253 results on '"Nealson KH"'
Search Results
2. Engineered Cell Elongation Promotes Extracellular Electron Transfer of Shewanella Oneidensis.
- Author
-
Li F, Yu H, Zhang B, Hu C, Lan F, Wang Y, You Z, Liu Q, Tang R, Zhang J, Li C, Shi L, Li WW, Nealson KH, Liu Z, and Song H
- Subjects
- Electron Transport physiology, Biofilms growth & development, Bioelectric Energy Sources, Shewanella metabolism, Shewanella genetics
- Abstract
To investigate how cell elongation impacts extracellular electron transfer (EET) of electroactive microorganisms (EAMs), the division of model EAM Shewanella oneidensis (S. oneidensis) MR-1 is engineered by reducing the formation of cell divisome. Specially, by blocking the translation of division proteins via anti-sense RNAs or expressing division inhibitors, the cellular length and output power density are all increased. Electrophysiological and transcriptomic results synergistically reveal that the programmed cell elongation reinforces EET by enhancing NADH oxidation, inner-membrane quinone pool, and abundance of c-type cytochromes. Moreover, cell elongation enhances hydrophobicity due to decreased cell-surface polysaccharide, thus facilitates the initial surface adhesion stage during biofilm formation. The output current and power density all increase in positive correction with cellular length. However, inhibition of cell division reduces cell growth, which is then restored by quorum sensing-based dynamic regulation of cell growth and elongation phases. The QS-regulated elongated strain thus enables a cell length of 143.6 ± 40.3 µm (72.6-fold of that of S. oneidensis MR-1), which results in an output power density of 248.0 ± 10.6 mW m
-2 (3.41-fold of that of S. oneidensis MR-1) and exhibits superior potential for pollutant treatment. Engineering cellular length paves an innovate avenue for enhancing the EET of EAMs., (© 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.)- Published
- 2024
- Full Text
- View/download PDF
3. Large-scale prediction of outer-membrane multiheme cytochromes uncovers hidden diversity of electroactive bacteria and underlying pathways.
- Author
-
Garber AI, Nealson KH, and Merino N
- Abstract
Multi-heme cytochromes (MHCs), together with accessory proteins like porins and periplasmic cytochromes, enable microbes to transport electrons between the cytoplasmic membrane and extracellular substrates (e.g., minerals, electrodes, other cells). Extracellular electron transfer (EET) has been described in multiple systems; yet, the broad phylogenetic and mechanistic diversity of these pathways is less clear. One commonality in EET-capable systems is the involvement of MHCs, in the form of porin-cytochrome complexes, pili-like cytochrome polymers, and lipid-anchored extracellular cytochromes. Here, we put forth MHCscan-a software tool for identifying MHCs and identifying potential EET capability. Using MHCscan, we scanned ~60,000 bacterial and 2,000 archaeal assemblies, and identify a diversity of MHCs, many of which represent enzymes with no known function, and many found within organisms not previously known to be electroactive. In total, our scan identified ~1,400 unique enzymes, each encoding more than 10 heme-binding motifs. In our analysis, we also find evidence for modularity and flexibility in MHC-dependent EET pathways, and suggest that MHCs may be far more common than previously recognized, with many facets yet to be discovered. We present MHCscan as a lightweight and user-friendly software tool that is freely available: https://github.com/Arkadiy-Garber/MHCscan., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2024 Garber, Nealson and Merino.)
- Published
- 2024
- Full Text
- View/download PDF
4. A non-methanogenic archaeon within the order Methanocellales.
- Author
-
Suzuki S, Ishii S, Chadwick GL, Tanaka Y, Kouzuma A, Watanabe K, Inagaki F, Albertsen M, Nielsen PH, and Nealson KH
- Subjects
- Genome, Archaeal, Archaeal Proteins metabolism, Archaeal Proteins genetics, Oxidoreductases genetics, Oxidoreductases metabolism, Metagenome genetics, Phylogeny, Acetyl Coenzyme A metabolism, Carbon Dioxide metabolism, Metagenomics, Methane metabolism
- Abstract
Serpentinization, a geochemical process found on modern and ancient Earth, provides an ultra-reducing environment that can support microbial methanogenesis and acetogenesis. Several groups of archaea, such as the order Methanocellales, are characterized by their ability to produce methane. Here, we generate metagenomic sequences from serpentinized springs in The Cedars, California, and construct a circularized metagenome-assembled genome of a Methanocellales archaeon, termed Met12, that lacks essential methanogenesis genes. The genome includes genes for an acetyl-CoA pathway, but lacks genes encoding methanogenesis enzymes such as methyl-coenzyme M reductase, heterodisulfide reductases and hydrogenases. In situ transcriptomic analyses reveal high expression of a multi-heme c-type cytochrome, and heterologous expression of this protein in a model bacterium demonstrates that it is capable of accepting electrons. Our results suggest that Met12, within the order Methanocellales, is not a methanogen but a CO
2 -reducing, electron-fueled acetogen without electron bifurcation., (© 2024. The Author(s).)- Published
- 2024
- Full Text
- View/download PDF
5. Comparative proteomics of a versatile, marine, iron-oxidizing chemolithoautotroph.
- Author
-
Barco RA, Merino N, Lam B, Budnik B, Kaplan M, Wu F, Amend JP, Nealson KH, and Emerson D
- Subjects
- Chemoautotrophic Growth, Multigene Family, Gene Expression Regulation, Bacterial, Seawater microbiology, Oxidation-Reduction, Iron metabolism, Proteomics, Bacterial Proteins genetics, Bacterial Proteins metabolism
- Abstract
This study conducted a comparative proteomic analysis to identify potential genetic markers for the biological function of chemolithoautotrophic iron oxidation in the marine bacterium Ghiorsea bivora. To date, this is the only characterized species in the class Zetaproteobacteria that is not an obligate iron-oxidizer, providing a unique opportunity to investigate differential protein expression to identify key genes involved in iron-oxidation at circumneutral pH. Over 1000 proteins were identified under both iron- and hydrogen-oxidizing conditions, with differentially expressed proteins found in both treatments. Notably, a gene cluster upregulated during iron oxidation was identified. This cluster contains genes encoding for cytochromes that share sequence similarity with the known iron-oxidase, Cyc2. Interestingly, these cytochromes, conserved in both Bacteria and Archaea, do not exhibit the typical β-barrel structure of Cyc2. This cluster potentially encodes a biological nanowire-like transmembrane complex containing multiple redox proteins spanning the inner membrane, periplasm, outer membrane, and extracellular space. The upregulation of key genes associated with this complex during iron-oxidizing conditions was confirmed by quantitative reverse transcription-PCR. These findings were further supported by electromicrobiological methods, which demonstrated negative current production by G. bivora in a three-electrode system poised at a cathodic potential. This research provides significant insights into the biological function of chemolithoautotrophic iron oxidation., (© 2024 The Authors. Environmental Microbiology published by John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
6. Abiotic Methane Production Driven by Ubiquitous Non-Fenton-Type Reactive Oxygen Species.
- Author
-
Ye J, Hu A, Gao C, Li F, Li L, Guo Y, Ren G, Li B, Rensing C, Nealson KH, Zhou S, and Xiong Y
- Abstract
Abiotic CH
4 production driven by Fenton-type reactive oxygen species (ROS) has been confirmed to be an indispensable component of the atmospheric CH4 budget. While the chemical reactions independent of Fenton chemistry to ROS are ubiquitous in nature, it remains unknown whether the produced ROS can drive abiotic CH4 production. Here, we first demonstrated the abiotic CH4 production at the soil-water interface under illumination. Leveraging this finding, polymeric carbon nitrides (CNx ) as a typical analogue of natural geobattery material and dimethyl sulfoxide (DMSO) as a natural methyl donor were used to unravel the underlying mechanisms. We revealed that the ROS, photocatalytically produced by CNx , can oxidize DMSO into CH4 with a high selectivity of 91.5 %. Such an abiotic CH4 production process was further expanded to various non-Fenton-type reaction systems, such as electrocatalysis, pyrocatalysis and sonocatalysis. This work provides insights into the geochemical cycle of abiotic CH4 , and offers a new route to CH4 production via integrated energy development., (© 2024 Wiley-VCH GmbH.)- Published
