171 results on '"Neary, L."'
Search Results
2. Impact of gradients at the martian terminator on the retrieval of ozone from SPICAM/MEx
- Author
-
Piccialli, A., Vandaele, A.C., Trompet, L., Neary, L., Viscardy, S., Erwin, J.T., Määttänen, A., Daerden, F., Willame, Y., Robert, S., Aoki, S., Wilquet, V., Lefèvre, F., and Montmessin, F.
- Published
- 2021
- Full Text
- View/download PDF
3. Mars atmospheric chemistry simulations with the GEM-Mars general circulation model
- Author
-
Daerden, F., Neary, L., Viscardy, S., García Muñoz, A., Clancy, R.T., Smith, M.D., Encrenaz, T., and Fedorova, A.
- Published
- 2019
- Full Text
- View/download PDF
4. The GEM-Mars general circulation model for Mars: Description and evaluation
- Author
-
Neary, L. and Daerden, F.
- Published
- 2018
- Full Text
- View/download PDF
5. Multi-model Meteorological and Aeolian Predictions for Mars 2020 and the Jezero Crater Region
- Author
-
Newman, C. E., de la Torre Juárez, M., Pla-García, J., Wilson, R. J., Lewis, S. R., Neary, L., Kahre, M. A., Forget, F., Spiga, A., Richardson, M. I., Daerden, F., Bertrand, T., Viúdez-Moreiras, D., Sullivan, R., Sánchez-Lavega, A., Chide, B., and Rodriguez-Manfredi, J. A.
- Published
- 2021
- Full Text
- View/download PDF
6. Two test-cases for synergistic detections in the Martian atmosphere: Carbon monoxide and methane
- Author
-
Robert, S., Camy-Peyret, C., Daerden, F., De Mazière, M., De Wachter, E., Neary, L., Vandenbussche, S., and Vandaele, A.C.
- Published
- 2017
- Full Text
- View/download PDF
7. Carbon Dioxide Retrievals From NOMAD-SO on ESA's ExoMars Trace Gas Orbiter and Temperature Profiles Retrievals With the Hydrostatic Equilibrium Equation: 1. Description of the Method
- Author
-
Ministerio de Ciencia e Innovación (España), European Commission, Belgian Science Policy Office, Trompet, L., Vandaele, A. C., Thomas, I., Aoki, S., Daerden, F., Erwin, J., Flimon, Z., Mahieux, A., Neary, L., Robert, S., Villanueva, G., Liuzzi, G., López-Valverde, M. A., Brines, Adrian, Bellucci, G., López-Moreno, José Juan, Patel, M. R., Ministerio de Ciencia e Innovación (España), European Commission, Belgian Science Policy Office, Trompet, L., Vandaele, A. C., Thomas, I., Aoki, S., Daerden, F., Erwin, J., Flimon, Z., Mahieux, A., Neary, L., Robert, S., Villanueva, G., Liuzzi, G., López-Valverde, M. A., Brines, Adrian, Bellucci, G., López-Moreno, José Juan, and Patel, M. R.
- Abstract
The Solar Occultation (SO) channel of the Nadir and Occultation for Mars Discovery (NOMAD) instrument has been scanning the Martian atmosphere for almost 2 Martian years. In this work, we present a subset of the NOMAD SO data measured at the mesosphere at the terminator. From the data set, we investigated 968 vertical profiles of carbon dioxide density and temperature covering the Martian Year (MY) 35 as well as MY 36 up to a solar longitude (Ls) of 135° and altitudes around 60–100 km. While carbon dioxide density profiles are directly retrieved from the spectral signature in the spectra, temperature profiles are more challenging to retrieve as unlike density profiles, temperature profiles can present some spurious features if the regularization is not correctly managed. Comparing seven regularization methods, we found that the expected error estimation method provides the best regularization parameters. The vertical resolution of the profiles is on average 1.6 km. Numerous warm layers and cold pockets appear in this data set. The warm layers are found in the Northern hemisphere at dawn and dusk as well as in the Southern hemisphere at dawn. Strong warm layers are present in more than 13.5% of the profiles. The Southern hemisphere at dusk does not present any warm layer between Ls 50° and 150°. The height and latitudinal distribution of those warm layers were similar in MY 35 and MY 36 during the first half of the year (Ls = 0°–135°). © 2023. The Authors.
- Published
- 2023
8. Carbon Dioxide Retrievals From NOMAD-SO on ESA's ExoMars Trace Gas Orbiter and Temperature Profile Retrievals With the Hydrostatic Equilibrium Equation: 2. Temperature Variabilities in the Mesosphere at Mars Terminator
- Author
-
Ministerio de Ciencia e Innovación (España), European Commission, Belgian Science Policy Office, Trompet, L., Vandaele, A. C., Thomas, I., Aoki, S., Daerden, F., Erwin, J., Flimon, Z., Mahieux, A., Neary, L., Robert, S., Villanueva, G., Liuzzi, G., López-Valverde, M. A., Brines, Adrian, Bellucci, G., López-Moreno, José Juan, Patel, M. R, Ministerio de Ciencia e Innovación (España), European Commission, Belgian Science Policy Office, Trompet, L., Vandaele, A. C., Thomas, I., Aoki, S., Daerden, F., Erwin, J., Flimon, Z., Mahieux, A., Neary, L., Robert, S., Villanueva, G., Liuzzi, G., López-Valverde, M. A., Brines, Adrian, Bellucci, G., López-Moreno, José Juan, and Patel, M. R
- Abstract
The Solar Occultation (SO) channel of the Nadir and Occultation for Mars Discovery (NOMAD) instrument scans the Martian atmosphere since 21 April 2018. In this work, we present a subset of the NOMAD SO data measured at the mesosphere. We focused on a spectral range that started to be recorded in Martian year (MY) 35. A total of 968 vertical profiles of carbon dioxide density and temperature covering MY 35 and the beginning of MY 36 were investigated until 135° of solar longitude. We compared 47 profiles with co-located profiles of the Mars Climate Sounder onboard the Mars Reconnaissance Orbiter. Most profiles show a good agreement as SO temperatures are only 1.8 K higher, but some biases lead to an average absolute difference of 7.4°K. The SO data set is also compared with simulations from the Global Environmental Multiscale-Mars general circulation model. Both data sets are in good agreement except for the presence of a cold layer in the winter hemisphere and a warm layer at dawn in the Northern hemisphere for solar longitudes between 240° and 360°. Five profiles contain temperatures lower than the limit for CO2 condensation. Strong warm layers were found in 13.5% of the profiles. They are present mainly at dawn and in the winter hemisphere, while the Northern dusks appear featureless. The data set mainly covers high latitudes around 60° and we derived some non-migrating tides. In the Southern winter hemisphere, we derived apparent zonal wavenumber-1 (WN-1) and WN-3 tidal components with a maximum amplitude of 10% and 5% at 63 km, respectively. © 2023. The Authors.
- Published
- 2023
9. Carbon Dioxide Retrievals From NOMAD‐SO on ESA's ExoMars Trace Gas Orbiter and Temperature Profile Retrievals With the Hydrostatic Equilibrium Equation: 2. Temperature Variabilities in the Mesosphere at Mars Terminator
- Author
-
Trompet, L., primary, Vandaele, A. C., additional, Thomas, I., additional, Aoki, S., additional, Daerden, F., additional, Erwin, J., additional, Flimon, Z., additional, Mahieux, A., additional, Neary, L., additional, Robert, S., additional, Villanueva, G., additional, Liuzzi, G., additional, López‐Valverde, M. A., additional, Brines, A., additional, Bellucci, G., additional, Lopez‐Moreno, J. J., additional, and Patel, M. R., additional
- Published
- 2023
- Full Text
- View/download PDF
10. Carbon Dioxide Retrievals From NOMAD‐SO on ESA's ExoMars Trace Gas Orbiter and Temperature Profiles Retrievals With the Hydrostatic Equilibrium Equation: 1. Description of the Method
- Author
-
Trompet, L., primary, Vandaele, A. C., additional, Thomas, I., additional, Aoki, S., additional, Daerden, F., additional, Erwin, J., additional, Flimon, Z., additional, Mahieux, A., additional, Neary, L., additional, Robert, S., additional, Villanueva, G., additional, Liuzzi, G., additional, López‐Valverde, M. A., additional, Brines, A., additional, Bellucci, G., additional, López‐Moreno, J. J., additional, and Patel, M. R., additional
- Published
- 2023
- Full Text
- View/download PDF
11. Martian Ozone Observed by TGO/NOMAD‐UVIS Solar Occultation: An Inter‐Comparison of Three Retrieval Methods
- Author
-
Piccialli, A., primary, Vandaele, A. C., additional, Willame, Y., additional, Määttänen, A., additional, Trompet, L., additional, Erwin, J. T., additional, Daerden, F., additional, Neary, L., additional, Aoki, S., additional, Viscardy, S., additional, Thomas, I. R., additional, Depiesse, C., additional, Ristic, B., additional, Mason, J. P., additional, Patel, M. R., additional, Wolff, M. J., additional, Khayat, A. S. J., additional, Bellucci, G., additional, and Lopez‐Moreno, J.‐J., additional
- Published
- 2023
- Full Text
- View/download PDF
12. Global Vertical Distribution of Water Vapor on Mars: Results From 3.5 Years of ExoMars‐TGO/NOMAD Science Operations
- Author
-
Aoki, S., primary, Vandaele, A. C., additional, Daerden, F., additional, Villanueva, G. L., additional, Liuzzi, G., additional, Clancy, R. T., additional, Lopez‐Valverde, M. A., additional, Brines, A., additional, Thomas, I. R., additional, Trompet, L., additional, Erwin, J. T., additional, Neary, L., additional, Robert, S., additional, Piccialli, A., additional, Holmes, J. A., additional, Patel, M. R., additional, Yoshida, N., additional, Whiteway, J., additional, Smith, M. D., additional, Ristic, B., additional, Bellucci, G., additional, Lopez‐Moreno, J. J., additional, and Fedorova, A. A., additional
- Published
- 2022
- Full Text
- View/download PDF
13. The Use of Meso-Scale Atmospheric Circulation Types as a Strategy for Modelling Long-Term Trends in Air Pollution
- Author
-
Steyn, Douw, Ainslie, Bruce, Kaminski, J. W., McConnell, J. C., Martilli, Alberto, Neary, L., Borrego, Carlos, editor, and Miranda, Ana Isabel, editor
- Published
- 2008
- Full Text
- View/download PDF
14. Developments and Results from a Global Multiscale Air Quality Model (GEM-AQ)
- Author
-
Neary, L., Kaminski, Jacek W., Lupu, A., McConnell, J. C., Borrego, Carlos, editor, and Norman, Ann-Lise, editor
- Published
- 2007
- Full Text
- View/download PDF
15. NOMAD, an Integrated Suite of Three Spectrometers for the ExoMars Trace Gas Mission: Technical Description, Science Objectives and Expected Performance
- Author
-
Vandaele, A. C., Lopez-Moreno, J.-J., Patel, M. R., Bellucci, G., Daerden, F., Ristic, B., Robert, S., Thomas, I. R., Wilquet, V., Allen, M., Alonso-Rodrigo, G., Altieri, F., Aoki, S., Bolsée, D., Clancy, T., Cloutis, E., Depiesse, C., Drummond, R., Fedorova, A., Formisano, V., Funke, B., González-Galindo, F., Geminale, A., Gérard, J.-C., Giuranna, M., Hetey, L., Ignatiev, N., Kaminski, J., Karatekin, O., Kasaba, Y., Leese, M., Lefèvre, F., Lewis, S. R., López-Puertas, M., López-Valverde, M., Mahieux, A., Mason, J., McConnell, J., Mumma, M., Neary, L., Neefs, E., Renotte, E., Rodriguez-Gomez, J., Sindoni, G., Smith, M., Stiepen, A., Trokhimovsky, A., Vander Auwera, J., Villanueva, G., Viscardy, S., Whiteway, J., Willame, Y., Wolff, M., and the NOMAD Team
- Published
- 2018
- Full Text
- View/download PDF
16. Planet‐Wide Ozone Destruction in the Middle Atmosphere on Mars During Global Dust Storm
- Author
-
Daerden, F., Neary, L., Wolff, M. J., Clancy, R. T., Lefèvre, F., Whiteway, J. A., Viscardy, S., Piccialli, A., Willame, Y., Depiesse, C., Aoki, S., Thomas, I. R., Ristic, B., Erwin, J., Gérard, J.‐C., Sandor, B. J., Khayat, A., Smith, M. D., Mason, J. P., Patel, M. R., Villanueva, G. L., Liuzzi, G., Bellucci, G., Lopez‐Moreno, J.‐J., Vandaele, A. C., Ministerio de Ciencia e Innovación (España), European Commission, Belgian Science Policy Office, and UK Space Agency
- Subjects
Ozone ,Geophysics ,Atmosphere ,Mars ,NOMAD ,General Earth and Planetary Sciences ,General circulation model ,Global dust storm - Abstract
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes., The Nadir and Occultation for MArs Discovery (NOMAD)/UV-visible (UVIS) spectrometer on the ExoMars Trace Gas Orbiter provided observations of ozone (O3) and water vapor in the global dust storm of 2018. Here we show in detail, using advanced data filtering and chemical modeling, how Martian O3 in the middle atmosphere was destroyed during the dust storm. In data taken exactly 1 year later when no dust storm occurred, the normal situation had been reestablished. The model simulates how water vapor is transported to high altitudes and latitudes in the storm, where it photolyzes to form odd hydrogen species that catalyze O3. O3 destruction is simulated at all latitudes and up to 100 km, except near the surface where it increases. The simulations also predict a strong increase in the photochemical production of atomic hydrogen in the middle atmosphere, consistent with the enhanced hydrogen escape observed in the upper atmosphere during global dust storms. © 2022 The Authors., This work was made possible thanks to the reconstructed gridded maps of column dust optical depth from Mars Climate Sounder observations provided by L. Montabone. The dust maps were prepared using MCS v5.3 provided by A. Kleinböhl and D. Kass. Dust climatologies can be found at the following link: http://www-mars.lmd.jussieu.fr/mars/dust_climatology/. ExoMars is a space mission of the European Space Agency (ESA) and Roscosmos. The NOMAD experiment is led by the Royal Belgian Institute for Space Aeronomy (IASB-BIRA), assisted by Co-PI teams from Spain (IAA-CSIC), Italy (INAF-IAPS), and the United Kingdom (Open University). This project acknowledges funding by the Belgian Science Policy Office (BELSPO), with the financial and contractual coordination by the ESA Prodex Office (PEA 4000103401, 4000121493), by the UK Space Agency (grants ST/V002295/1, ST/P001262/1, ST/V005332/1 and ST/S00145X/1), by the Spanish Ministry of Science and Innovation (MCIU), and by European funds (grants PGC2018-101836-B-I00 and ESP2017-87143-R, MINECO/FEDER), as well as by the Italian Space Agency (Grant 2018-2-HH.0). This work was supported by the Belgian Fonds de la Recherche Scientifique – FNRS (Grant Nos. 30442502, ET_HOME). This work has received funding from the European Union's Horizon 2020 research and innovation programme (grant agreement No 101004052, RoadMap project). The IAA/CSIC team acknowledges financial support from the State Agency for Research of the Spanish MCIU through the “Center of Excellence Severo Ochoa” award for the Instituto de Astrofísica de Andalucía (SEV-2017-0709). US investigators were supported by the National Aeronautics and Space Administration, by NASA's Mars Program Office (under WBS 604796, “Participation in the TGO/NOMAD Investigation of Trace Gases on Mars.”), and by NASA (award number 80GSFC21M0002). Canadian investigators were supported by the Canadian Space Agency.
