Tahereh Taheri, Elaheh Davarpanah, Katayon Samimi-Rad, and Negar Seyed
- Subjects
RNA-binding pro-teins ,PUF proteins ,Trypanosome brucei ,Trypanosome cruzi ,Leishmania ,Infectious and parasitic diseases ,RC109-216 - Abstract
In eukaryotes, translation is a fundamental step in the long pathway of protein synthesis within the cell. In this process, several proteins and factors have involved directly or indirectly, individually or in association with other elements to contact mRNA. For perfect translation, many essential modifications should be done, such as cis-splicing to remove introns and two main events for capping and poly A polymerization in 5’ and 3’ end of mRNA, respectively. Gene expression is then regulated at both translation and stability of the target mRNA molecule levels. Pumilio/FBFs (PUFs) are the main group of RNA-binding proteins which bind to the 3’-UTR of target RNA and thereby regulate the fate, stability and subcellular localization of mRNAs and adjust the translated protein level. PUF proteins have been found both in nucleus where that bind to precursor mRNA, for processing and maturation of rRNA, and in cytoplasm where that bind to mRNA, stall the ribosomes, suppress the translation and localization of the mRNA. They can regulate the expression of mRNAs through activation or suppression of translation. Therefore, these proteins have recently garnered much attention as new generation of therapeutic targets against diseases such as cancer and neurological disorders. In comparison to other eukaryotes, trypanosomatids have a high number of PUF proteins, which function not only as gene expression regulatory factors but also in several biological processes such as differentiation and life-cycle progression of the cells. Here, we review the molecular and biological roles of known PUF proteins in TriTryp parasites (Trypanosome brucei, T. cruzi and Leishmania) beside some other parasites.
- Published
- 2024
- Full Text
- View/download PDF