- 2024
- Full Text
- View/download PDF
7. Microbial Catalysis for CO 2 Sequestration: A Geobiological Approach.
- Author
-
Van Den Berghe M, Walworth NG, Dalvie NC, Dupont CL, Springer M, Andrews MG, Romaniello SJ, Hutchins DA, Montserrat F, Silver PA, and Nealson KH
- Subjects
- Iron Compounds metabolism, Carbon Sequestration, Silicates metabolism, Magnesium Compounds metabolism, Catalysis, Bacteria metabolism, Magnesium Oxide metabolism, Carbon Dioxide metabolism
- Abstract
One of the greatest threats facing the planet is the continued increase in excess greenhouse gasses, with CO
2 being the primary driver due to its rapid increase in only a century. Excess CO2 is exacerbating known climate tipping points that will have cascading local and global effects including loss of biodiversity, global warming, and climate migration. However, global reduction of CO2 emissions is not enough. Carbon dioxide removal (CDR) will also be needed to avoid the catastrophic effects of global warming. Although the drawdown and storage of CO2 occur naturally via the coupling of the silicate and carbonate cycles, they operate over geological timescales (thousands of years). Here, we suggest that microbes can be used to accelerate this process, perhaps by orders of magnitude, while simultaneously producing potentially valuable by-products. This could provide both a sustainable pathway for global drawdown of CO2 and an environmentally benign biosynthesis of materials. We discuss several different approaches, all of which involve enhancing the rate of silicate weathering. We use the silicate mineral olivine as a case study because of its favorable weathering properties, global abundance, and growing interest in CDR applications. Extensive research is needed to determine both the upper limit of the rate of silicate dissolution and its potential to economically scale to draw down significant amounts (Mt/Gt) of CO2 Other industrial processes have successfully cultivated microbial consortia to provide valuable services at scale (e.g., wastewater treatment, anaerobic digestion, fermentation), and we argue that similar economies of scale could be achieved from this research., (Copyright © 2024 Cold Spring Harbor Laboratory Press; all rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
8. Nonelectroactive clostridium obtains extracellular electron transfer-capability after forming chimera with Geobacter .
- Author
-
Liu X, Ye Y, Yang N, Cheng C, Rensing C, Jin C, Nealson KH, and Zhou S
- Abstract
Extracellular electron transfer (EET) of microorganisms is a major driver of the microbial growth and metabolism, including reactions involved in the cycling of C, N, and Fe in anaerobic environments such as soils and sediments. Understanding the mechanisms of EET, as well as knowing which organisms are EET-capable (or can become so) is fundamental to electromicrobiology and geomicrobiology. In general, Gram-positive bacteria very seldomly perform EET due to their thick non-conductive cell wall. Here, we report that a Gram-positive Clostridium intestinale (C.i) attained EET-capability for ethanol metabolism only after forming chimera with electroactive Geobacter sulfurreducens (G.s). Mechanism analyses demonstrated that the EET was possible after the cell fusion of the two species was achieved. Under these conditions, the ethanol metabolism pathway of C.i was integrated by the EET pathway of G.s, by which achieved the oxidation of ethanol for the subsequent reduction of extracellular electron acceptors in the coculture. Our study displays a new approach to perform EET for Gram-positive bacteria via recruiting the EET pathway of an electroactive bacterium, which suggests a previously unanticipated prevalence of EET in the microbial world. These findings also provide new perspectives to understand the energetic coupling between bacterial species and the ecology of interspecies mutualisms., Competing Interests: The authors declare no competing financial interests., (© The Author(s) 2024. Published by Oxford University Press on behalf of the International Society for Microbial Ecology.)
- Published
- 2024
- Full Text
- View/download PDF
9. Insights into the physiological and genomic characterization of three bacterial isolates from a highly alkaline, terrestrial serpentinizing system.
- Author
-
Thompson J, Barr C, Babcock-Adams L, Bird L, La Cava E, Garber A, Hongoh Y, Liu M, Nealson KH, Okamoto A, Repeta D, Suzuki S, Tacto C, Tashjian M, and Merino N
- Abstract
The terrestrial serpentinite-hosted ecosystem known as "The Cedars" is home to a diverse microbial community persisting under highly alkaline (pH ~ 12) and reducing (Eh < -550 mV) conditions. This extreme environment presents particular difficulties for microbial life, and efforts to isolate microorganisms from The Cedars over the past decade have remained challenging. Herein, we report the initial physiological assessment and/or full genomic characterization of three isolates: Paenibacillus sp. Cedars ('Paeni-Cedars'), Alishewanella sp. BS5-314 ('Ali-BS5-314'), and Anaerobacillus sp. CMMVII ('Anaero-CMMVII'). Paeni-Cedars is a Gram-positive, rod-shaped, mesophilic facultative anaerobe that grows between pH 7-10 (minimum pH tested was 7), temperatures 20-40°C, and 0-3% NaCl concentration. The addition of 10-20 mM CaCl
2 enhanced growth, and iron reduction was observed in the following order, 2-line ferrihydrite > magnetite > serpentinite ~ chromite ~ hematite. Genome analysis identified genes for flavin-mediated iron reduction and synthesis of a bacillibactin-like, catechol-type siderophore. Ali-BS5-314 is a Gram-negative, rod-shaped, mesophilic, facultative anaerobic alkaliphile that grows between pH 10-12 and temperatures 10-40°C, with limited growth observed 1-5% NaCl. Nitrate is used as a terminal electron acceptor under anaerobic conditions, which was corroborated by genome analysis. The Ali-BS5-314 genome also includes genes for benzoate-like compound metabolism. Anaero-CMMVII remained difficult to cultivate for physiological studies; however, growth was observed between pH 9-12, with the addition of 0.01-1% yeast extract. Anaero-CMMVII is a probable oxygen-tolerant anaerobic alkaliphile with hydrogenotrophic respiration coupled with nitrate reduction, as determined by genome analysis. Based on single-copy genes, ANI, AAI and dDDH analyses, Paeni-Cedars and Ali-BS5-314 are related to other species ( P. glucanolyticus and A. aestuarii, respectively), and Anaero-CMMVII represents a new species. The characterization of these three isolates demonstrate the range of ecophysiological adaptations and metabolisms present in serpentinite-hosted ecosystems, including mineral reduction, alkaliphily, and siderophore production., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 Thompson, Barr, Babcock-Adams, Bird, La Cava, Garber, Hongoh, Liu, Nealson, Okamoto, Repeta, Suzuki, Tacto, Tashjian and Merino.)- Published
- 2023
- Full Text
- View/download PDF
10. Measuring the pulse of our planet.
- Author
-
Nealson KH
- Published
- 2023
- Full Text
- View/download PDF
11. Biophotoelectrochemical process co-driven by dead microalgae and live bacteria.
- Author
-
Chen S, Chen J, Zhang L, Huang S, Liu X, Yang Y, Luan T, Zhou S, Nealson KH, and Rensing C
- Subjects
- Electron Transport, Azo Compounds chemistry, Azo Compounds metabolism, Oxidation-Reduction, Anaerobiosis, Gene Deletion, Microalgae chemistry, Microalgae metabolism, Chlorophyceae chemistry, Chlorophyceae metabolism, Geobacter chemistry, Geobacter metabolism, Geobacter radiation effects, Photosynthesis
- Abstract
Anaerobic reduction processes in natural waters can be promoted by dead microalgae that have been attributed to nutrient substances provided by the decomposition of dead microalgae for other microorganisms. However, previous reports have not considered that dead microalgae may also serve as photosensitizers to drive microbial reduction processes. Here we demonstrate a photoelectric synergistic linkage between dead microalgae and bacteria capable of extracellular electron transfer (EET). Illumination of dead Raphidocelis subcapitata resulted in two-fold increase in the rate of anaerobic bioreduction by pure Geobacter sulfurreducens, suggesting that photoelectrons generated from the illuminated dead microalgae were transferred to the EET-capable microorganisms. Similar phenomena were observed in NO
3 - reduction driven by irradiated dead Chlorella vulgaris and living Shewanella oneidensis, and Cr(VI) reduction driven by irradiated dead Raphidocelis subcapitata and living Bacillus subtilis. Enhancement of bioreduction was also seen when the killed microalgae were illuminated in mixed-culture lake water, suggesting that EET-capable bacteria were naturally present and this phenomenon is common in post-bloom systems. The intracellular ferredoxin-NADP+ -reductase is inactivated in the dead microalgae, allowing the production and extracellular transfer of photoelectrons. The use of mutant strains confirmed that the electron transport pathway requires multiheme cytochromes. Taken together, these results suggest a heretofore overlooked biophotoelectrochemical process jointly mediated by illumination of dead microalgae and live EET-capable bacteria in natural ecosystems, which may add an important component in the energetics of bioreduction phenomena particularly in microalgae-enriched environments., (© 2023. The Author(s), under exclusive licence to International Society for Microbial Ecology.)- Published