- Published
- 2022
17. Planet‐Wide Ozone Destruction in the Middle Atmosphere on Mars During Global Dust Storm
- Author
-
Daerden, F., primary, Neary, L., additional, Wolff, M. J., additional, Clancy, R. T., additional, Lefèvre, F., additional, Whiteway, J. A., additional, Viscardy, S., additional, Piccialli, A., additional, Willame, Y., additional, Depiesse, C., additional, Aoki, S., additional, Thomas, I. R., additional, Ristic, B., additional, Erwin, J., additional, Gérard, J.‐C., additional, Sandor, B. J., additional, Khayat, A., additional, Smith, M. D., additional, Mason, J. P., additional, Patel, M. R., additional, Villanueva, G. L., additional, Liuzzi, G., additional, Bellucci, G., additional, Lopez‐Moreno, J.‐J., additional, and Vandaele, A. C., additional
- Published
- 2022
- Full Text
- View/download PDF
18. Global Vertical Distribution of Water Vapor on Mars: Results From 3.5 Years of ExoMars-TGO/NOMAD Science Operations
- Author
-
Ministerio de Ciencia e Innovación (España), European Commission, Belgian Science Policy Office, UK Space Agency, Aoki, S., Vandaele, A. C., Daerden, F., Villanueva, Geronimo L., Liuzzi, G., Clancy, R. T., López-Valverde, M. A., Brines, Adrian, Thomas, I. R., Trompet, L., Erwin, J. T., Neary, L., Robert, S., Piccialli, A., Holmes, J. A., Patel, M. R., Yoshida, N., Whiteway, J., Smith, M. D., Ristic, B., Bellucci, G., López-Moreno, José Juan, Fedorova, A. A., Ministerio de Ciencia e Innovación (España), European Commission, Belgian Science Policy Office, UK Space Agency, Aoki, S., Vandaele, A. C., Daerden, F., Villanueva, Geronimo L., Liuzzi, G., Clancy, R. T., López-Valverde, M. A., Brines, Adrian, Thomas, I. R., Trompet, L., Erwin, J. T., Neary, L., Robert, S., Piccialli, A., Holmes, J. A., Patel, M. R., Yoshida, N., Whiteway, J., Smith, M. D., Ristic, B., Bellucci, G., López-Moreno, José Juan, and Fedorova, A. A.
- Abstract
We present water vapor vertical distributions on Mars retrieved from 3.5 years of solar occultation measurements by Nadir and Occultation for Mars Discovery onboard the ExoMars Trace Gas Orbiter, which reveal a strong contrast between aphelion and perihelion water climates. In equinox periods, most of water vapor is confined into the low-middle latitudes. In aphelion periods, water vapor sublimated from the northern polar cap is confined into very low altitudes—water vapor mixing ratios observed at the 0–5 km lower boundary of measurement decrease by an order of magnitude at the approximate altitudes of 15 and 30 km for the latitudes higher than 50°N and 30–50°N, respectively. The vertical confinement of water vapor at northern middle latitudes around aphelion is more pronounced in the morning terminators than evening, perhaps controlled by the diurnal cycle of cloud formation. Water vapor is also observed over the low latitude regions in the aphelion southern hemisphere (0–30°S) mostly below 10–20 km, which suggests north-south transport of water still occurs. In perihelion periods, water vapor sublimated from the southern polar cap directly reaches high altitudes (>80 km) over high southern latitudes, suggesting more effective transport by the meridional circulation without condensation. We show that heating during perihelion, sporadic global dust storms, and regional dust storms occurring annually around 330° of solar longitude (LS) are the main events to supply water vapor to the upper atmosphere above 70 km. © 2022. The Authors.
- Published
- 2022
19. Planet-Wide Ozone Destruction in the Middle Atmosphere on Mars During Global Dust Storm
- Author
-
Ministerio de Ciencia e Innovación (España), European Commission, Belgian Science Policy Office, UK Space Agency, Daerden, Frank, Neary, L., Wolff, M. J., Clancy, R. T., Lefèvre, F., Whiteway, J. A., Viscardy, S., Piccialli, A., Willame, Y., Depiesse, C., Aoki, Shohei, Thomas, Ian R., Ristic, Bojan, Erwin, Justin T., Gérard, J. -C., Sandor, B. J., Khayat, A., Smith, M. D., Mason, Jonathon P., Patel, Manish R., Villanueva, Geronimo L., Liuzzi, Giuliano, Bellucci, Giancarlo, López-Moreno, José Juan, Vandaele, Ann Carine, Ministerio de Ciencia e Innovación (España), European Commission, Belgian Science Policy Office, UK Space Agency, Daerden, Frank, Neary, L., Wolff, M. J., Clancy, R. T., Lefèvre, F., Whiteway, J. A., Viscardy, S., Piccialli, A., Willame, Y., Depiesse, C., Aoki, Shohei, Thomas, Ian R., Ristic, Bojan, Erwin, Justin T., Gérard, J. -C., Sandor, B. J., Khayat, A., Smith, M. D., Mason, Jonathon P., Patel, Manish R., Villanueva, Geronimo L., Liuzzi, Giuliano, Bellucci, Giancarlo, López-Moreno, José Juan, and Vandaele, Ann Carine
- Abstract
The Nadir and Occultation for MArs Discovery (NOMAD)/UV-visible (UVIS) spectrometer on the ExoMars Trace Gas Orbiter provided observations of ozone (O3) and water vapor in the global dust storm of 2018. Here we show in detail, using advanced data filtering and chemical modeling, how Martian O3 in the middle atmosphere was destroyed during the dust storm. In data taken exactly 1 year later when no dust storm occurred, the normal situation had been reestablished. The model simulates how water vapor is transported to high altitudes and latitudes in the storm, where it photolyzes to form odd hydrogen species that catalyze O3. O3 destruction is simulated at all latitudes and up to 100 km, except near the surface where it increases. The simulations also predict a strong increase in the photochemical production of atomic hydrogen in the middle atmosphere, consistent with the enhanced hydrogen escape observed in the upper atmosphere during global dust storms. © 2022 The Authors.
- Published
- 2022
20. Explaining NOMAD D/H Observations by Cloud‐Induced Fractionation of Water Vapor on Mars
- Author
-
Daerden, F., Neary, L., Villanueva, G., Liuzzi, G., Aoki, S., Clancy, R. T., Whiteway, J. A., Sandor, B. J., Smith, M. D., Wolff, M. J., Pankine, A., Khayat, A., Novak, R., Cantor, B., Crismani, M., Mumma, M. J., Viscardy, S., Erwin, J., Depiesse, C., Mahieux, A., Piccialli, A., Robert, S., Trompet, L., Willame, Y., Neefs, E., Thomas, I. R., Ristic, B., and Vandaele, A. C.
- Subjects
Geophysics ,Space and Planetary Science ,Geochemistry and Petrology ,Earth and Planetary Sciences (miscellaneous) - Published
- 2022
21. Studying methane and other trace species in the Mars atmosphere using a SOIR instrument
- Author
-
Drummond, R., Vandaele, A.-C., Daerden, F., Fussen, D., Mahieux, A., Neary, L., Neefs, E., Robert, S., Willame, Y., and Wilquet, V.
- Published
- 2011
- Full Text
- View/download PDF
22. A Global and Seasonal Perspective of Martian Water Vapor From ExoMars/NOMAD
- Author
-
Crismani, M. M. J., primary, Villanueva, G. L., additional, Liuzzi, G., additional, Smith, M. D., additional, Knutsen, E. W., additional, Daerden, F., additional, Neary, L., additional, Mumma, M. J., additional, Aoki, S., additional, Trompet, L., additional, Thomas, I. R., additional, Ristic, B., additional, Bellucci, G., additional, Piccialli, A., additional, Robert, S., additional, Mahieux, A., additional, Lopez Moreno, J.‐J., additional, Sindoni, G., additional, Giuranna, M., additional, Patel, M. R., additional, and Vandaele, A. C., additional
- Published
- 2021
- Full Text
- View/download PDF
23. Annual Appearance of Hydrogen Chloride on Mars and a Striking Similarity With the Water Vapor Vertical Distribution Observed by TGO/NOMAD
- Author
-
Aoki, S., primary, Daerden, F., additional, Viscardy, S., additional, Thomas, I. R., additional, Erwin, J. T., additional, Robert, S., additional, Trompet, L., additional, Neary, L., additional, Villanueva, G. L., additional, Liuzzi, G., additional, Crismani, M. M. J., additional, Clancy, R. T., additional, Whiteway, J., additional, Schmidt, F., additional, Lopez‐Valverde, M. A., additional, Ristic, B., additional, Patel, M. R., additional, Bellucci, G., additional, Lopez‐Moreno, J.‐J., additional, Olsen, K. S., additional, Lefèvre, F., additional, Montmessin, F., additional, Trokhimovskiy, A., additional, Fedorova, A. A., additional, Korablev, O., additional, and Vandaele, A. C., additional
- Published
- 2021
- Full Text
- View/download PDF
24. Multi-model Meteorological and Aeolian Predictions for Mars 2020 and the Jezero Crater Region
- Author
-
Física aplicada I, Fisika aplikatua I, Newman, C E, De la Torre Juárez, M., Pla García, J., Wilson, R. J., Lewis, S. R., Neary, L., Kahre, M. A., Forget, F., Spiga, A., Richardson, M. I., Daerden, F., Bertrand, T., Viúdez Moreiras, D., Sullivan, R., Sánchez Lavega, Agustín María, Chide, B., Rodriguez Manfredi, J. A., Física aplicada I, Fisika aplikatua I, Newman, C E, De la Torre Juárez, M., Pla García, J., Wilson, R. J., Lewis, S. R., Neary, L., Kahre, M. A., Forget, F., Spiga, A., Richardson, M. I., Daerden, F., Bertrand, T., Viúdez Moreiras, D., Sullivan, R., Sánchez Lavega, Agustín María, Chide, B., and Rodriguez Manfredi, J. A.