- 2023
- Full Text
- View/download PDF
12. Prophage Induction Causes Geobacter Electroactive Biofilm Decay.
- Author
-
Liu X, Ye Y, Zhang Z, Rensing C, Zhou S, and Nealson KH
- Subjects
- Electrodes, Virus Activation, Bioelectric Energy Sources microbiology, Biofilms, Geobacter
- Abstract
Sustaining a metabolically active electroactive biofilm (EAB) is essential for the high efficiency and durable operation of microbial fuel cells (MFCs). However, EABs usually decay during long-term operation, and, until now, the causes remain unknown. Here, we report that lysogenic phages can cause EAB decay in Geobacter sulfurreducens fuel cells. A cross-streak agar assay and bioinformatic analysis revealed the presence of prophages on the G. sulfurreducens genome, and a mitomycin C induction assay revealed the lysogenic to lytic transition of those prophages, resulting in a progressive decay in both current generation and the EAB. Furthermore, the addition of phages purified from decayed EAB resulted in accelerated decay of the EAB, thereafter contributing to a faster decline in current generation; otherwise, deleting prophage-related genes rescued the decay process. Our study provides the first evidence of an interaction between phages and electroactive bacteria and suggests that attack by phages is a primary cause of EAB decay, having significant implications in bioelectrochemical systems.
- Published
- 2023
- Full Text
- View/download PDF
13. Light-independent anaerobic microbial oxidation of manganese driven by an electrosyntrophic coculture.
- Author
-
Huang L, Liu X, Rensing C, Yuan Y, Zhou S, and Nealson KH
- Subjects
- Oxides metabolism, Anaerobiosis, Coculture Techniques, Oxidation-Reduction, Oxygen metabolism, Manganese metabolism, Manganese Compounds chemistry, Manganese Compounds metabolism
- Abstract
Anaerobic microbial manganese oxidation (AMMO) has been considered an ancient biological metabolism for Mn element cycling on Archaean Earth before the presence of oxygen. A light-dependent AMMO was recently observed under strictly anoxic conditions, providing a new proxy for the interpretation of the evolution of oxygenic photosynthesis. However, the feasibility of biotic Mn(II) oxidation in dark geological habitats that must have been abundant remains unknown. Therefore, we discovered that it would be possible to achieve AMMO in a light-independent electrosyntrophic coculture between Rhodopseudomonas palustris and Geobacter metallireducens. Transmission electron microscopy analysis revealed insoluble particle formation in the coculture with Mn(II) addition. X-ray diffraction and X-ray photoelectron spectroscopy analysis verified that these particles were a mixture of MnO
2 and Mn3 O4 . The absence of Mn oxides in either of the monocultures indicated that the Mn(II)-oxidizing activity was induced via electrosyntrophic interactions. Radical quenching and isotopic experiments demonstrated that hydroxyl radicals (•OH) produced from H2 O dissociation by R. palustris in the coculture contributed to Mn(II) oxidation. All these findings suggest a new, symbiosis-dependent and light-independent AMMO route, with potential importance to the evolution of oxygenic photosynthesis and the biogeochemical cycling of manganese on Archaean and modern Earth., (© 2022. The Author(s), under exclusive licence to International Society for Microbial Ecology.)- Published
- 2023
- Full Text
- View/download PDF
14. Au(III)-induced extracellular electron transfer by Burkholderia contaminans ZCC for the bio-recovery of gold nanoparticles.
- Author
-
Wang Y, You LX, Zhong HL, Wu GK, Li YP, Yang XJ, Wang AJ, Nealson KH, Herzberg M, and Rensing C
- Subjects
- Burkholderia, Electrons, Riboflavin, Gold, Metal Nanoparticles
- Abstract
The biorecovery of gold (Au) by microbial reduction has received increasing attention, however, the biomolecules involved and the mechanisms by which they operate to produce Au nanoparticles have been not resolved. Here we report that Burkholderia contaminans ZCC is capable of reduction of Au(III) to Au nanoparticles on the cell surface. Exposure of B. contaminans ZCC to Au(III) led to significant changes in the functional group of cell proteins, with approximately 11.1% of the (C-C/C-H) bonds being converted to CO (8.1%) and C-OH (3.0%) bonds and 29.4% of the CO bonds being converted to (C-OH/C-O-C/P-O-C) bonds, respectively. In response to Au(III), B. contaminans ZCC also displayed the ability of extracellular electron transfer (EET) via membrane proteins and could produce reduced riboflavin as verified by electrochemical and liquid chromatography-mass spectrometric results, but did not do so without Au(III) being present. Addition of exogenous reduced riboflavin to the medium suggested that B. contaminans ZCC could utilize indirect EET via riboflavin to enhance the rate of reduction of Au(III). Transcriptional analysis of the riboflavin genes (ribBDEFH) supported the view of the importance of riboflavin in the reduction of Au(III) and its importance in the biorecovery of gold., (Copyright © 2022 Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
15. Reply to Lovley, "Untangling Geobacter sulfurreducens Nanowires".
- Author
-
Liu X, Nealson KH, Zhou S, and Rensing C
- Subjects
- Fimbriae, Bacterial, Geobacter, Nanowires
- Published
- 2022
- Full Text
- View/download PDF
16. Light-driven carbon dioxide reduction to methane by Methanosarcina barkeri in an electric syntrophic coculture.
- Author
-
Huang L, Liu X, Zhang Z, Ye J, Rensing C, Zhou S, and Nealson KH
- Subjects
- Carbon Dioxide metabolism, Coculture Techniques, Photosynthesis, Methane metabolism, Methanosarcina barkeri genetics, Methanosarcina barkeri metabolism
- Abstract
The direct conversion of CO
2 to value-added chemical commodities, thereby storing solar energy, offers a promising option for alleviating both the current energy crisis and global warming. Semiconductor-biological hybrid systems are novel approaches. However, the inherent defects of photocorrosion, photodegradation, and the toxicity of the semiconductor limit the application of these biohybrid systems. We report here that Rhodopseudomonas palustris was able to directly act as a living photosensitizer to drive CO2 to CH4 conversion by Methanosarcina barkeri under illumination after coculturing. Specifically, R. palustris formed a direct electric syntrophic coculture with M. barkeri. Here, R. palustris harvested solar energy, performed anoxygenic photosynthesis using sodium thiosulfate as an electron donor, and transferred electrons extracellularly to M. barkeri to drive methane generation. The methanogenesis of M. barkeri in coculture was a light-dependent process with a production rate of 4.73 ± 0.23 μM/h under light, which is slightly higher than that of typical semiconductor-biohybrid systems (approximately 4.36 μM/h). Mechanistic and transcriptomic analyses showed that electrons were transferred either directly or indirectly (via electron shuttles), subsequently driving CH4 production. Our study suggests that R. palustris acts as a natural photosensitizer that, in coculture with M. barkeri, results in a new way to harvest solar energy that could potentially replace semiconductors in biohybrid systems., (© 2021. The Author(s), under exclusive licence to International Society for Microbial Ecology.)- Published
- 2022
- Full Text
- View/download PDF
17. Magnetotactic bacteria: concepts, conundrums, and insights from a novel in situ approach using digital holographic microscopy (DHM).
- Author
-
Barr CR, Bedrossian M, Lohmann KJ, and Nealson KH
- Subjects
- Animals, Bacteria genetics, Phylogeny, Magnetosomes chemistry, Magnetosomes genetics, Magnetosomes metabolism, Microscopy
- Abstract
Magnetotactic bacteria (MTB) are a diverse group of highly motile Gram-negative microorganisms with the common ability to orient along magnetic field lines, a behavior known as magnetotaxis. Ubiquitous in aquatic sediment environments, MTB are often microaerophilic and abundant at the oxic/anoxic interface. Magnetic field sensing is accomplished using intracellular, membrane-encased, iron-containing minerals known as magnetosomes. The chemistry, morphology and arrangement of magnetosomes differs substantially among different MTB. Although magnetic field sensing mechanisms, genetic bases and protein functions have been elucidated in select model organisms such as the Magnetospirillum strains and Desulfovibrio RS-1, not all findings are applicable to diverse clades of MTB. As the number of identified species has increased, it has become evident that many of the characteristics and mechanisms once presumed to be prototypical of MTB are in fact not universal. Here we present a general overview of the current state of MTB research for readers outside of the realm of prokaryotic research, focusing on recent discoveries, knowledge gaps and future directions. In addition, we report new insights acquired using holographic technology to observe and quantify microbial responses in magnetic fields that are earth-strength or weaker, providing a new ecophysiological approach to in situ MTB research., (© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
- Published
- 2022
- Full Text
- View/download PDF
18. Silicate minerals as a direct source of limiting nutrients: Siderophore synthesis and uptake promote ferric iron bioavailability from olivine and microbial growth.
- Author
-
Van Den Berghe M, Merino N, Nealson KH, and West AJ
- Subjects
- Biological Availability, Iron, Iron Compounds, Magnesium Compounds, Minerals, Nutrients, Shewanella, Silicates, Biological Phenomena, Siderophores
- Abstract
Iron is a micronutrient critical to fundamental biological processes including respiration and photosynthesis, and it can therefore impact primary and heterotrophic productivity. Yet in oxic environments, iron is highly insoluble, rendering it, in principle, unavailable as a nutrient for biological growth. Life has "solved" this problem via the invention of iron chelates, known as siderophores, that keep iron available for microbial productivity. In this work, we examined the impact of siderophore synthesis on the speciation, mobility, and bioavailability of iron from rock-forming silicate minerals-shedding new light on the mechanisms by which microbes use mineral substrates to support primary productivity, as well as the consequent effects on silicate dissolution. Growth experiments were performed with Shewanella oneidensis MR-1 in an oxic, iron-depleted minimal medium, amended with olivine minerals as the sole source of iron. Experiments included the wild-type strain MR-1, and a siderophore synthesis gene deletion mutant strain (ΔMR-1). Relative to MR-1, ΔMR-1 exhibited a very pronounced growth penalty and an extended lag phase. However, substantial growth of ΔMR-1, comparable to MR-1 growth, was observed when the mutant strain was provided with siderophores in the form of either filtrate from a well-grown MR-1 culture, or commercially available deferoxamine. These observations suggest that siderophores are critical for S. oneidensis to acquire iron from olivine. Growth-limiting concentrations of deferoxamine amendments were observed to be ≤5-10 µM, concentrations significantly lower than previously recorded as necessary to impact mineral dissolution rates. X-ray photoelectric spectroscopy analyses of the incubated olivine surfaces suggest that siderophores deplete mineral surface layers of ferric iron. Combined, these results demonstrate that low micromolar concentrations of siderophores can effectively mobilize iron bound within silicate minerals, supporting very significant biological growth in limiting environments. The specific mechanism would involve siderophores removing a protective layer of nanometer-thick iron oxides, enhancing silicate dissolution and nutrient bioavailability., (© 2021 John Wiley & Sons Ltd.)
- Published
- 2021
- Full Text
- View/download PDF
19. Metagenomic Insights Into the Microbial Iron Cycle of Subseafloor Habitats.
- Author
-
Garber AI, Cohen AB, Nealson KH, Ramírez GA, Barco RA, Enzingmüller-Bleyl TC, Gehringer MM, and Merino N
- Abstract
Microbial iron cycling influences the flux of major nutrients in the environment (e.g., through the adsorptive capacity of iron oxides) and includes biotically induced iron oxidation and reduction processes. The ecological extent of microbial iron cycling is not well understood, even with increased sequencing efforts, in part due to limitations in gene annotation pipelines and limitations in experimental studies linking phenotype to genotype. This is particularly true for the marine subseafloor, which remains undersampled, but represents the largest contiguous habitat on Earth. To address this limitation, we used FeGenie, a database and bioinformatics tool that identifies microbial iron cycling genes and enables the development of testable hypotheses on the biogeochemical cycling of iron. Herein, we survey the microbial iron cycle in diverse subseafloor habitats, including sediment-buried crustal aquifers, as well as surficial and deep sediments. We inferred the genetic potential for iron redox cycling in 32 of the 46 metagenomes included in our analysis, demonstrating the prevalence of these activities across underexplored subseafloor ecosystems. We show that while some processes (e.g., iron uptake and storage, siderophore transport potential, and iron gene regulation) are near-universal, others (e.g., iron reduction/oxidation, siderophore synthesis, and magnetosome formation) are dependent on local redox and nutrient status. Additionally, we detected niche-specific differences in strategies used for dissimilatory iron reduction, suggesting that geochemical constraints likely play an important role in dictating the dominant mechanisms for iron cycling. Overall, our survey advances the known distribution, magnitude, and potential ecological impact of microbe-mediated iron cycling and utilization in sub-benthic ecosystems., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Garber, Cohen, Nealson, Ramírez, Barco, Enzingmüller-Bleyl, Gehringer and Merino.)
- Published
- 2021
- Full Text
- View/download PDF
20. Serpentinimonas gen. nov., Serpentinimonas raichei sp. nov., Serpentinimonas barnesii sp. nov. and Serpentinimonas maccroryi sp. nov., hyperalkaliphilic and facultative autotrophic bacteria isolated from terrestrial serpentinizing springs.
- Author
-
Bird LJ, Kuenen JG, Osburn MR, Tomioka N, Ishii S, Barr C, Nealson KH, and Suzuki S
- Subjects
- Bacterial Typing Techniques, Base Composition, DNA, Bacterial genetics, Fatty Acids chemistry, Nucleic Acid Hybridization, RNA, Ribosomal, 16S genetics, Sequence Analysis, DNA, Comamonadaceae classification, Comamonadaceae isolation & purification, Phylogeny, Water Microbiology
- Abstract
Three highly alkaliphilic bacterial strains designated as A1
T , H1T and B1T were isolated from two highly alkaline springs at The Cedars, a terrestrial serpentinizing site. Cells from all strains were motile, Gram-negative and rod-shaped. Strains A1T , H1T and B1T were mesophilic (optimum, 30 °C), highly alkaliphilic (optimum, pH 11) and facultatively autotrophic. Major cellular fatty acids were saturated and monounsaturated hexadecenoic and octadecanoic acids. The genome size of strains A1T , H1T and B1T was 2 574 013, 2 475 906 and 2 623 236 bp, and the G+C content was 66.0, 66.2 and 66.1 mol%, respectively. Analysis of the 16S rRNA genes showed the highest similarity to the genera Malikia (95.1-96.4 %), Macromonas (93.0-93.6 %) and Hydrogenophaga (93.0-96.6 %) in the family Comamonadaceae . Phylogenetic analysis based on 16S rRNA gene and phylogenomic analysis based on core gene sequences revealed that the isolated strains diverged from the related species, forming a distinct branch. Average amino acid identity values of strains A1T , H1T and B1T against the genomes of related members in this family were below 67 %, which is below the suggested threshold for genera boundaries. Average nucleotide identity by blast values and digital DNA-DNA hybridization among the three strains were below 92.0 and 46.6 % respectively, which are below the suggested thresholds for species boundaries. Based on phylogenetic, genomic and phenotypic characterization, we propose Serpentinimonas gen. nov., Serpentinimonas raichei sp. nov. (type strain A1T =NBRC 111848T =DSM 103917T ), Serpentinimonas barnesii sp. nov. (type strain H1T = NBRC 111849T =DSM 103920T ) and Serpentinimonas maccroryi sp. nov. (type strain B1T =NBRC 111850T =DSM 103919T ) belonging to the family Comamonadaceae . We have designated Serpentinimonas raichei the type species for the genus because it is the dominant species in The Cedars springs.- Published
- 2021
- Full Text
- View/download PDF
21. In Situ Spectroelectrochemical Characterization Reveals Cytochrome-Mediated Electric Syntrophy in Geobacter Coculture.