- Abstract
Nine simulations are used to predict the meteorology and aeolian activity of the Mars 2020 landing site region. Predicted seasonal variations of pressure and surface and atmospheric temperature generally agree. Minimum and maximum pressure is predicted at Ls similar to 145 degrees and 250 degrees, respectively. Maximum and minimum surface and atmospheric temperature are predicted at Ls similar to 180 degrees and 270 degrees, respectively; i.e., are warmest at northern fall equinox not summer solstice. Daily pressure cycles vary more between simulations, possibly due to differences in atmospheric dust distributions. Jezero crater sits inside and close to the NW rim of the huge Isidis basin, whose daytime upslope (similar to east-southeasterly) and nighttime downslope (similar to northwesterly) winds are predicted to dominate except around summer solstice, when the global circulation produces more southerly wind directions. Wind predictions vary hugely, with annual maximum speeds varying from 11 to 19 ms(-1) and daily mean wind speeds peaking in the first half of summer for most simulations but in the second half of the year for two. Most simulations predict net annual sand transport toward the WNW, which is generally consistent with aeolian observations, and peak sand fluxes in the first half of summer, with the weakest fluxes around winter solstice due to opposition between the global circulation and daytime upslope winds. However, one simulation predicts transport toward the NW, while another predicts fluxes peaking later and transport toward the WSW. Vortex activity is predicted to peak in summer and dip around winter solstice, and to be greater than at InSight and much greater than in Gale crater.
- Published
- 2021
25. Water heavily fractionated as it ascends on Mars as revealed by ExoMars/NOMAD
- Author
-
Belgian Science Policy Office, European Space Agency, European Commission, UK Space Agency, Agenzia Spaziale Italiana, Ministerio de Ciencia e Innovación (España), Ministerio de Economía y Competitividad (España), Villanueva, Geronimo L., Liuzzi, Giuliano, Crismani, M. M. J., Aoki, Shohei, Vandaele, Ann Carine, Daerden, Frank, Smith, M.D., Mumma, M.J., Knutsen, E. W., Neary, L., Viscardy, S., Thomas, Ian R., López-Valverde, M. A., Ristic, Bojan, Patel, Manish R., Holmes, J. A., Bellucci, Giancarlo, López-Moreno, José Juan, Belgian Science Policy Office, European Space Agency, European Commission, UK Space Agency, Agenzia Spaziale Italiana, Ministerio de Ciencia e Innovación (España), Ministerio de Economía y Competitividad (España), Villanueva, Geronimo L., Liuzzi, Giuliano, Crismani, M. M. J., Aoki, Shohei, Vandaele, Ann Carine, Daerden, Frank, Smith, M.D., Mumma, M.J., Knutsen, E. W., Neary, L., Viscardy, S., Thomas, Ian R., López-Valverde, M. A., Ristic, Bojan, Patel, Manish R., Holmes, J. A., Bellucci, Giancarlo, and López-Moreno, José Juan
- Abstract
Isotopic ratios and, in particular, the water D/H ratio are powerful tracers of the evolution and transport of water on Mars. From measurements performed with ExoMars/NOMAD, we observe marked and rapid variability of the D/H along altitude on Mars and across the whole planet. The observations (from April 2018 to April 2019) sample a broad range of events on Mars, including a global dust storm, the evolution of water released from the southern polar cap during southern summer, the equinox phases, and a short but intense regional dust storm. In three instances, we observe water at very high altitudes (>80 km), the prime region where water is photodissociated and starts its escape to space. Rayleigh distillation appears the be the driving force affecting the D/H in many cases, yet in some instances, the exchange of water reservoirs with distinctive D/H could be responsible. © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science.
- Published
- 2021
26. A Global and Seasonal Perspective of Martian Water Vapor From ExoMars/NOMAD
- Author
-
National Aeronautics and Space Administration (US), Belgian Science Policy Office, European Space Agency, European Commission, Ministerio de Economía y Competitividad (España), Ministerio de Ciencia e Innovación (España), UK Space Agency, Agenzia Spaziale Italiana, National Fund for Scientific Research (Belgium), Crismani, M. M. J., Villanueva, Geronimo L., Liuzzi, Giuliano, Smith, M. D., Knutsen, E. W., Daerden, Frank, Neary, L., Mumma, M.J., Aoki, Shohei, Trompet, L., Thomas, Ian R., Ristic, Bojan, Bellucci, Giancarlo, Piccialli, A., Robert, S., Mahieux, A., López-Moreno, José Juan, Sindoni, G., Giuranna, M., Patel, Manish R., Vandaele, Ann Carine, National Aeronautics and Space Administration (US), Belgian Science Policy Office, European Space Agency, European Commission, Ministerio de Economía y Competitividad (España), Ministerio de Ciencia e Innovación (España), UK Space Agency, Agenzia Spaziale Italiana, National Fund for Scientific Research (Belgium), Crismani, M. M. J., Villanueva, Geronimo L., Liuzzi, Giuliano, Smith, M. D., Knutsen, E. W., Daerden, Frank, Neary, L., Mumma, M.J., Aoki, Shohei, Trompet, L., Thomas, Ian R., Ristic, Bojan, Bellucci, Giancarlo, Piccialli, A., Robert, S., Mahieux, A., López-Moreno, José Juan, Sindoni, G., Giuranna, M., Patel, Manish R., and Vandaele, Ann Carine
- Abstract
Slightly less than a Martian Year of nominal science (March 2018–January 2020) with the ExoMars Trace Gas Orbiter has furthered the ongoing investigation of dayside water vapor column abundance. These dayside observations span latitudes between 75°S and 75°N, and all longitudes, which can provide global snapshots of the total water column abundances. In addition to tracking the seasonal transport of water vapor between poles, geographic enhancements are noted, particularly in the southern hemisphere, both in Hellas Basin, and in other regions not obviously correlated to topography. We report consistent water vapor climatology with previous spacecraft observations, however, note a difference in total water vapor content is noted. Finally, we are unable to find evidence for substantial diurnal variation in the total dayside water vapor column. © 2021. American Geophysical Union. All Rights Reserved.
- Published
- 2021
27. Annual Appearance of Hydrogen Chloride on Mars and a Striking Similarity With the Water Vapor Vertical Distribution Observed by TGO/NOMAD
- Author
-
Ministerio de Ciencia, Innovación y Universidades (España), Ministerio de Economía y Competitividad (España), European Commission, European Space Agency, Agenzia Spaziale Italiana, Fonds de la Recherche Scientifique (Fédération Wallonie-Bruxelles), Belgian Science Policy Office, National Aeronautics and Space Administration (US), UK Space Agency, Aoki, Shohei, Daerden, Frank, Viscardy, S., Thomas, Ian R., Erwin, Justin T., Robert, S., Trompet, L., Neary, L., Villanueva, Geronimo L., Liuzzi, Giuliano, Crismani, M. M. J., Clancy, R. Todd, Whiteway, J., Schmidt, F., López-Valverde, M. A., Ristic, Bojan, Patel, Manish R., Bellucci, Giancarlo, López-Moreno, José Juan, Olsen, K. S., Lefèvre, F., Montmessin, Franck, Trokhimovskiy, A., Fedorova, A. A., Korablev, O., Vandaele, Ann Carine, Ministerio de Ciencia, Innovación y Universidades (España), Ministerio de Economía y Competitividad (España), European Commission, European Space Agency, Agenzia Spaziale Italiana, Fonds de la Recherche Scientifique (Fédération Wallonie-Bruxelles), Belgian Science Policy Office, National Aeronautics and Space Administration (US), UK Space Agency, Aoki, Shohei, Daerden, Frank, Viscardy, S., Thomas, Ian R., Erwin, Justin T., Robert, S., Trompet, L., Neary, L., Villanueva, Geronimo L., Liuzzi, Giuliano, Crismani, M. M. J., Clancy, R. Todd, Whiteway, J., Schmidt, F., López-Valverde, M. A., Ristic, Bojan, Patel, Manish R., Bellucci, Giancarlo, López-Moreno, José Juan, Olsen, K. S., Lefèvre, F., Montmessin, Franck, Trokhimovskiy, A., Fedorova, A. A., Korablev, O., and Vandaele, Ann Carine
- Abstract
Hydrogen chloride (HCl) was recently discovered in the atmosphere of Mars by two spectrometers onboard the ExoMars Trace Gas Orbiter. The reported detection made in Martian Year 34 was transient, present several months after the global dust storm during the southern summer season. Here, we present the full data set of vertically resolved HCl detections obtained by the NOMAD instrument, which covers also Martian year 35. We show that the particular increase of HCl abundances in the southern summer season is annually repeated, and that the formation of HCl is independent from a global dust storm event. We also find that the vertical distribution of HCl is strikingly similar to that of water vapor, which suggests that the uptake by water ice clouds plays an important role. The observed rapid decrease of HCl abundances at the end of the southern summer would require a strong sink independent of photochemical loss. © 2021. American Geophysical Union.
- Published
- 2021
28. Machine learning for automatic identification of new minor species
- Author
-
Institut national des sciences de l'Univers (France), Centre National de la Recherche Scientifique (France), Centre National D'Etudes Spatiales (France), Belgian Science Policy Office, European Space Agency, Ministerio de Ciencia, Innovación y Universidades (España), European Commission, UK Space Agency, Agenzia Spaziale Italiana, National Aeronautics and Space Administration (US), Canadian Space Agency, Schmidt, F., Mermy, G. C., Erwin, Justin T., Robert, S., Neary, L., Thomas, Ian R., Daerden, Frank, Ristic, Bojan, Patel, Manish R., Bellucci, Giancarlo, López-Moreno, José Juan, Vandaele, Ann Carine, Institut national des sciences de l'Univers (France), Centre National de la Recherche Scientifique (France), Centre National D'Etudes Spatiales (France), Belgian Science Policy Office, European Space Agency, Ministerio de Ciencia, Innovación y Universidades (España), European Commission, UK Space Agency, Agenzia Spaziale Italiana, National Aeronautics and Space Administration (US), Canadian Space Agency, Schmidt, F., Mermy, G. C., Erwin, Justin T., Robert, S., Neary, L., Thomas, Ian R., Daerden, Frank, Ristic, Bojan, Patel, Manish R., Bellucci, Giancarlo, López-Moreno, José Juan, and Vandaele, Ann Carine
- Abstract
One of the main difficulties to analyze modern spectroscopic datasets is due to the large amount of data. For example, in atmospheric transmittance spectroscopy, the solar occultation channel (SO) of the NOMAD instrument onboard the ESA ExoMars2016 satellite called Trace Gas Orbiter (TGO) had produced ~ 10 millions of spectra in ~ 20000 acquisition sequences since the beginning of the mission in April 2018 until 15 January 2020. Other datasets are even larger with ~ billions of spectra for OMEGA onboard Mars Express or CRISM onboard Mars Reconnaissance Orbiter. Usually, new lines are discovered after a long iterative process of model fitting and manual residual analysis. Here we propose a new method based on unsupervised machine learning, to automatically detect new minor species. Although precise quantification is out of scope, this tool can also be used to quickly summarize the dataset, by giving few endmembers (”source”) and their abundances. The methodology is the following: we proposed a way to approximate the dataset non-linearity by a linear mixture of abundance and source spectra (endmembers). We used unsupervised source separation in form of non-negative matrix factorization to estimate those quantities. Several methods are tested on synthetic and simulation data. Our approach is dedicated to detect minor species spectra rather than precisely quantifying them. On synthetic example, this approach is able to detect chemical compounds present in form of 100 hidden spectra out of 104, at 1.5 times the noise level. Results on simulated spectra of NOMAD-SO targeting CH4 show that detection limits goes in the range of 100–500 ppt in favorable conditions. Results on real martian data from NOMAD-SO show that CO2 and H2O are present, as expected, but CH4 is absent. Nevertheless, we confirm a set of new unexpected lines in the database, attributed by ACS instrument Team to the CO2 magnetic dipole. © 2020 Elsevier Ltd. All rights reserved.