- Author
-
Liu X, Zhan J, Liu L, Gan F, Ye J, Nealson KH, Rensing C, and Zhou S
- Subjects
- Coculture Techniques, Cytochromes metabolism, Electron Transport, Oxidation-Reduction, Geobacter metabolism
- Abstract
Direct interspecies electron transfer (DIET) between microbial species prevails in some key microbial consortia. However, the electron transfer mechanism(s) in these consortia is controversial due to lack of efficient characterization methods. Here, we provide an in situ anaerobic spectroelectrochemical coculture cell (in situ ASCC) to induce the formation of DIET coculture biofilm on the interdigitated microelectrode arrays and characterize the electron transfer directly. Two typical Geobacter DIET cocultures, Geobacter metallireducens and wild-type Geobacter sulfurreducens (G.m&G.s) and G. metallireducens and a G. sulfurreducens strain deficient in citrate synthase (G.m&G.s-Δ gltA ), were selected. In situ Raman and electrochemical Fourier transform infrared (FTIR) spectroscopy indicated that cytochromes are abundant in the electric syntrophic coculture. Cyclic voltammetry and potential step experiment revealed a diffusion-controlled electron transfer process and the electrochemical gating measurements further demonstrated a cytochrome-mediated electron transfer in the DIET coculture. Furthermore, the G.m&G.s-Δ gltA coculture displayed a higher redox conductivity than the G.m&G.s coculture, consistent with the existence of an intimate and efficient electrical connection between these two species. Our findings provide the first report of a redox-gradient-driven electron transport facilitated by c-type cytochromes in DIET coculture, supporting the model that DIET is mediated by cytochromes and suggest a platform to explore the other DIET consortia.
- Published
- 2021
- Full Text
- View/download PDF
22. Syntrophic interspecies electron transfer drives carbon fixation and growth by Rhodopseudomonas palustris under dark, anoxic conditions.
- Author
-
Liu X, Huang L, Rensing C, Ye J, Nealson KH, and Zhou S
- Abstract
In natural anoxic environments, anoxygenic photosynthetic bacteria fix CO
2 by photoheterotrophy, photoautotrophy, or syntrophic anaerobic photosynthesis. Here, we describe electroautotrophy, a previously unidentified dark CO2 fixation mode enabled by the electrosyntrophic interaction between Geobacter metallireducens and Rhodopseudomonas palustris. After an electrosyntrophic coculture is formed, electrons are transferred either directly or indirectly (via electron shuttles) from G. metallireducens to R. palustris, thereby providing reducing power and energy for the dark CO2 fixation. Transcriptomic analyses demonstrated the high expression of genes encoding for the extracellular electron transfer pathway in G. metallireducens and the Calvin-Benson-Bassham carbon fixation cycle in R. palustris Given that sediments constitute one of the most ubiquitous and abundant niches on Earth and that, at depth, most of the sedimentary niche is both anoxic and dark, dark carbon fixation provides a metabolic window for the survival of anoxygenic phototrophs, as well as an as-yet unappreciated contribution to the global carbon cycle., (Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).)- Published
- 2021
- Full Text
- View/download PDF
23. Dissecting the Structural and Conductive Functions of Nanowires in Geobacter sulfurreducens Electroactive Biofilms.
- Author
-
Ye Y, Liu X, Nealson KH, Rensing C, Qin S, and Zhou S
- Subjects
- Electron Transport, Biofilms, Cytochromes metabolism, Geobacter metabolism, Nanowires
- Abstract
Conductive nanowires are thought to contribute to long-range electron transfer (LET) in Geobacter sulfurreducens anode biofilms. Three types of nanowires have been identified: pili, OmcS, and OmcZ. Previous studies highlighted their conductive function in anode biofilms, yet a structural function also has to be considered. We present here a comprehensive analysis of the function of nanowires in LET by inhibiting the expression of each nanowire. Meanwhile, flagella with poor conductivity were expressed to recover the structural function but not the conductive function of nanowires in the corresponding nanowire mutant strain. The results demonstrated that pili played a structural but not a conductive function in supporting biofilm formation. In contrast, the OmcS nanowire played a conductive but not a structural function in facilitating electron transfer in the biofilm. The OmcZ nanowire played both a structural and a conductive function to contribute to current generation. Expression of the poorly conductive flagellum was shown to enhance biofilm formation, subsequently increasing current generation. These data support a model in which multiheme cytochromes facilitate long-distance electron transfer in G. sulfurreducens biofilms. Our findings also suggest that the formation of a thicker biofilm, which contributed to a higher current generation by G. sulfurreducens, was confined by the biofilm formation deficiency, and this has applications in microbial electrochemical systems. IMPORTANCE The low power generation of microbial fuel cells limits their utility. Many factors can affect power generation, including inefficient electron transfer in the anode biofilm. Thus, understanding the mechanism(s) of electron transfer provides a pathway for increasing the power density of microbial fuel cells. Geobacter sulfurreducens was shown to form a thick biofilm on the anode. Cells far away from the anode reduce the anode through long-range electron transfer. Based on their conductive properties, three types of nanowires have been hypothesized to directly facilitate long-range electron transfer: pili, OmcS, and OmcZ nanowires. However, their structural contributions to electron transfer in anode biofilm have not been elucidated. Based on studies of mutants lacking one or more of these facilitators, our results support a cytochrome-mediated electron transfer process in Geobacter biofilms and highlight the structural contribution of nanowires in anode biofilm formation, which contributes to biofilm formation and current generation, thereby providing a strategy to increase current generation.
- Published
- 2021
- Full Text
- View/download PDF
24. Single-Cell Genomics of Novel Actinobacteria With the Wood-Ljungdahl Pathway Discovered in a Serpentinizing System.
- Author
-
Merino N, Kawai M, Boyd ES, Colman DR, McGlynn SE, Nealson KH, Kurokawa K, and Hongoh Y
- Abstract
Serpentinite-hosted systems represent modern-day analogs of early Earth environments. In these systems, water-rock interactions generate highly alkaline and reducing fluids that can contain hydrogen, methane, and low-molecular-weight hydrocarbons-potent reductants capable of fueling microbial metabolism. In this study, we investigated the microbiota of Hakuba Happo hot springs (∼50°C; pH∼10.5-11), located in Nagano (Japan), which are impacted by the serpentinization process. Analysis of the 16S rRNA gene amplicon sequences revealed that the bacterial community comprises Nitrospirae (47%), "Parcubacteria" (19%), Deinococcus-Thermus (16%), and Actinobacteria (9%), among others. Notably, only 57 amplicon sequence variants (ASV) were detected, and fifteen of these accounted for 90% of the amplicons. Among the abundant ASVs, an early-branching, uncultivated actinobacterial clade identified as RBG-16-55-12 in the SILVA database was detected. Ten single-cell genomes (average pairwise nucleotide identity: 0.98-1.00; estimated completeness: 33-93%; estimated genome size: ∼2.3 Mb) that affiliated with this clade were obtained. Taxonomic classification using single copy genes indicates that the genomes belong to the actinobacterial class-level clade UBA1414 in the Genome Taxonomy Database. Based on metabolic pathway predictions, these actinobacteria are anaerobes, capable of glycolysis, dissimilatory nitrate reduction and CO
2 fixation via the Wood-Ljungdahl (WL) pathway. Several other genomes within UBA1414 and two related class-level clades also encode the WL pathway, which has not yet been reported for the Actinobacteria phylum. For the Hakuba actinobacterium, the energy metabolism related to the WL pathway is likely supported by a combination of the Rnf complex, group 3b and 3d [NiFe]-hydrogenases, [FeFe]-hydrogenases, and V-type (H+ /Na+ pump) ATPase. The genomes also harbor a form IV ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) complex, also known as a RubisCO-like protein, and contain signatures of interactions with viruses, including clustered regularly interspaced short palindromic repeat (CRISPR) regions and several phage integrases. This is the first report and detailed genome analysis of a bacterium within the Actinobacteria phylum capable of utilizing the WL pathway. The Hakuba actinobacterium is a member of the clade UBA1414/RBG-16-55-12, formerly within the group "OPB41." We propose to name this bacterium ' Candidatus Hakubanella thermoalkaliphilus.', (Copyright © 2020 Merino, Kawai, Boyd, Colman, McGlynn, Nealson, Kurokawa and Hongoh.)- Published
- 2020
- Full Text
- View/download PDF
25. On the 50th Anniversary of the discovery of autoinduction and the ensuing birth of quorum sensing.
- Author
-
Nealson KH
- Published
- 2020
- Full Text
- View/download PDF
26. FeGenie: A Comprehensive Tool for the Identification of Iron Genes and Iron Gene Neighborhoods in Genome and Metagenome Assemblies.