- Published
- 2020
29. Radiation Environment and Doses on Mars at Oxia Planum and Mawrth Vallis: Support for Exploration at Sites With High Biosignature Preservation Potential
- Author
-
Da Pieve, F., primary, Gronoff, G., additional, Guo, J., additional, Mertens, C. J., additional, Neary, L., additional, Gu, B., additional, Koval, N. E., additional, Kohanoff, J., additional, Vandaele, A. C., additional, and Cleri, F., additional
- Published
- 2021
- Full Text
- View/download PDF
30. Explanation for the Increase in High‐Altitude Water on Mars Observed by NOMAD During the 2018 Global Dust Storm
- Author
-
Neary, L., primary, Daerden, F., additional, Aoki, S., additional, Whiteway, J., additional, Clancy, R. T., additional, Smith, M., additional, Viscardy, S., additional, Erwin, J.T., additional, Thomas, I. R., additional, Villanueva, G., additional, Liuzzi, G., additional, Crismani, M., additional, Wolff, M., additional, Lewis, S. R., additional, Holmes, J. A., additional, Patel, M. R., additional, Giuranna, M., additional, Depiesse, C., additional, Piccialli, A., additional, Robert, S., additional, Trompet, L., additional, Willame, Y., additional, Ristic, B., additional, and Vandaele, A. C., additional
- Published
- 2020
- Full Text
- View/download PDF
31. Water Vapor Vertical Profiles on Mars in Dust Storms Observed by TGO/NOMAD
- Author
-
Aoki, Shohei, Vandaele, Ann Carine, Daerden, Frank, Villanueva, Geronimo L., Liuzzi, Giuliano, Thomas, Ian R., Erwin, Justin T., Trompet, L., Robert, S., Neary, L., Viscardy, S., Ristic, Bojan, Patel, Manish R., Bellucci, Giancarlo, Bauduin, S., López-Moreno, José Juan, Alonso-Rodrigo, G., Fussen, D., Bolsée, D., Carrozzo, G., Clancy, R. Todd, Cloutis, E., Crismani, M., Da Pieve, F., D'Aversa, E., Kaminski, J., Depiesse, C., Garcia-Comas, M., Etiope, G., Fedorova, A.A., Funke, Bernd, Geminale, A., Gérard, Jean-Claude, Giuranna, M., Karatekin, O., Gkouvelis, L., González-Galindo, F., Holmes, J., Hubert, B., Mumma, M.J., Ignatiev, N.I., Kasaba, Y., Kass, D., Kleinböhl, A., Lanciano, O., Lefèvre, F., Lewis, S., López-Puertas, M., Schneider, Nicholas, Nakagawa, H., Hidalgo López, Ana, Mahieux, A., Mason, J., Mege, D., Neefs, E., Novak, R.E., Oliva, F., Sindoni, G., Piccialli, A., Renotte, E., Ritter, B., Willame, Y., Schmidt, F., Smith, M.D., Teanby, N.A., Thiemann, E., Trokhimovskiy, A., Auwera, J.V., Wolff, M.J., Clairquin, R., Whiteway, J., Wilquet, V., Wolkenberg, P., Yelle, R., del Moral Beatriz, A., Barzin, P., Beeckman, B., Cubas, J., BenMoussa, A., Berkenbosch, S., Orban, A., Biondi, D., Bonnewijn, S., Candini, G.P., Giordanengo, B., Gissot, S., Gomez, A., Hathi, B., Zafra, J.J., Leese, M., Maes, J., Pastor-Morales, M., Mazy, E., Mazzoli, A., Meseguer, J., Morales, R., Perez-grande, I., Queirolo, C., Ristic, R., Gomez, J.R., Saggin, B., Samain, V., Sanz Andres, A., Altieri, F., Sanz, R., Simar, J.-F., Thibert, T., the NOMAD team, López-Valverde, M. A., Hill, Brittany, Belgian Science Policy Office, European Space Agency, Ministerio de Ciencia e Innovación (España), European Commission, UK Space Agency, Agenzia Spaziale Italiana, Ministerio de Ciencia, Innovación y Universidades (España), Fonds de la Recherche Scientifique (Fédération Wallonie-Bruxelles), National Aeronautics and Space Administration (US), and Canadian Space Agency
- Subjects
010504 meteorology & atmospheric sciences ,Storm ,Atmosphere of Mars ,Mars Exploration Program ,Atmospheric sciences ,01 natural sciences ,Trace gas ,Atmosphere ,Geophysics ,Space and Planetary Science ,Geochemistry and Petrology ,Dust storm ,Earth and Planetary Sciences (miscellaneous) ,Environmental science ,Hadley cell ,Water vapor ,0105 earth and related environmental sciences - Abstract
It has been suggested that dust storms efficiently transport water vapor from the near-surface to the middle atmosphere on Mars. Knowledge of the water vapor vertical profile during dust storms is important to understand water escape. During Martian Year 34, two dust storms occurred on Mars: a global dust storm (June to mid-September 2018) and a regional storm (January 2019). Here we present water vapor vertical profiles in the periods of the two dust storms (Ls = 162–260° and Ls = 298–345°) from the solar occultation measurements by Nadir and Occultation for Mars Discovery (NOMAD) onboard ExoMars Trace Gas Orbiter (TGO). We show a significant increase of water vapor abundance in the middle atmosphere (40–100 km) during the global dust storm. The water enhancement rapidly occurs following the onset of the storm (Ls~190°) and has a peak at the most active period (Ls~200°). Water vapor reaches very high altitudes (up to 100 km) with a volume mixing ratio of ~50 ppm. The water vapor abundance in the middle atmosphere shows high values consistently at 60°S-60°N at the growth phase of the dust storm (Ls = 195°–220°), and peaks at latitudes greater than 60°S at the decay phase (Ls = 220°–260°). This is explained by the seasonal change of meridional circulation: from equinoctial Hadley circulation (two cells) to the solstitial one (a single pole-to-pole cell). We also find a conspicuous increase of water vapor density in the middle atmosphere at the period of the regional dust storm (Ls = 322–327°), in particular at latitudes greater than 60°S. ©2019. American Geophysical Union. All Rights Reserved., S. A. is >Charge de Recherches> of the F.R.S.-FNRS. ExoMars is a space mission of the European Space Agency and Roscosmos. The NOMAD experiment is led by the Royal Belgian Institute for Space Aeronomy (IASBBIRA), assisted by Co-PI teams from Spain (IAA-CSIC), Italy (INAF-IAPS), and the United Kingdom (Open University). This project acknowledges funding by the Belgian Science Policy Office, with the financial and contractual coordination by the European Space Agency Prodex Office (PEA 4000103401 and 4000121493), by the Spanish MICINN through its Plan Nacional and by European funds under grants PGC2018-101836-B-I00 and ESP2017-87143-R (MINECO/FEDER), as well as by UK Space Agency through grants ST/R005761/1, ST/P001262/1, ST/R001405/1, and ST/S00145X/1 and Italian Space Agency through grant 2018-2-HH.0. The IAA/CSIC team acknowledges financial support from the State Agency for Research of the Spanish MCIU through the >Center of Excellence Severo Ochoa> award for the Instituto de Astrofisica de Andalucia (SEV-2017-0709). This work was supported by the Belgian Fonds de la Recherche Scientifique-FNRS under grant numbers 30442502 (ET_HOME) and T.0171.16 (CRAMIC) and Belgian Science Policy Office BrainBe SCOOP Project. U.S. investigators were supported by the National Aeronautics and Space Administration. Canadian investigators were supported by the Canadian Space Agency. The results retrieved from the NOMAD measurements used in this article are available on the BIRA-IASB data repository: http://repository.aeronomie.be/?doi= 10.18758/71021054 (Aoki et al., 2019).
- Published
- 2019
32. Hydrogen Cyanide in the Upper Troposphere: GEM-AQ Simulation and Comparison with ACE-FTS Observations
- Author
-
Lupu, A, Kaminski, J. W, Neary, L, McConnell, J. C, Toyota, K, Rinsland, C. P, Bernath, P. F, Walker, K. A, Boone, C. D, Nagahama, Y, and Suzuki, K
- Subjects
Meteorology And Climatology - Abstract
We investigate the spatial and temporal distribution of hydrogen cyanide (HCN) in the upper troposphere through numerical simulations and comparison with observations from a space-based instrument. To perform the simulations, we used the Global Environmental Multiscale Air Quality model (GEM-AQ), which is based on the threedimensional Gobal multiscale model developed by the Meteorological Service of Canada for operational weather forecasting. The model was run for the period 2004-2006 on a 1.5deg x 1.5deg global grid with 28 hybrid vertical levels from the surface up to 10 hPa. Objective analysis data from the Canadian Meteorological Centre were used to update the meteorological fields every 24 h. Fire emission fluxes of gas species were generated by using year-specific inventories of carbon emissions with 8-day temporal resolution from the Global Fire Emission Database (GFED) version 2. The model output is compared with HCN profiles measured by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) instrument onboard the Canadian SCISAT-1 satellite. High values of up to a few ppbv are observed in the tropics in the Southern Hemisphere; the enhancement in HCN volume mixing ratios in the upper troposphere is most prominent in October. Low upper-tropospheric mixing ratios of less than 100 pptv are mostly recorded at middle and high latitudes in the Southern Hemisphere in May-July. Mixing ratios in Northern Hemisphere peak in the boreal summer. The amplitude of the seasonal variation is less pronounced than in the Southern Hemisphere. The comparison with the satellite data shows that in the upper troposphere GEM-AQ perform7s well globally for all seasons, except at northern hi gh and middle latitudes in surnmer, where the model has a large negative bias, and in the tropics in winter and spring, where it exhibits large positive bias. This may reflect inaccurate emissions or possible inaccuracies in the emission profile. The model is able to explain most of the observed variability in the upper troposphere HCN field, includin g the interannual variations in the observed mixing ratio. A complementary comparison with daily total columns of HCN from two middle latitude ground-based stations in Northern Japan for the same simulation period shows that the model captures the observed seasonal variation and also points to an underestimation of model emissions in the Northern Hemisphere in the summer. The estimated average global emission equals 1.3 Tg N/yr. The average atmospheric burden is 0.53 Tg N, and the corresponding lifetime is 4.9 months.
- Published
- 2009
33. Water Vapor Vertical Profiles on Mars in Dust Storms Observed by TGO/NOMAD
- Author
-
Belgian Science Policy Office, European Space Agency, Ministerio de Ciencia e Innovación (España), European Commission, UK Space Agency, Agenzia Spaziale Italiana, Ministerio de Ciencia, Innovación y Universidades (España), Fonds de la Recherche Scientifique (Fédération Wallonie-Bruxelles), National Aeronautics and Space Administration (US), Canadian Space Agency, Aoki, Shohei, Vandaele, Ann Carine, Daerden, Frank, Villanueva, Geronimo L., Liuzzi, Giuliano, Thomas, Ian R., Erwin, Justin T., Trompet, L., Robert, S., Neary, L., Viscardy, S., Hathi, B., Zafra, J.J., Leese, M., Maes, J., Pastor-Morales, M., Mazy, E., Mazzoli, A., Meseguer, J., Morales, Rafael, Pérez Grande, Isabel, Ristic, Bojan, Queirolo, C., Ristic, R., Gomez, J.R., Saggin, B., Smith, M.D., Samain, V., Sanz Andres, A., Altieri, F., Sanz, R., Simar, J.-F., Patel, Manish R., Thibert, T., the NOMAD team, López-Valverde, M. A., Hill, Brittany, Bellucci, Giancarlo, Bauduin, S., López-Moreno, José Juan, Alonso-Rodrigo, G., Fussen, D., Bolsée, D., Carrozzo, G., Clancy, R. Todd, Cloutis, E., Crismani, M., Da Pieve, F., D'Aversa, E., Kaminski, J., Depiesse, C., Garcia-Comas, M., Etiope, G., Fedorova, A.A., Funke, Bernd, Geminale, A., Gérard, Jean-Claude, Giuranna, M., Karatekin, O., Gkouvelis, L., González-Galindo, F., Holmes, J., Hubert, B., Mumma, M.J., Ignatiev, N.I., Kasaba, Y., Kass, D., Kleinböhl, A., Lanciano, O., Lefèvre, F., Lewis, S., López-Puertas, M., Schneider, Nicholas, Nakagawa, H., Hidalgo López, Ana, Mahieux, A., Mason, J., Mege, D., Neefs, E., Novak, R.E., Oliva, F., Sindoni, G., Piccialli, A., Renotte, E., Ritter, B., Willame, Y., Schmidt, F., Teanby, N.A., Thiemann, E., Trokhimovskiy, A., Auwera, J.V., Wolff, M.J., Clairquin, R., Whiteway, J., Wilquet, V., Wolkenberg, P., Yelle, R., del Moral Beatriz, A., Barzin, P., Beeckman, B., Cubas, J., BenMoussa, A., Berkenbosch, S., Orban, A., Biondi, D., Bonnewijn, S., Candini, G.P., Giordanengo, B., Gissot, Samuel, Gomez, A., Belgian Science Policy Office, European Space Agency, Ministerio de Ciencia e Innovación (España), European Commission, UK Space Agency, Agenzia Spaziale Italiana, Ministerio de Ciencia, Innovación y Universidades (España), Fonds de la Recherche Scientifique (Fédération Wallonie-Bruxelles), National Aeronautics and Space Administration (US), Canadian Space Agency, Aoki, Shohei, Vandaele, Ann Carine, Daerden, Frank, Villanueva, Geronimo L., Liuzzi, Giuliano, Thomas, Ian R., Erwin, Justin T., Trompet, L., Robert, S., Neary, L., Viscardy, S., Hathi, B., Zafra, J.J., Leese, M., Maes, J., Pastor-Morales, M., Mazy, E., Mazzoli, A., Meseguer, J., Morales, Rafael, Pérez Grande, Isabel, Ristic, Bojan, Queirolo, C., Ristic, R., Gomez, J.R., Saggin, B., Smith, M.D., Samain, V., Sanz Andres, A., Altieri, F., Sanz, R., Simar, J.-F., Patel, Manish R., Thibert, T., the NOMAD team, López-Valverde, M. A., Hill, Brittany, Bellucci, Giancarlo, Bauduin, S., López-Moreno, José Juan, Alonso-Rodrigo, G., Fussen, D., Bolsée, D., Carrozzo, G., Clancy, R. Todd, Cloutis, E., Crismani, M., Da Pieve, F., D'Aversa, E., Kaminski, J., Depiesse, C., Garcia-Comas, M., Etiope, G., Fedorova, A.A., Funke, Bernd, Geminale, A., Gérard, Jean-Claude, Giuranna, M., Karatekin, O., Gkouvelis, L., González-Galindo, F., Holmes, J., Hubert, B., Mumma, M.J., Ignatiev, N.I., Kasaba, Y., Kass, D., Kleinböhl, A., Lanciano, O., Lefèvre, F., Lewis, S., López-Puertas, M., Schneider, Nicholas, Nakagawa, H., Hidalgo López, Ana, Mahieux, A., Mason, J., Mege, D., Neefs, E., Novak, R.E., Oliva, F., Sindoni, G., Piccialli, A., Renotte, E., Ritter, B., Willame, Y., Schmidt, F., Teanby, N.A., Thiemann, E., Trokhimovskiy, A., Auwera, J.V., Wolff, M.J., Clairquin, R., Whiteway, J., Wilquet, V., Wolkenberg, P., Yelle, R., del Moral Beatriz, A., Barzin, P., Beeckman, B., Cubas, J., BenMoussa, A., Berkenbosch, S., Orban, A., Biondi, D., Bonnewijn, S., Candini, G.P., Giordanengo, B., Gissot, Samuel, and Gomez, A.