- Author
-
Garber AI, Nealson KH, Okamoto A, McAllister SM, Chan CS, Barco RA, and Merino N
- Abstract
Iron is a micronutrient for nearly all life on Earth. It can be used as an electron donor and electron acceptor by iron-oxidizing and iron-reducing microorganisms and is used in a variety of biological processes, including photosynthesis and respiration. While it is the fourth most abundant metal in the Earth's crust, iron is often limiting for growth in oxic environments because it is readily oxidized and precipitated. Much of our understanding of how microorganisms compete for and utilize iron is based on laboratory experiments. However, the advent of next-generation sequencing and surge in publicly available sequence data has made it possible to probe the structure and function of microbial communities in the environment. To bridge the gap between our understanding of iron acquisition, iron redox cycling, iron storage, and magnetosome formation in model microorganisms and the plethora of sequence data available from environmental studies, we have created a comprehensive database of hidden Markov models (HMMs) based on genes related to iron acquisition, storage, and reduction/oxidation in Bacteria and Archaea . Along with this database, we present FeGenie, a bioinformatics tool that accepts genome and metagenome assemblies as input and uses our comprehensive HMM database to annotate provided datasets with respect to iron-related genes and gene neighborhood. An important contribution of this tool is the efficient identification of genes involved in iron oxidation and dissimilatory iron reduction, which have been largely overlooked by standard annotation pipelines. We validated FeGenie against a selected set of 28 isolate genomes and showcase its utility in exploring iron genes present in 27 metagenomes, 4 isolate genomes from human oral biofilms, and 17 genomes from candidate organisms, including members of the candidate phyla radiation. We show that FeGenie accurately identifies iron genes in isolates. Furthermore, analysis of metagenomes using FeGenie demonstrates that the iron gene repertoire and abundance of each environment is correlated with iron richness. While this tool will not replace the reliability of culture-dependent analyses of microbial physiology, it provides reliable predictions derived from the most up-to-date genetic markers. FeGenie's database will be maintained and continually updated as new genes are discovered. FeGenie is freely available: https://github.com/Arkadiy-Garber/FeGenie., (Copyright © 2020 Garber, Nealson, Okamoto, McAllister, Chan, Barco and Merino.)
- Published
- 2020
- Full Text
- View/download PDF
27. A Genus Definition for Bacteria and Archaea Based on a Standard Genome Relatedness Index.
- Author
-
Barco RA, Garrity GM, Scott JJ, Amend JP, Nealson KH, and Emerson D
- Subjects
- DNA, Bacterial genetics, Genomics, Phylogeny, RNA, Ribosomal, 16S genetics, Sequence Analysis, DNA, Archaea classification, Bacteria classification, Classification methods, Genome, Archaeal, Genome, Bacterial
- Abstract
Genus assignment is fundamental in the characterization of microbes, yet there is currently no unambiguous way to demarcate genera solely using standard genomic relatedness indices. Here, we propose an approach to demarcate genera that relies on the combined use of the average nucleotide identity, genome alignment fraction, and the distinction between type- and non-type species. More than 3,500 genomes representing type strains of species from >850 genera of either bacterial or archaeal lineages were tested. Over 140 genera were analyzed in detail within the taxonomic context of order/family. Significant genomic differences between members of a genus and type species of other genera in the same order/family were conserved in 94% of the cases. Nearly 90% (92% if polyphyletic genera are excluded) of the type strains were classified in agreement with current taxonomy. The 448 type strains that need reclassification directly impact 33% of the genera analyzed in detail. The results provide a first line of evidence that the combination of genomic indices provides added resolution to effectively demarcate genera within the taxonomic framework that is currently based on the 16S rRNA gene. We also identify the emergence of natural breakpoints at the genome level that can further help in the circumscription of taxa, increasing the proportion of directly impacted genera to at least 43% and pointing at inaccuracies on the use of the 16S rRNA gene as a taxonomic marker, despite its precision. Altogether, these results suggest that genomic coherence is an emergent property of genera in Bacteria and Archaea IMPORTANCE In recent decades, the taxonomy of Bacteria and Archaea , and therefore genus designation, has been largely based on the use of a single ribosomal gene, the 16S rRNA gene, as a taxonomic marker. We propose an approach to delineate genera that excludes the direct use of the 16S rRNA gene and focuses on a standard genome relatedness index, the average nucleotide identity. Our findings are of importance to the microbiology community because the emergent properties of Bacteria and Archaea that are identified in this study will help assign genera with higher taxonomic resolution., (Copyright © 2020 Barco et al.)
- Published
- 2020
- Full Text
- View/download PDF
28. Detecting Endogenous Microbial Metabolism and Differentiating Between Abiotic and Biotic Signals Observed by Bioelectrochemical Systems in Soils.
- Author
-
Lam BR, Barge LM, Noell AC, and Nealson KH
- Subjects
- Carboxylic Acids analysis, Electrochemical Techniques, Electrodes, Proteins analysis, Soil chemistry, Bacteria metabolism, Bioelectric Energy Sources, Exobiology, Soil Microbiology
- Abstract
Unambiguous detection of chemical and physical signatures of microbial life on Mars or other solar system bodies requires differentiation between signals produced by biotic and abiotic processes; instruments aimed at generalized in situ extant life detection would therefore increase the science return of a life-detection mission. Here, we investigate Bioelectrochemical Systems (BES) as a technique to measure microbial metabolism (which produces electrical current and redox changes) and distinguish between potential abiotic and biotic responses in environmental samples. Samples from inhabited niches should contain everything necessary to produce current, that is, catalysts (microorganisms) and fuel (nutrients). BES can also probe for inactive organisms in less energetically rich areas by adding a fuel to drive metabolism. A commercial potting soil and a Mars simulant soil were inoculated in the anodic chamber of microbial fuel cells, and current was monitored over time. Addition of a fuel (electron donor) source was tested for metabolic stimulation of endogenous microbes. Redox reactions between Mars simulant soil and the introduced electron donor (lactate) produced false-positive results, emphasizing the importance of careful interpretation of signals obtained. The addition of lactate to both soils resulted in enhanced biologically produced current, allowing stimulation and detection of dormant microbes. Our results demonstrate that BES provide an approach to detect metabolism in samples without prior knowledge of the organisms present, and that thorough electrochemical analyses and experimental design are necessary to determine if signals are biotic.
- Published
- 2020
- Full Text
- View/download PDF
29. Differences in Applied Redox Potential on Cathodes Enrich for Diverse Electrochemically Active Microbial Isolates From a Marine Sediment.
- Author
-
Lam BR, Barr CR, Rowe AR, and Nealson KH
- Abstract
The diversity of microbially mediated redox processes that occur in marine sediments is likely underestimated, especially with respect to the metabolisms that involve solid substrate electron donors or acceptors. Though electrochemical studies that utilize poised potential electrodes as a surrogate for solid substrate or mineral interactions have shed some much needed light on these areas, these studies have traditionally been limited to one redox potential or metabolic condition. This work seeks to uncover the diversity of microbes capable of accepting cathodic electrons from a marine sediment utilizing a range of redox potentials, by coupling electrochemical enrichment approaches to microbial cultivation and isolation techniques. Five lab-scale three-electrode electrochemical systems were constructed, using electrodes that were initially incubated in marine sediment at cathodic or electron-donating voltages (five redox potentials between -400 and -750 mV versus Ag/AgCl) as energy sources for enrichment. Electron uptake was monitored in the laboratory bioreactors and linked to the reduction of supplied terminal electron acceptors (nitrate or sulfate). Enriched communities exhibited differences in community structure dependent on poised redox potential and terminal electron acceptor used. Further cultivation of microbes was conducted using media with reduced iron (Fe
0 , FeCl2 ) and sulfur (S0 ) compounds as electron donors, resulting in the isolation of six electrochemically active strains. The isolates belong to the genera Vallitalea of the Clostridia , Arcobacter of the Epsilonproteobacteria , Desulfovibrio of the Deltaproteobacteria , and Vibrio and Marinobacter of the Gammaproteobacteria . Electrochemical characterization of the isolates with cyclic voltammetry yielded a wide range of midpoint potentials (99.20 to -389.1 mV versus Ag/AgCl), indicating diverse metabolic pathways likely support the observed electron uptake. Our work demonstrates culturing under various electrochemical and geochemical regimes allows for enhanced cultivation of diverse cathode-oxidizing microbes from one environmental system. Understanding the mechanisms of solid substrate oxidation from environmental microbes will further elucidation of the ecological relevance of these electron transfer interactions with implications for microbe-electrode technologies.- Published
- 2019
- Full Text
- View/download PDF
30. The kinetics of siderophore-mediated olivine dissolution.
- Author
-
Torres MA, Dong S, Nealson KH, and West AJ
- Subjects
- Kinetics, Models, Biological, Solubility, Iron Compounds chemistry, Magnesium Compounds chemistry, Microbiota physiology, Siderophores chemistry, Silicates chemistry
- Abstract
Silicate minerals represent an important reservoir of nutrients at Earth's surface and a source of alkalinity that modulates long-term geochemical cycles. Due to the slow kinetics of primary silicate mineral dissolution and the potential for nutrient immobilization by secondary mineral precipitation, the bioavailability of many silicate-bound nutrients may be limited by the ability of micro-organisms to actively scavenge these nutrients via redox alteration and/or organic ligand production. In this study, we use targeted laboratory experiments with olivine and the siderophore deferoxamine B to explore how microbial ligands affect nutrient (Fe) release and the overall rate of mineral dissolution. Our results show that olivine dissolution rates are accelerated in the presence of micromolar concentrations of deferoxamine B. Based on the non-linear decrease in rates with time and formation of a Fe
3+ -ligand complex, we attribute this acceleration in dissolution rates to the removal of an oxidized surface coating that forms during the dissolution of olivine at circum-neutral pH in the presence of O2 and the absence of organic ligands. While increases in dissolution rates are observed with micromolar concentrations of siderophores, it remains unclear whether such conditions could be realized in natural environments due to the strong physiological control on microbial siderophore production. So, to contextualize our experimental results, we also developed a feedback model, which considers how microbial physiology and ligand-promoted mineral dissolution kinetics interact to control the extent of biotic enhancement of dissolution rates expected for different environments. The model predicts that physiological feedbacks severely limit the extent to which dissolution rates may be enhanced by microbial activity, though the rate of physical transport modulates this limitation., (© 2019 John Wiley & Sons Ltd.)- Published
- 2019
- Full Text
- View/download PDF
31. Genomic and in-situ Transcriptomic Characterization of the Candidate Phylum NPL-UPL2 From Highly Alkaline Highly Reducing Serpentinized Groundwater.
- Author
-
Suzuki S, Nealson KH, and Ishii S
- Abstract
Serpentinization is a process whereby water interacts with reduced mantle rock called peridotite to produce a new suite of minerals (e.g., serpentine), a highly alkaline fluid, and hydrogen. In previous reports, we identified abundance of microbes of the candidate phylum NPL-UPA2 in a serpentinization site called The Cedars. Here, we report the first metagenome assembled genome (MAG) of the candidate phylum as well as the in-situ gene expression. The MAG of the phylum NPL-UPA2, named Unc8, is only about 1 Mbp and its biosynthetic properties suggest it should be capable of independent growth. In keeping with the highly reducing niche of Unc8, its genome encodes none of the known oxidative stress response genes including superoxide dismutases. With regard to energy metabolism, the MAG of Unc8 encodes all enzymes for Wood-Ljungdahl acetogenesis pathway, a ferredoxin:NAD
+ oxidoreductase (Rnf) and electron carriers for flavin-based electron bifurcation (Etf, Hdr). Furthermore, the transcriptome of Unc8 in the waters of The Cedars showed enhanced levels of gene expression in the key enzymes of the Wood-Ljungdahl pathway [e.g., Carbon monoxide dehydrogenase /Acetyl-CoA synthase complex (CODH/ACS), Rnf, Acetyl-CoA synthetase (Acd)], which indicated that the Unc8 is an acetogen. However, the MAG of Unc8 encoded no well-known hydrogenase genes, suggesting that the energy metabolism of Unc8 might be focused on CO as the carbon and energy sources for the acetate formation. Given that CO could be supplied via abiotic reaction associated with deep subsurface serpentinization, while available CO2 would be at extremely low concentrations in this high pH environment, CO-associated metabolism could provide advantageous approach. The CODH/ACS in Unc8 is a Bacteria/Archaea hybrid type of six-subunit complex and the electron carriers, Etf and Hdr, showed the highest similarity to those in Archaea, suggesting that archaeal methanogenic energy metabolism was incorporated into the bacterial acetogenesis in NPL-UPA2. Given that serpentinization systems are viewed as potential habitats for early life, and that acetogenesis via the Wood-Ljungdahl pathway is proposed as an energy metabolism of Last Universal Common Ancestor, a phylogenetically distinct acetogen from an early earth analog site may provide important insights in primordial lithotrophs and their habitat.- Published
- 2018
- Full Text
- View/download PDF
32. Comparative metatranscriptomics reveals extracellular electron transfer pathways conferring microbial adaptivity to surface redox potential changes.
- Author
-
Ishii S, Suzuki S, Tenney A, Nealson KH, and Bretschger O
- Subjects
- Carbon metabolism, Cytochrome c Group genetics, Cytochrome c Group metabolism, Electric Conductivity, Electrodes, Electron Transport, Geobacter metabolism, Heme, Metagenomics, Oxidation-Reduction, Geobacter genetics, Metabolic Networks and Pathways, Microbiota, Transcriptome
- Abstract
Some microbes can capture energy through redox reactions with electron flow to solid-phase electron acceptors, such as metal-oxides or poised electrodes, via extracellular electron transfer (EET). While diverse oxide minerals, exhibiting different surface redox potentials, are widely distributed on Earth, little is known about how microbes sense and use the minerals. Here we show electrochemical, metabolic, and transcriptional responses of EET-active microbial communities established on poised electrodes to changes in the surface redox potentials (as electron acceptors) and surrounding substrates (as electron donors). Combination of genome-centric stimulus-induced metatranscriptomics and metabolic pathway investigation revealed that nine Geobacter/Pelobacter microbes performed EET activity differently according to their preferable surface potentials and substrates. While the Geobacter/Pelobacter microbes coded numerous numbers of multi-heme c-type cytochromes and conductive e-pili, wide variations in gene expression were seen in response to altering surrounding substrates and surface potentials, accelerating EET via poised electrode or limiting EET via an open circuit system. These flexible responses suggest that a wide variety of EET-active microbes utilizing diverse EET mechanisms may work together to provide such EET-active communities with an impressive ability to handle major changes in surface potential and carbon source availability.
- Published
- 2018
- Full Text
- View/download PDF
33. Self-standing Electrochemical Set-up to Enrich Anode-respiring Bacteria On-site.
- Author
-
Okamoto A, Rowe A, Deng X, and Nealson KH
- Subjects
- Bacteria, Bioelectric Energy Sources statistics & numerical data, Electrodes statistics & numerical data, Electron Transport physiology
- Abstract
Anaerobic respiration coupled with electron transport to insoluble minerals (referred to as extracellular electron transport [EET]) is thought to be critical for microbial energy production and persistence in many subsurface environments, especially those lacking soluble terminal electron acceptors. While EET-capable microbes have been successfully isolated from various environments, the diversity of bacteria capable of EET is still poorly understood, especially in difficult-to-sample, low energy or extreme environments, such as many subsurface ecosystems. Here, we describe an on-site electrochemical system to enrich EET-capable bacteria using an anode as a respiratory terminal electron acceptor. This anode is connected to a cathode capable of catalyzing abiotic oxygen reduction. Comparing this approach with electrocultivation methods that use a potentiostat for poising the electrode potential, the two-electrode system does not require an external power source. We present an example of our on-site enrichment utilized in an alkaline pond at the Cedars, a terrestrial serpentinization site in Northern California. Prior attempts to cultivate mineral reducing bacteria were unsuccessful, which is likely due to the low-biomass nature of this site and/or the low relative abundance of metal reducing microbes. Prior to implementing our two-electrode enrichment, we measured the vertical profile of dissolved oxygen concentration. This allowed us to place the carbon felt anode and platinum-electroplated carbon felt cathode at depths that would support anaerobic and aerobic processes, respectively. Following on-site incubation, we further enriched the anodic electrode in the laboratory and confirmed a distinct microbial community compared to the surface-attached or biofilm communities normally observed at the Cedars. This enrichment subsequently led to the isolation of the first electrogenic microbe from the Cedars. This method of on-site microbial enrichment has the potential to greatly enhance the isolation of EET-capable bacteria from low biomass or difficult to sample habitats.