- Abstract
It has been suggested that dust storms efficiently transport water vapor from the near-surface to the middle atmosphere on Mars. Knowledge of the water vapor vertical profile during dust storms is important to understand water escape. During Martian Year 34, two dust storms occurred on Mars: a global dust storm (June to mid-September 2018) and a regional storm (January 2019). Here we present water vapor vertical profiles in the periods of the two dust storms (Ls = 162–260° and Ls = 298–345°) from the solar occultation measurements by Nadir and Occultation for Mars Discovery (NOMAD) onboard ExoMars Trace Gas Orbiter (TGO). We show a significant increase of water vapor abundance in the middle atmosphere (40–100 km) during the global dust storm. The water enhancement rapidly occurs following the onset of the storm (Ls~190°) and has a peak at the most active period (Ls~200°). Water vapor reaches very high altitudes (up to 100 km) with a volume mixing ratio of ~50 ppm. The water vapor abundance in the middle atmosphere shows high values consistently at 60°S-60°N at the growth phase of the dust storm (Ls = 195°–220°), and peaks at latitudes greater than 60°S at the decay phase (Ls = 220°–260°). This is explained by the seasonal change of meridional circulation: from equinoctial Hadley circulation (two cells) to the solstitial one (a single pole-to-pole cell). We also find a conspicuous increase of water vapor density in the middle atmosphere at the period of the regional dust storm (Ls = 322–327°), in particular at latitudes greater than 60°S. ©2019. American Geophysical Union. All Rights Reserved.
- Published
- 2019
34. No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations
- Author
-
Belgian Science Policy Office, Ministerio de Ciencia e Innovación (España), European Commission, UK Space Agency, Centre National de la Recherche Scientifique (France), Fonds de la Recherche Scientifique (Fédération Wallonie-Bruxelles), Roscosmos, Russian Government, Agenzia Spaziale Italiana, European Space Agency, Korablev, O., Vandaele, Ann Carine, Montmessin, Franck, Fedorova, A. A., Trokhimovskiy, A., Forget, François, Lefèvre, F., Daerden, Frank, Thomas, Ian R., Trompet, L., Erwin, Justin T., Aoki, Shohei, Robert, S., Neary, L., Viscardy, S., Grigoriev, A.V., Ignatiev, N. I., Shakun, Alexey, Patrakeev, A., Belyaev, D.A., Bertaux, J.L., Olsen, K. S., Baggio, L., Alday, J., Ivanov, Y. S., Ristic, Bojan, Mason, J., Willame, Y., Depiesse, C., Hetey, L., Berkenbosch, S., Clairquin, R., Queirolo, C., Beeckman, B., Neefs, E., Patel, Manish R., Bellucci, Giancarlo, López-Moreno, José Juan, Wilson, C. F., Etiope, G., Zelenyi, Lev, Svedhem, H., Vago, J. L., Alonso-Rodrigo, G., Altieri, F., Anufreychik, K., Arnold, G., Bauduin, S., Bolsée, D., Funke, Bernd, García Comas, Maia, González-Galindo, F., López-Puertas, Manuel, López-Valverde, M. A., Martín-Torres, F. J., Vazquez, L., Zorzano, María Paz, Belgian Science Policy Office, Ministerio de Ciencia e Innovación (España), European Commission, UK Space Agency, Centre National de la Recherche Scientifique (France), Fonds de la Recherche Scientifique (Fédération Wallonie-Bruxelles), Roscosmos, Russian Government, Agenzia Spaziale Italiana, European Space Agency, Korablev, O., Vandaele, Ann Carine, Montmessin, Franck, Fedorova, A. A., Trokhimovskiy, A., Forget, François, Lefèvre, F., Daerden, Frank, Thomas, Ian R., Trompet, L., Erwin, Justin T., Aoki, Shohei, Robert, S., Neary, L., Viscardy, S., Grigoriev, A.V., Ignatiev, N. I., Shakun, Alexey, Patrakeev, A., Belyaev, D.A., Bertaux, J.L., Olsen, K. S., Baggio, L., Alday, J., Ivanov, Y. S., Ristic, Bojan, Mason, J., Willame, Y., Depiesse, C., Hetey, L., Berkenbosch, S., Clairquin, R., Queirolo, C., Beeckman, B., Neefs, E., Patel, Manish R., Bellucci, Giancarlo, López-Moreno, José Juan, Wilson, C. F., Etiope, G., Zelenyi, Lev, Svedhem, H., Vago, J. L., Alonso-Rodrigo, G., Altieri, F., Anufreychik, K., Arnold, G., Bauduin, S., Bolsée, D., Funke, Bernd, García Comas, Maia, González-Galindo, F., López-Puertas, Manuel, López-Valverde, M. A., Martín-Torres, F. J., Vazquez, L., and Zorzano, María Paz
- Abstract
The detection of methane on Mars has been interpreted as indicating that geochemical or biotic activities could persist on Mars today1. A number of different measurements of methane show evidence of transient, locally elevated methane concentrations and seasonal variations in background methane concentrations2–5. These measurements, however, are difficult to reconcile with our current understanding of the chemistry and physics of the Martian atmosphere6,7, which—given methane’s lifetime of several centuries—predicts an even, well mixed distribution of methane1,6,8. Here we report highly sensitive measurements of the atmosphere of Mars in an attempt to detect methane, using the ACS and NOMAD instruments onboard the ESA-Roscosmos ExoMars Trace Gas Orbiter from April to August 2018. We did not detect any methane over a range of latitudes in both hemispheres, obtaining an upper limit for methane of about 0.05 parts per billion by volume, which is 10 to 100 times lower than previously reported positive detections2,4. We suggest that reconciliation between the present findings and the background methane concentrations found in the Gale crater4 would require an unknown process that can rapidly remove or sequester methane from the lower atmosphere before it spreads globally. © 2019, The Author(s), under exclusive licence to Springer Nature Limited.
- Published
- 2019
35. Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter
- Author
-
Ministerio de Ciencia e Innovación (España), European Space Agency, Belgian Science Policy Office, European Commission, UK Space Agency, Agenzia Spaziale Italiana, Ministerio de Ciencia, Innovación y Universidades (España), Fonds de la Recherche Scientifique (Fédération Wallonie-Bruxelles), Roscosmos, Centre National de la Recherche Scientifique (France), Russian Government, Vandaele, Ann Carine, Korablev, O., Daerden, Frank, Aoki, Shohei, Thomas, Ian R., Altieri, F., López-Valverde, M. A., Villanueva, Geronimo L., Liuzzi, Giuliano, Smith, M. D., Erwin, Justin T., Trompet, L., Fedorova, A. A., Montmessin, Franck, Trokhimovskiy, A., Belyaev, D.A., Ignatiev, N. I., Luginin, M., Olsen, K. S., Baggio, L., Alday, J., Bertaux, J.L., Betsis, D., Bolsée, D., Clancy, R. Todd, Cloutis, E., Depiesse, C., Funke, Bernd, García Comas, Maia, Gérard, Jean-Claude, Giuranna, M., González-Galindo, F., Grigoriev, A.V., Ivanov, Y. S., Kaminski, J., Karatekin, O., Lefèvre, F., Lewis, S., López-Puertas, Manuel, Mahieux, A., Maslov, I., Mason, J., Mumma, M.J., Neary, L., Neefs, E., Patrakeev, A., Patsaev, D., Ristic, Bojan, Robert, S., López-Moreno, José Juan, Alonso-Rodrigo, G., Martín-Torres, F. J., Vazquez, L., Zorzano, María Paz, Ministerio de Ciencia e Innovación (España), European Space Agency, Belgian Science Policy Office, European Commission, UK Space Agency, Agenzia Spaziale Italiana, Ministerio de Ciencia, Innovación y Universidades (España), Fonds de la Recherche Scientifique (Fédération Wallonie-Bruxelles), Roscosmos, Centre National de la Recherche Scientifique (France), Russian Government, Vandaele, Ann Carine, Korablev, O., Daerden, Frank, Aoki, Shohei, Thomas, Ian R., Altieri, F., López-Valverde, M. A., Villanueva, Geronimo L., Liuzzi, Giuliano, Smith, M. D., Erwin, Justin T., Trompet, L., Fedorova, A. A., Montmessin, Franck, Trokhimovskiy, A., Belyaev, D.A., Ignatiev, N. I., Luginin, M., Olsen, K. S., Baggio, L., Alday, J., Bertaux, J.L., Betsis, D., Bolsée, D., Clancy, R. Todd, Cloutis, E., Depiesse, C., Funke, Bernd, García Comas, Maia, Gérard, Jean-Claude, Giuranna, M., González-Galindo, F., Grigoriev, A.V., Ivanov, Y. S., Kaminski, J., Karatekin, O., Lefèvre, F., Lewis, S., López-Puertas, Manuel, Mahieux, A., Maslov, I., Mason, J., Mumma, M.J., Neary, L., Neefs, E., Patrakeev, A., Patsaev, D., Ristic, Bojan, Robert, S., López-Moreno, José Juan, Alonso-Rodrigo, G., Martín-Torres, F. J., Vazquez, L., and Zorzano, María Paz
- Abstract
Global dust storms on Mars are rare1,2 but can affect the Martian atmosphere for several months. They can cause changes in atmospheric dynamics and inflation of the atmosphere3, primarily owing to solar heating of the dust3. In turn, changes in atmospheric dynamics can affect the distribution of atmospheric water vapour, with potential implications for the atmospheric photochemistry and climate on Mars4. Recent observations of the water vapour abundance in the Martian atmosphere during dust storm conditions revealed a high-altitude increase in atmospheric water vapour that was more pronounced at high northern latitudes5,6, as well as a decrease in the water column at low latitudes7,8. Here we present concurrent, high-resolution measurements of dust, water and semiheavy water (HDO) at the onset of a global dust storm, obtained by the NOMAD and ACS instruments onboard the ExoMars Trace Gas Orbiter. We report the vertical distribution of the HDO/H2O ratio (D/H) from the planetary boundary layer up to an altitude of 80 kilometres. Our findings suggest that before the onset of the dust storm, HDO abundances were reduced to levels below detectability at altitudes above 40 kilometres. This decrease in HDO coincided with the presence of water-ice clouds. During the storm, an increase in the abundance of H2O and HDO was observed at altitudes between 40 and 80 kilometres. We propose that these increased abundances may be the result of warmer temperatures during the dust storm causing stronger atmospheric circulation and preventing ice cloud formation, which may confine water vapour to lower altitudes through gravitational fall and subsequent sublimation of ice crystals3. The observed changes in H2O and HDO abundance occurred within a few days during the development of the dust storm, suggesting a fast impact of dust storms on the Martian atmosphere. © 2019, The Author(s), under exclusive licence to Springer Nature Limited.
- Published
- 2019
36. NOMAD, an integrated suite of three spectrometers for the ExoMars trace gas mission: Technical description, science objectivs and expected performance
- Author
-
Vandaele, Ann Carine, Lopez-Moreno, J.-J., Patel, M.R., Bellucci, G., Daerden, F., Ristic, B., Robert, Séverine, Thomas, I.R., Wilquet, Valérie, Allen, M., Alonso-Rodrigo, G., Altieri, F., Aoki, S, Bolsée, D., Clancy, T., Cloutis, E., Depiesse, Cédric, Drummond, Rachel, Fedorova, A., Formisano, V., Funke, Bernd, Gonzalez-Galindo, F., Geminale, A., Gérard, J.-C., Giuranna, M., Hetey, L., Ignatiev, N., Kaminski, J., Karatekin, Ozgur, Kasaba, Y., Leese, M., Lefèvre, F., Lewis, S. R., Lopez-Puertas, Manuel, Lopez-Valverde, M.A., Mahieux, Arnaud, Mason, James, McConnell, John, Mumma, M., Neary, L., Neefs, Eddy, Renotte, E., Gómez-Rodriguez, Julio, Sindoni, G., Smith, M., Stiepen, A., Trokhimovsky, A., Vander Auwera, Jean, Villanueva, G., Viscardy, Sébastien, Whiteway, J.A., Willame, Yannick, Wolff, M., and NOMAD, Team
- Subjects
Spectroscopie [électromagnétisme, optique, acoustique] ,Chimie ,Physique atomique et moléculaire - Abstract
info:eu-repo/semantics/published
- Published
- 2018
37. Bi-directional hydrological changes in perched basins of the Athabasca Delta (Canada) in recent decades caused by natural processes
- Author
-
Kay, M L, primary, Wiklund, J A, additional, Remmer, C R, additional, Neary, L K, additional, Brown, K, additional, Ghosh, A, additional, MacDonald, E, additional, Thomson, K, additional, Vucic, J M, additional, Wesenberg, K, additional, Hall, R I, additional, and Wolfe, B B, additional
- Published
- 2019
- Full Text
- View/download PDF
38. Ground-based infrared mapping of H2O2 on Mars near opposition
- Author
-
Encrenaz, T., primary, Greathouse, T. K., additional, Aoki, S., additional, Daerden, F., additional, Giuranna, M., additional, Forget, F., additional, Lefèvre, F., additional, Montmessin, F., additional, Fouchet, T., additional, Bézard, B., additional, Atreya, S. K., additional, DeWitt, C., additional, Richter, M. J., additional, Neary, L., additional, and Viscardy, S., additional
- Published
- 2019
- Full Text
- View/download PDF
39. NOMAD, an Integrated Suite of Three Spectrometers for the ExoMars Trace Gas Mission: Technical Description, Science Objectives and Expected Performance
- Author
-
Belgian Science Policy Office, European Space Agency, Ministerio de Ciencia e Innovación (España), European Commission, UK Space Agency, Agenzia Spaziale Italiana, Fonds de la Recherche Scientifique (Fédération Wallonie-Bruxelles), Vandaele, Ann Carine, López-Moreno, José Juan, Patel, Manish R., Bellucci, Giancarlo, Daerden, Frank, Ristic, Bojan, Robert, S., Thomas, Ian R., Wilquet, V., Allen, M., Alonso-Rodrigo, G., Altieri, F., Aoki, Shohei, Bolsée, D., Clancy, T., Cloutis, E., Depiesse, C., Drummond, R., Fedorova, A., Formisano, V., Funke, Bernd, González-Galindo, F., Geminale, A., Gérard, Jean-Claude, Giuranna, M., Hetey, L., Ignatiev, N., Kaminski, J., Karatekin, O., Kasaba, Y., Leese, M., Lefèvre, F., Lewis, S. R., López-Puertas, Manuel, López-Valverde, M. A., Mahieux, A., Mason, J., McConnell, J., Mumma, M., Neary, L., Neefs, E., Renotte, E., Rodriguez-Gomez, J., Sindoni, G., Smith, M., Stiepen, A., Trokhimovsky, A., Vander Auwera, J., Villanueva, Geronimo L., Viscardy, S., Whiteway, J., Willame, Y., Wolff, Michael T., Patel, M., D’aversa, E., Fussen, D., García Comas, Maia, Hewson, W., McConnel, J., Novak, R., Oliva, F., Piccialli, A., Aparicio del Moral, Beatriz, Barzin, P., BenMoussa, A., Berkenbosch, S., Biondi, D., Bonnewijn, S., Candini, G. P., Clairquin, R., Cubas, J., De-Lanoye, S., Giordanengo, B., Gissot, Samuel, Gomez, A., Maes, J., Mazy, E., Mazzoli, A., Meseguer, J., Morales, Rafael, Orban, A., Pastor, Carmen, Pérez Grande, Isabel, Queirolo, C., Saggin, B., Samain, V., Sanz Andres, A., Sanz Mesa, Rosario, Simar, J.-F., Thibert, T., Jerónimo, José María, The NOMAD Team, Belgian Science Policy Office, European Space Agency, Ministerio de Ciencia e Innovación (España), European Commission, UK Space Agency, Agenzia Spaziale Italiana, Fonds de la Recherche Scientifique (Fédération Wallonie-Bruxelles), Vandaele, Ann Carine, López-Moreno, José Juan, Patel, Manish R., Bellucci, Giancarlo, Daerden, Frank, Ristic, Bojan, Robert, S., Thomas, Ian R., Wilquet, V., Allen, M., Alonso-Rodrigo, G., Altieri, F., Aoki, Shohei, Bolsée, D., Clancy, T., Cloutis, E., Depiesse, C., Drummond, R., Fedorova, A., Formisano, V., Funke, Bernd, González-Galindo, F., Geminale, A., Gérard, Jean-Claude, Giuranna, M., Hetey, L., Ignatiev, N., Kaminski, J., Karatekin, O., Kasaba, Y., Leese, M., Lefèvre, F., Lewis, S. R., López-Puertas, Manuel, López-Valverde, M. A., Mahieux, A., Mason, J., McConnell, J., Mumma, M., Neary, L., Neefs, E., Renotte, E., Rodriguez-Gomez, J., Sindoni, G., Smith, M., Stiepen, A., Trokhimovsky, A., Vander Auwera, J., Villanueva, Geronimo L., Viscardy, S., Whiteway, J., Willame, Y., Wolff, Michael T., Patel, M., D’aversa, E., Fussen, D., García Comas, Maia, Hewson, W., McConnel, J., Novak, R., Oliva, F., Piccialli, A., Aparicio del Moral, Beatriz, Barzin, P., BenMoussa, A., Berkenbosch, S., Biondi, D., Bonnewijn, S., Candini, G. P., Clairquin, R., Cubas, J., De-Lanoye, S., Giordanengo, B., Gissot, Samuel, Gomez, A., Maes, J., Mazy, E., Mazzoli, A., Meseguer, J., Morales, Rafael, Orban, A., Pastor, Carmen, Pérez Grande, Isabel, Queirolo, C., Saggin, B., Samain, V., Sanz Andres, A., Sanz Mesa, Rosario, Simar, J.-F., Thibert, T., Jerónimo, José María, and The NOMAD Team
- Abstract
The NOMAD (“Nadir and Occultation for MArs Discovery”) spectrometer suite on board the ExoMars Trace Gas Orbiter (TGO) has been designed to investigate the composition of Mars’ atmosphere, with a particular focus on trace gases, clouds and dust. The detection sensitivity for trace gases is considerably improved compared to previous Mars missions, compliant with the science objectives of the TGO mission. This will allow for a major leap in our knowledge and understanding of the Martian atmospheric composition and the related physical and chemical processes. The instrument is a combination of three spectrometers, covering a spectral range from the UV to the mid-IR, and can perform solar occultation, nadir and limb observations. In this paper, we present the science objectives of the instrument and explain the technical principles of the three spectrometers. We also discuss the expected performance of the instrument in terms of spatial and temporal coverage and detection sensitivity.© 2018, The Author(s).
- Published
- 2018
40. Preliminary retrievals of CO2 column densities using the first data of TGO/NOMAD
- Author
-
European Planetary Science Congress 2018 (Berlin), Piccialli, A., Vandaele, Ann Carine, Thomas, Ian, Robert, Séverine, Aoki, Shohei, Trompet, L., Erwin, Justin T., Daerden, Frank, Neary, L., Viscardy, Sébastien, Ristic, Bojan, Karatekin, Ozgur, Smith, Michael D., Sindoni, G., Oliva, Fabrizio, Bauduin, Sophie, Wolkenberg, Paulina, Lopez-Moreno, J.-J., Bellucci, G., Patel, M.R., NOMAD, Team, European Planetary Science Congress 2018 (Berlin), Piccialli, A., Vandaele, Ann Carine, Thomas, Ian, Robert, Séverine, Aoki, Shohei, Trompet, L., Erwin, Justin T., Daerden, Frank, Neary, L., Viscardy, Sébastien, Ristic, Bojan, Karatekin, Ozgur, Smith, Michael D., Sindoni, G., Oliva, Fabrizio, Bauduin, Sophie, Wolkenberg, Paulina, Lopez-Moreno, J.-J., Bellucci, G., Patel, M.R., and NOMAD, Team
- Abstract
info:eu-repo/semantics/nonPublished
- Published
- 2018
41. Assessment of emissions data for the Toronto region using aircraft-based measurements and an air quality model
- Author
-
Plummer, D.A., McConnell, J.C., Neary, L., Kominski, J., Benoit, R., Drummond, J., Narayan, J., Young, V., and Hastie, D.R.
- Published
- 2001
- Full Text
- View/download PDF
42. Expected performances of the NOMAD/ExoMars instrument
- Author
-
Robert, S, Vandaele, A. C., Thomas, I., Willame, Y., Daerden, F., Delanoye, S., Depiesse, C., Drummond, R., Neefs, E., Neary, L., Ristic, B., Mason, J., Lopez Moreno, J. J., Rodriguez Gomez, J., Patel, M. R., Bellucci, G., Patel, M., Allen, M., Altieri, F., Aoki, S., Bolsée, D., Clancy, T., Cloutis, E., Fedorova, A., Formisano, V., Funke, B., Fussen, D., Garcia Comas, M., Geminale, A., Gérard, J. C., Gillotay, D., Giuranna, M., Gonzalez Galindo, F., Ignatiev, N., Kaminski, J., Karatekin, O., Kasaba, Y., Lefèvre, F., Lewis, S., López Puertas, M., López Valverde, M., Mahieux, A., Mcconnell, J., Mumma, M., Novak, R., Renotte, E., Robert, S., Sindoni, G., Smith, M., Thomas, I. R., Trokhimovskiy, A., Vander Auwera, J., Villanueva, G., Viscardy, S., Whiteway, J., Wilquet, V., Wolff, M., Alonso Rodrigo, G., Aparicio Del Moral, B., Barzin, P., Ben Moussa, A., Berkenbosch, S., Biondi, D., Bonnewijn, S., Candini, G., Clairquin, R., Cubas, J., Giordanengo, B., Gissot, S., Gomez, A., Zafra, J. J., Leese, M., Maes, J., Mazy, E., Mazzoli, A., Meseguer, J., Morales, R., Orban, A., Pastor Morales, M., Perez Grande, I., Saggin, Bortolino, Samain, V., Sanz Andres, A., Sanz, R., Simar, J. F., Thibert, T., UK Space Agency, Belgian Science Policy Office, European Commission, and European Space Agency
- Subjects
ExoMars ESA mission ,010504 meteorology & atmospheric sciences ,Mars ,NOMAD instrument ,01 natural sciences ,Occultation ,law.invention ,Orbiter ,law ,0103 physical sciences ,Nadir ,Radiative transfer ,Abundances ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Remote sensing ,atmosphere [Mars] ,Spectrometer ,Mars, atmosphere ,Astronomy and Astrophysics ,Space and Planetary Science ,Astronomy ,Mars Exploration Program ,Atmosphere of Mars ,Trace gas ,13. Climate action ,atmosphere ,Mars: atmosphere ,Environmental science - Abstract
NOMAD (Nadir and Occultation for MArs Discovery) is one of the four instruments on board the ExoMars Trace Gas Orbiter, scheduled for launch in March 2016. It consists of a suite of three high-resolution spectrometers - SO (Solar Occultation), LNO (Limb, Nadir and Occultation) and UVIS (Ultraviolet and Visible Spectrometer). Based upon the characteristics of the channels and the values of Signal-to-Noise Ratio obtained from radiometric models discussed in (Vandaele et al., 2015a, 2015b; Thomas et al., 2016), the expected performances of the instrument in terms of sensitivity to detection have been investigated. The analysis led to the determination of detection limits for 18 molecules, namely CO, HO, HDO, CH, CH, CH, HCO, CH, SO, HS, HCl, HCN, HO, NH, NO, NO, OCS, O. NOMAD should have the ability to measure methane concentrations, NOMAD has been made possible thanks to funding by the Belgian Science Policy Office (BELSPO) and financial and contractual coordination by the ESA Prodex Office (PlanetADAM no 4000107727). The research was performed as part of the >Inter-university Attraction Poles> programme financed by the Belgian Government (Planet TOPERS no P7-15) and a BRAIN Research Grant BR/143/A2/SCOOP. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement no. 607177 CrossDrive. UK funding is acknowledged under the UK Space Agency Grant ST/I003061/1.
- Published
- 2016
43. Optical and radiometric models of the NOMAD instrument part II: The infrared channels - SO and LNO
- Author
-
Thomas, I. R., Vandaele, A. C., Robert, S., Neefs, E., Drummond, R., Daerden, F., Delanoye, S., Ristic, B., Berkenbosch, S., Clairquin, R., Maes, J., Bonnewijn, S., Depiesse, C., Mahieux, A., Trompet, L., Neary, L., Willame, Y., Wilquet, V., Nevejans, D., Aballea, L., Moelans, W., De Vos, L., Lesschaeve, S., Van Vooren, N., Lopez Moreno, J. J., Patel, M. R., Bellucci, G., Vandaele, Ann Carine, Moreno, Lopez, Juan, Jose, Bellucci, Giancarlo, Patel, Manish, Allen, Mark, Altieri, Francesca, Aoki, Shohei, Bolsée, David, Clancy, Todd, Cloutis, Edward, Daerden, Frank, Depiesse, Cédric, Fedorova, Anna, Formisano, Vittorio, Funke, Bernd, Fussen, Didier, Garcia Comas, Maya, Geminale, Anna, Gérard, Jean Claude, Gillotay, Didier, Giuranna, Marco, Gonzalez Galindo, Francisco, Ignatiev, Nicolai, Kaminski, Jacek, Karatekin, Ozgur, Kasaba, Yasumasa, Lefèvre, Franck, Lewis, Stephen, López Puertas, Manuel, López Valverde, Miguel, Mahieux, Arnaud, Mason, Jon, Mcconnell, Jack, Mumma, Mike, Neary, Lori, Neefs, Eddy, Novak, Robert, Renotte, Etienne, Robert, Séverine, Sindoni, Giuseppe, Smith, Mike, Thomas, Ian R., Trokhimovsky, Sacha, Vander Auwera, Jean, Villanueva, Geronimo, Whiteway, Jim, Willame, Yannick, Wilquet, Valerie, Wolff, Mike, Alonso Rodrigo, Gustavo, Aparicio Del Moral, Beatriz, Barzin, Pascal, Benmoussa, Ali, Berkenbosch, Sophie, Biondi, David, Bonnewijn, Sabrina, Candini, Gian Paolo, Clairquin, Roland, Cubas, Javier, Delanoye, Sofie, Giordanengo, Boris, Gissot, Samuel, Gomez, Alejandro, Zafra, Jose Jeronimo, Leese, Mark, Maes, Jeroen, Mazy, Emmanuel, Mazzoli, Alexandra, Meseguer, Jose, Morales, Rafael, Orban, Anne, Del Carmen Pastor Morales, Maria, Perez Grande, Isabel, Ristic, Bojan, Rodriguez Gomez, Julio, Saggin, Bortolino, Samain, Valérie, Sanz Andres, Angel, Sanz, Rosario, Simar, Juan Felipe, Thibert, Tanguy, Belgian Science Policy Office, European Space Agency, and UK Space Agency
- Subjects
Physics ,Martian ,010504 meteorology & atmospheric sciences ,Spectrometer ,Atmospheric composition ,Spectrometers and spectroscopic instrumentation ,01 natural sciences ,Occultation ,Atomic and Molecular Physics, and Optics ,Trace gas ,law.invention ,Remote sensing and sensors ,Orbiter ,Space instrumentation ,Atmosphere of Earth ,law ,Atomic and Molecular Physics ,Martian surface ,0103 physical sciences ,Nadir ,Radiative transfer ,and Optics ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Remote sensing - Abstract
NOMAD is a suite of three spectrometers that will be launched in 2016 as part of the joint ESA-Roscosmos ExoMars Trace Gas Orbiter mission. The instrument contains three channels that cover the IR and UV spectral ranges and can perform solar occultation, nadir and limb observations, to detect and map a wide variety of Martian atmospheric gases and trace species. Part I of this work described the models of the UVIS channel; in this second part, we present the optical models representing the two IR channels, SO (Solar Occultation) and LNO (Limb, Nadir and Occultation), and use them to determine signal to noise ratios (SNRs) for many expected observational cases. In solar occultation mode, both the SO and LNO channel exhibit very high SNRs >5000. SNRs of around 100 were found for the LNO channel in nadir mode, depending on the atmospheric conditions, Martian surface properties, and observation geometry., NOMAD has been made possible thanks to funding by the Belgian Science Policy Office (BELSPO) and financial and contractual coordination by the ESA Prodex Office. The research was performed as part of the “Interuniversity Attraction Poles” programme financed by the Belgian government (Planet TOPERS). UK funding is acknowledged under the UK Space Agency grant ST/I003061/1.
- Published
- 2016
44. Hydrogen cyanide in the upper troposphere: GEM-AQ simulation and comparison with ACE-FTS observations
- Author
-
Lupu, A., Kaminski, J. W., Neary, L., Mcconnell, J. C., Kenjiro Toyota, Rinsland, C. P., Bernath, P. F., Walker, K. A., Boone, C. D., Nagahama, Y., and Suzuki, K.
- Subjects
lcsh:Chemistry ,lcsh:QD1-999 ,lcsh:Physics ,lcsh:QC1-999 - Abstract
We investigate the spatial and temporal distribution of hydrogen cyanide (HCN) in the upper troposphere through numerical simulations and comparison with observations from a space-based instrument. To perform the simulations, we used the Global Environmental Multiscale Air Quality model (GEM-AQ), which is based on the three-dimensional global multiscale model developed by the Meteorological Service of Canada for operational weather forecasting. The model was run for the period 2004–2006 on a 1.5°×1.5° global grid with 28 hybrid vertical levels from the surface up to 10 hPa. Objective analysis data from the Canadian Meteorological Centre were used to update the meteorological fields every 24 h. Fire emission fluxes of gas species were generated by using year-specific inventories of carbon emissions with 8-day temporal resolution from the Global Fire Emission Database (GFED) version 2. The model output is compared with HCN profiles measured by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) instrument onboard the Canadian SCISAT-1 satellite. High values of up to a few ppbv are observed in the tropics in the Southern Hemisphere; the enhancement in HCN volume mixing ratios in the upper troposphere is most prominent in October. Low upper-tropospheric mixing ratios of less than 100 pptv are mostly recorded at middle and high latitudes in the Southern Hemisphere in May–July. Mixing ratios in Northern Hemisphere peak in the boreal summer. The amplitude of the seasonal variation is less pronounced than in the Southern Hemisphere. The comparison with the satellite data shows that in the upper troposphere GEM-AQ performs well globally for all seasons, except at northern high and middle latitudes in summer, where the model has a large negative bias, and in the tropics in winter and spring, where it exhibits large positive bias. This may reflect inaccurate emissions or possible inaccuracies in the emission profile. The model is able to explain most of the observed variability in the upper troposphere HCN field, including the interannual variations in the observed mixing ratio. A complementary comparison with daily total columns of HCN from two middle latitude ground-based stations in Northern Japan for the same simulation period shows that the model captures the observed seasonal variation and also points to an underestimation of model emissions in the Northern Hemisphere in the summer. The estimated average global emission equals 1.3 Tg N yr−1. The average atmospheric burden is 0.53 Tg N, and the corresponding lifetime is 4.9 months.
- Published
- 2009
45. Optical and radiometric models of the NOMAD instrument part I: the UVIS channel
- Author
-
Vandaele, Ann C., Willame, Yannick, Depiesse, Cédric, Thomas, Ian R., Robert, Séverine, Bolsée, David, Patel, Manish R., Mason, Jon P., Leese, Mark, Lesschaeve, Stefan, Antoine, Philippe, Daerden, Frank, Delanoye, Sofie, Drummond, Rachel, Neefs, Eddy, Ristic, Bojan, Lopez Moreno, José Juan, Bellucci, Giancarlo, Allen, M., Altieri, F., Aoki, S., Clancy, T., Cloutis, E., Fedorova, A., Formisano, V., Funke, B., Fussen, D., Garcia Comas, M., Geminale, A., Gérard, J. C., Gillotay, D., Giuranna, M., Gonzalez Galindo, F., Ignatiev, N., Kaminski, J., Karatekin, O., Kasaba, Y., Lefèvre, F., Lewis, S., López Puertas, M., López Valverde, M., Mahieux, A., Mumma, M., Neary, L., Novak, R., Renotte, E., Sindoni, G., Smith, M., Trokhimovskiy, A., Vander Auwera, J., Villanueva, G., Viscardy, S., Whiteway, J., Wilquet, V., Wolff, M., Alonso Rodrigo, G., Aparicio Del Moral, B., Barzin, P., Benmoussa, A., Berkenbosch, S., Biondi, D., Bonnewijn, S., Candini, G., Clairquin, R., Cubas, J., Giordanengo, B., Gissot, S., Gomez, A., Zafra, J. J., Maes, J., Mazy, E., Mazzoli, A., Meseguer, J., Morales, R., Orban, A., Pastor Morales, M., Perez Grande, I., Rodriguez Gomez, J., Saggin, Bortolino, Samain, V., Sanz Andres, A., Sanz, R., Simar, J. F., Thibert, T., European Space Agency, UK Space Agency, and Belgian Science Policy Office
- Subjects
Solar occultation ,Radiometric model ,Occultation ,Signal ,law.invention ,Orbiter ,Optics ,law ,Atomic and Molecular Physics ,Nadir ,Optical constants ,Science objectives ,Remote sensing ,Physics ,Martian ,business.industry ,Signal to noise ,Atmosphere of Mars ,IR spectral range ,Atomic and Molecular Physics, and Optics ,Trace gas ,Wavelength ,Optical models ,Atmospheric absorption ,and Optics ,business ,Martian atmospheres - Abstract
The NOMAD instrument has been designed to best fulfil the science objectives of the ExoMars Trace Gas Orbiter mission that will be launched in 2016. The instrument is a combination of three channels that cover the UV, visible and IR spectral ranges and can perform solar occultation, nadir and limb observations. In this series of two papers, we present the optical models representing the three channels of the instrument and use them to determine signal to noise levels for different observation modes and Martian conditions. In this first part, we focus on the UVIS channel, which will sound the Martian atmosphere using nadir and solar occultation viewing modes, covering the 200-650nm spectral range. High SNR levels (, NOMAD has been made possible thanks to funding by the Belgian Science Policy Office (BELSPO) and financial and contractual coordination by the ESA Prodex Office (contracts no 4000107727 and 4000103401). The research was performed as part of the >Interuniversity Attraction Poles> programme financed by the Belgian government (Planet TOPERS, contract PAI no P7/15). UK funding is acknowledged under the UK Space Agency grant ST/I003061/1.
- Published
- 2015
46. Science objectives and performances of NOMAD, a spectrometer suite for the ExoMars TGO mission
- Author
-
Vandaele, A. C, Neefs, E., Drummond, R., Thomas, I. R., Daerden, F., Lopez Moreno, J. J., Rodriguez, J., Patel, M. R., Bellucci, G., Allen, M., Altieri, F., Bolsée, D., Clancy, T., Delanoye, S., Depiesse, C., Cloutis, E., Fedorova, A., Formisano, V., Funke, B., Fussen, D., Geminale, A., Gérard, J. C., Giuranna, M., Ignatiev, N., Kaminski, J., Karatekin, O., Lefèvre, F., López Puertas, M., López Valverde, M., Mahieux, A., Mcconnell, J., Mumma, M., Neary, L., Renotte, E., Ristic, B., Robert, S., Smith, M., Trokhimovsky, S., Vanderauwera, J., Villanueva, G., Whiteway, J., Wilquet, V., Wolff, M., Vandaele, Ann Carine, Lopez Moreno, Jose Juan, Bellucci, Giancarlo, Patel, Manish, Allen, Mark, Altieri, Francesca, Aoki, Shohei, Bolsée, David, Clancy, Todd, Cloutis, Edward, Daerden, Frank, Depiesse, Cédric, Fedorova, Anna, Formisano, Vittorio, Funke, Bernd, Fussen, Didier, Garcia Comas, Maya, Geminale, Anna, Gérard, Jean Claude, Gillotay, Didier, Giuranna, Marco, Gonzalez Galindo, Francisco, Ignatiev, Nicolai, Kaminski, Jacek, Karatekin, Ozgur, Kasabe, Yasumasa, Lefèvre, Franck, Lewis, Stephen, López Puertas, Manuel, López Valverde, Miguel, Mahieux, Arnaud, Mason, Jon, Mumma, Mike, Neary, Lori, Neefs, Eddy, Renotte, Etienne, Robert, Séverine, Sindoni, Giuseppe, Smith, Mike, Thomas, Ian R., Trokhimovsky, Sacha, Vander Auwera, Jean, Villanueva, Geronimo, Whiteway, Jim, Willame, Yannick, Wilquet, Valerie, Wolff, Mike, Alonso Rodrigo, Gustavo, Aparicio Del Moral, Beatriz, Barzin, Pascal, Ben Moussa, Ali, Berkenbosch, Sophie, Biondi, David, Bonnewijn, Sabrina, Candini, Gian Paolo, Clairquin, Roland, Cubas, Javier, Delanoye, Sofie, Giordanengo, Boris, Gissot, Samuel, Gomez, Alejandro, Zafra, Jose Jeronimo, Leese, Mark, Maes, Jeroen, Mazy, Emmanuel, Mazzoli, Alexandra, Meseguer, Jose, Morales, Rafael, Orban, Anne, Pastor Morales, Maria Del Carmen, Perez Grande, Isabel, Ristic, Bojan, Rodriguez Gomez, Julio, Saggin, Bortolino, Samain, Valérie, Sanz Andres, Angel, Sanz, Rosario, Simar, Juan Felipe, Thibert, Tanguy, Belgian Institute for Space Aeronomy / Institut d'Aéronomie Spatiale de Belgique (BIRA-IASB), Instituto de Astrofísica de Andalucía (IAA), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), The Open University [Milton Keynes] (OU), Istituto di Astrofisica e Planetologia Spaziali - INAF (IAPS), Istituto Nazionale di Astrofisica (INAF), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Space Science Institute [Boulder] (SSI), Department of Geography [Winnipeg], University of Winnipeg, Space Research Institute of the Russian Academy of Sciences (IKI), Russian Academy of Sciences [Moscow] (RAS), Laboratoire de Physique Atmosphérique et Planétaire (LPAP), Université de Liège, York University [Toronto], Royal Observatory of Belgium [Brussels] (ROB), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), NASA Goddard Space Flight Center (GSFC), Centre Spatial de Liège (CSL), Spectroscopie de l'atmosphère, Service de Chimie Quantique et Photophysique, Université libre de Bruxelles (ULB), and Catholic University of America
- Subjects
[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Solar ,Occultation ,law.invention ,Orbiter ,Mars atmosphere ,law ,Nadir ,Aerosol ,Observations ,Spectroscopy ,Ultraviolet ,Remote sensing ,Spectrometer ,[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Suite ,Astronomy and Astrophysics ,Mars Exploration Program ,Atmosphere of Mars ,ExoMars ,Trace gas ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Space and Planetary Science ,Visible ,Composition ,Infrared ,Methane ,Occultation Nadir ,Environmental science - Abstract
International audience; The NOMAD spectrometer suite on the ExoMars Trace Gas Orbiter will map the composition and distribution of Mars' atmospheric trace species in unprecedented detail, fulfilling many of the scientific objectives of the joint ESA-Roscosmos ExoMars Trace Gas Orbiter mission. The instrument is a combination of three channels, covering a spectral range from the UV to the IR, and can perform solar occultation, nadir and limb observations. In this paper, we present the science objectives of the instrument and how these objectives have influenced the design of the channels. We also discuss the expected performance of the instrument in terms of coverage and detection sensitivity.
- Published
- 2015
47. Ground-based infrared mapping of H2O2 on Mars near opposition.
- Author
-
Encrenaz, T., Greathouse, T. K., Aoki, S., Daerden, F., Giuranna, M., Forget, F., Lefèvre, F., Montmessin, F., Fouchet, T., Bézard, B., Atreya, S. K., DeWitt, C., Richter, M. J., Neary, L., and Viscardy, S.
- Subjects
MARTIAN atmosphere ,MARS (Planet) ,DUST storms ,SPECTRAL imaging ,VAPOR density ,PLANETARY observations - Abstract
We pursued our ground-based seasonal monitoring of hydrogen peroxide on Mars using thermal imaging spectroscopy, with two observations of the planet near opposition, in May 2016 (solar longitude Ls = 148.5°, diameter = 17 arcsec) and July 2018 (Ls = 209°, diameter = 23 arcsec). Data were recorded in the 1232–1242 cm
−1 range (8.1 μm) with the Texas Echelon Cross Echelle Spectrograph (TEXES) mounted at the 3 m Infrared Telescope Facility (IRTF) at the Mauna Kea Observatories. As in the case of our previous analyses, maps of H2 O2 were obtained using line depth ratios of weak transitions of H2 O2 divided by a weak CO2 line. The H2 O2 map of April 2016 shows a strong dichotomy between the northern and southern hemispheres, with a mean volume mixing ratio of 45 ppbv on the north side and less than 10 ppbv on the south side; this dichotomy was expected by the photochemical models developed in the LMD Mars Global Climate Model (LMD-MGCM) and with the recently developed Global Environmental Multiscale (GEM) model. The second measurement (July 2018) was taken in the middle of the MY 34 global dust storm. H2 O2 was not detected with a disk-integrated 2σ upper limit of 10 ppbv, while both the LMD-MGCM and the LEM models predicted a value above 20 ppbv (also observed by TEXES in 2003) in the absence of dust storm. This depletion is probably the result of the high dust content in the atmosphere at the time of our observations, which led to a decrease in the water vapor column density, as observed by the PFS during the global dust storm. GCM simulations using the GEM model show that the H2 O depletion leads to a drop in H2 O2 , due to the lack of HO2 radicals. Our result brings a new constraint on the photochemistry of H2 O2 in the presence of a high dust content. In parallel, we reprocessed the whole TEXES dataset of H2 O2 measurements using the latest version of the GEISA database (GEISA 2015). We recently found that there is a significant difference in the H2 O2 line strengths between the 2003 and 2015 versions of GEISA. Therefore, all H2 O2 volume mixing ratios up to 2014 from TEXES measurements must be reduced by a factor of 1.75. As a consequence, in four cases (Ls around 80°, 100°, 150°, and 209°) the H2 O2 abundances show contradictory values between different Martian years. At Ls = 209° the cause seems to be the increased dust content associated with the global dust storm. The inter-annual variability in the three other cases remains unexplained at this time. [ABSTRACT FROM AUTHOR]- Published
- 2019
- Full Text
- View/download PDF
48. Expected performances of the NOMAD/ExoMars instrument
- Author
-
UK Space Agency, Belgian Science Policy Office, European Commission, European Space Agency, Vandaele, Ann Carine, López-Moreno, José Juan, Bellucci, Giancarlo, Patel, M., Allen, M., Altieri, F., Aoki, Shohei, Bolsée, D., Clancy, T., Cloutis, E., Daerden, Frank, Depiesse, C., Fedorova, A., Formisano, V., Funke, Bernd, Fussen, D., García Comas, Maia, Geminale, A., Gérard, Jean-Claude, Gillotay, D., Giuranna, M., González-Galindo, F., Ignatiev, N., Kaminski, J., Karatekin, O., Kasaba, Y., Lefèvre, F., Lewis, S., López-Puertas, Manuel, López-Valverde, M. A., Mahieux, A., Mason, J., McConnell, J., Mumma, M., Neary, L., Neefs, E., Novak, R., Renotte, E., Robert, S., Sindoni, G., Smith, M., Thomas, Ian R., Trokhimovskiy, A., Vander Auwera, J., Villanueva, Geronimo L., Viscardy, S., Whiteway, J., Willame, Y., Wilquet, V., Wolff, Michael T., Aparicio del Moral, Beatriz, Barzin, P., BenMoussa, A., Berkenbosch, S., Biondi, D., Bonnewijn, S., Candini, G., Clairquin, R., Cubas, J., Delanoye, S., Giordanengo, B., Gissot, Samuel, Gomez, A., Zafra, J.-J., Leese, M., Maes, J., Mazy, E., Mazzoli, A., Meseguer, J., Morales, Rafael, Orban, A., Pastor, Carmen, Pérez Grande, Isabel, Ristic, Bojan, Rodríguez Gómez, Julio, Saggin, B., Samain, V., Sanz Andres, A., Sanz, R., Simar, J.-F., Thibert, T., Alonso-Rodrigo, G., UK Space Agency, Belgian Science Policy Office, European Commission, European Space Agency, Vandaele, Ann Carine, López-Moreno, José Juan, Bellucci, Giancarlo, Patel, M., Allen, M., Altieri, F., Aoki, Shohei, Bolsée, D., Clancy, T., Cloutis, E., Daerden, Frank, Depiesse, C., Fedorova, A., Formisano, V., Funke, Bernd, Fussen, D., García Comas, Maia, Geminale, A., Gérard, Jean-Claude, Gillotay, D., Giuranna, M., González-Galindo, F., Ignatiev, N., Kaminski, J., Karatekin, O., Kasaba, Y., Lefèvre, F., Lewis, S., López-Puertas, Manuel, López-Valverde, M. A., Mahieux, A., Mason, J., McConnell, J., Mumma, M., Neary, L., Neefs, E., Novak, R., Renotte, E., Robert, S., Sindoni, G., Smith, M., Thomas, Ian R., Trokhimovskiy, A., Vander Auwera, J., Villanueva, Geronimo L., Viscardy, S., Whiteway, J., Willame, Y., Wilquet, V., Wolff, Michael T., Aparicio del Moral, Beatriz, Barzin, P., BenMoussa, A., Berkenbosch, S., Biondi, D., Bonnewijn, S., Candini, G., Clairquin, R., Cubas, J., Delanoye, S., Giordanengo, B., Gissot, Samuel, Gomez, A., Zafra, J.-J., Leese, M., Maes, J., Mazy, E., Mazzoli, A., Meseguer, J., Morales, Rafael, Orban, A., Pastor, Carmen, Pérez Grande, Isabel, Ristic, Bojan, Rodríguez Gómez, Julio, Saggin, B., Samain, V., Sanz Andres, A., Sanz, R., Simar, J.-F., Thibert, T., and Alonso-Rodrigo, G.
- Abstract
NOMAD (Nadir and Occultation for MArs Discovery) is one of the four instruments on board the ExoMars Trace Gas Orbiter, scheduled for launch in March 2016. It consists of a suite of three high-resolution spectrometers - SO (Solar Occultation), LNO (Limb, Nadir and Occultation) and UVIS (Ultraviolet and Visible Spectrometer). Based upon the characteristics of the channels and the values of Signal-to-Noise Ratio obtained from radiometric models discussed in (Vandaele et al., 2015a, 2015b; Thomas et al., 2016), the expected performances of the instrument in terms of sensitivity to detection have been investigated. The analysis led to the determination of detection limits for 18 molecules, namely CO, HO, HDO, CH, CH, CH, HCO, CH, SO, HS, HCl, HCN, HO, NH, NO, NO, OCS, O. NOMAD should have the ability to measure methane concentrations <25 parts per trillion (ppt) in solar occultation mode, and 11 parts per billion in nadir mode. Occultation detections as low as 10 ppt could be made if spectra are averaged (Drummond et al., 2011). Results have been obtained for all three channels in nadir and in solar occultation.© 2016 The Authors. Published by Elsevier Ltd.
- Published
- 2016
49. Optical and radiometric models of the NOMAD instrument part II: The infrared channels - SO and LNO
- Author
-
Belgian Science Policy Office, European Space Agency, UK Space Agency, Thomas, Ian R., Vandaele, Ann Carine, Robert, S., Neefs, E., Drummond, R., Daerden, Frank, Delanoye, S., Ristic, Bojan, Berkenbosch, S., Clairquin, R., Maes, J., Bonnewijn, S., Depiesse, C., Mahieux, A., Trompet, L., Neary, L., Willame, Y., Wilquet, V., Nevejans, D., Aballea, L., Moelans, W., De Vos, L., Lesschaeve, S., Van Vooren, N., López-Moreno, José Juan, Patel, Manish R., Bellucci, Giancarlo, Moreno, L., Juan, J., Patel, M., Allen, M., Altieri, F., Aoki, Shohei, Bolsée, D., Clancy, T., Cloutis, E., Fedorova, A., Formisano, V., Funke, Bernd, Fussen, D., García Comas, Maia, Geminale, A., Gérard, Jean-Claude, Gillotay, D., Giuranna, M., Belgian Science Policy Office, European Space Agency, UK Space Agency, Thomas, Ian R., Vandaele, Ann Carine, Robert, S., Neefs, E., Drummond, R., Daerden, Frank, Delanoye, S., Ristic, Bojan, Berkenbosch, S., Clairquin, R., Maes, J., Bonnewijn, S., Depiesse, C., Mahieux, A., Trompet, L., Neary, L., Willame, Y., Wilquet, V., Nevejans, D., Aballea, L., Moelans, W., De Vos, L., Lesschaeve, S., Van Vooren, N., López-Moreno, José Juan, Patel, Manish R., Bellucci, Giancarlo, Moreno, L., Juan, J., Patel, M., Allen, M., Altieri, F., Aoki, Shohei, Bolsée, D., Clancy, T., Cloutis, E., Fedorova, A., Formisano, V., Funke, Bernd, Fussen, D., García Comas, Maia, Geminale, A., Gérard, Jean-Claude, Gillotay, D., and Giuranna, M.
- Abstract
NOMAD is a suite of three spectrometers that will be launched in 2016 as part of the joint ESA-Roscosmos ExoMars Trace Gas Orbiter mission. The instrument contains three channels that cover the IR and UV spectral ranges and can perform solar occultation, nadir and limb observations, to detect and map a wide variety of Martian atmospheric gases and trace species. Part I of this work described the models of the UVIS channel; in this second part, we present the optical models representing the two IR channels, SO (Solar Occultation) and LNO (Limb, Nadir and Occultation), and use them to determine signal to noise ratios (SNRs) for many expected observational cases. In solar occultation mode, both the SO and LNO channel exhibit very high SNRs >5000. SNRs of around 100 were found for the LNO channel in nadir mode, depending on the atmospheric conditions, Martian surface properties, and observation geometry.
- Published
- 2016
50. GCM Simulations of Northern Summer Dust Storms Observed by the Phoenix LIDAR
- Author
-
DAERDEN, F., WHITEWAY, J., NEARY, L., LEMMON, M., CANTOR, B., WOLFF, M., HÉBRARD, Eric, Belgian Institute for Space Aeronomy / Institut d'Aéronomie Spatiale de Belgique (BIRA-IASB), Centre for Research in Earth and Space Science [Toronto] (CRESS), York University [Toronto], Department of Physics, Texas A&M University [College Station], Malin Space Science Systems (MSSS), Ouvrages hydrauliques et hydrologie (UR OHAX), Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux (L3AB), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1, SSE 2014, Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), and Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)
- Subjects
[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience; Not Available
- Published
- 2014
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.