- Published
- 2018
- Full Text
- View/download PDF
34. Variation in electrode redox potential selects for different microorganisms under cathodic current flow from electrodes in marine sediments.
- Author
-
Lam BR, Rowe AR, and Nealson KH
- Subjects
- Bacterial Physiological Phenomena, Biofilms, Electrodes, Electrons, Humans, Oxidation-Reduction, Bacteria classification, Electrochemical Techniques, Geologic Sediments microbiology
- Abstract
Extracellular electron transport (EET) is a microbial process that allows microorganisms to transport electrons to and from insoluble substrates outside of the cell. Although progress has been made in understanding how microbes transfer electrons to insoluble substrates, the process of receiving electrons has largely remained unexplored. We investigated redox potentials favourable for donating electrons to dissolved and insoluble components in Catalina Harbor marine sediment by combining electrochemical techniques with geochemistry and molecular methods. Working electrodes buried in sediment microcosms were poised at seven redox potentials between -300 and -750 mV versus Ag/AgCl using a three-electrode system. In electrode biofilms recovered after 2-month incubations, overall community diversity increased with more negative redox potentials. Abundances of known EET-capable groups (e.g., Alteromonadales and Desulfuromonadales) varied with redox potential. Motility and chemotaxis genes were found in greater abundance in electrode communities, suggesting a possible selective advantage of these pathways for colonization and utilization of the electrode. Our enrichments demonstrated the validity of this approach in capturing groups known, as well as novel groups (e.g., Campylobacterales) that perform EET. The diverse nature of the enriched cathode communities suggest that insoluble substrate oxidation may be a critical, although poorly described microbial metabolic process in marine sediment., (© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.)
- Published
- 2018
- Full Text
- View/download PDF
35. Tracking Electron Uptake from a Cathode into Shewanella Cells: Implications for Energy Acquisition from Solid-Substrate Electron Donors.
- Author
-
Rowe AR, Rajeev P, Jain A, Pirbadian S, Okamoto A, Gralnick JA, El-Naggar MY, and Nealson KH
- Subjects
- Flavin Mononucleotide metabolism, Hydroquinones metabolism, NAD metabolism, Oxidation-Reduction, Oxygen metabolism, Electrodes microbiology, Electron Transport, Shewanella metabolism
- Abstract
While typically investigated as a microorganism capable of extracellular electron transfer to minerals or anodes, Shewanella oneidensis MR-1 can also facilitate electron flow from a cathode to terminal electron acceptors, such as fumarate or oxygen, thereby providing a model system for a process that has significant environmental and technological implications. This work demonstrates that cathodic electrons enter the electron transport chain of S. oneidensis when oxygen is used as the terminal electron acceptor. The effect of electron transport chain inhibitors suggested that a proton gradient is generated during cathode oxidation, consistent with the higher cellular ATP levels measured in cathode-respiring cells than in controls. Cathode oxidation also correlated with an increase in the cellular redox (NADH/FMNH
2 ) pool determined with a bioluminescence assay, a proton uncoupler, and a mutant of proton-pumping NADH oxidase complex I. This work suggested that the generation of NADH/FMNH2 under cathodic conditions was linked to reverse electron flow mediated by complex I. A decrease in cathodic electron uptake was observed in various mutant strains, including those lacking the extracellular electron transfer components necessary for anodic-current generation. While no cell growth was observed under these conditions, here we show that cathode oxidation is linked to cellular energy acquisition, resulting in a quantifiable reduction in the cellular decay rate. This work highlights a potential mechanism for cell survival and/or persistence on cathodes, which might extend to environments where growth and division are severely limited. IMPORTANCE The majority of our knowledge of the physiology of extracellular electron transfer derives from studies of electrons moving to the exterior of the cell. The physiological mechanisms and/or consequences of the reverse processes are largely uncharacterized. This report demonstrates that when coupled to oxygen reduction, electrode oxidation can result in cellular energy acquisition. This respiratory process has potentially important implications for how microorganisms persist in energy-limited environments, such as reduced sediments under changing redox conditions. From an applied perspective, this work has important implications for microbially catalyzed processes on electrodes, particularly with regard to understanding models of cellular conversion of electrons from cathodes to microbially synthesized products., (Copyright © 2018 Rowe et al.)- Published
- 2018
- Full Text
- View/download PDF
36. Multi-heme cytochromes provide a pathway for survival in energy-limited environments.
- Author
-
Deng X, Dohmae N, Nealson KH, Hashimoto K, and Okamoto A
- Subjects
- Aerobiosis, Cell Membrane drug effects, Cell Membrane metabolism, Desulfovibrio drug effects, Electrochemistry, Lactic Acid pharmacology, Nanowires ultrastructure, Phylogeny, Cytochromes metabolism, Desulfovibrio physiology, Energy Metabolism drug effects, Environment, Heme metabolism, Microbial Viability drug effects
- Abstract
Bacterial reduction of oxidized sulfur species (OSS) is critical for energy production in anaerobic marine subsurfaces. In organic-poor sediments, H
2 has been considered as a major energy source for bacterial respiration. We identified outer-membrane cytochromes (OMCs) that are broadly conserved in sediment OSS-respiring bacteria and enable cells to directly use electrons from insoluble minerals via extracellular electron transport. Biochemical, transcriptomic, and microscopic analyses revealed that the identified OMCs were highly expressed on the surface of cells and nanofilaments in response to electron donor limitation. This electron uptake mechanism provides sufficient but minimum energy to drive the reduction of sulfate and other OSS. These results suggest a widespread mechanism for survival of OSS-respiring bacteria via electron uptake from solid minerals in energy-poor marine sediments.- Published
- 2018
- Full Text
- View/download PDF
37. Genome Sequence of Hydrogenovibrio sp. Strain SC-1, a Chemolithoautotrophic Sulfur and Iron Oxidizer.
- Author
-
Neely C, Bou Khalil C, Cervantes A, Diaz R, Escobar A, Ho K, Hoefler S, Smith HH, Abuyen K, Savalia P, Nealson KH, Emerson D, Tully B, Barco RA, and Amend J
- Abstract
Hydrogenovibrio sp. strain SC-1 was isolated from pyrrhotite incubated in situ in the marine surface sediment of Catalina Island, CA. Strain SC-1 has demonstrated autotrophic growth through the oxidation of thiosulfate and iron. Here, we present the 2.45-Mb genome sequence of SC-1, which contains 2,262 protein-coding genes., (Copyright © 2018 Neely et al.)
- Published
- 2018
- Full Text
- View/download PDF
38. Changes in Microbial Energy Metabolism Measured by Nanocalorimetry during Growth Phase Transitions.
- Author
-
Robador A, LaRowe DE, Finkel SE, Amend JP, and Nealson KH
- Abstract
Calorimetric measurements of the change in heat due to microbial metabolic activity convey information about the kinetics, as well as the thermodynamics, of all chemical reactions taking place in a cell. Calorimetric measurements of heat production made on bacterial cultures have recorded the energy yields of all co-occurring microbial metabolic reactions, but this is a complex, composite signal that is difficult to interpret. Here we show that nanocalorimetry can be used in combination with enumeration of viable cell counts, oxygen consumption rates, cellular protein content, and thermodynamic calculations to assess catabolic rates of an isolate of Shewanella oneidensis MR-1 and infer what fraction of the chemical energy is assimilated by the culture into biomass and what fraction is dissipated in the form of heat under different limiting conditions. In particular, our results demonstrate that catabolic rates are not necessarily coupled to rates of cell division, but rather, to physiological rearrangements of S. oneidensis MR-1 upon growth phase transitions. In addition, we conclude that the heat released by growing microorganisms can be measured in order to understand the physiochemical nature of the energy transformation and dissipation associated with microbial metabolic activity in conditions approaching those found in natural systems.
- Published
- 2018
- Full Text
- View/download PDF
39. Redox Sensing within the Genus Shewanella .
- Author
-
Harris HW, Sánchez-Andrea I, McLean JS, Salas EC, Tran W, El-Naggar MY, and Nealson KH
- Abstract
A novel bacterial behavior called congregation was recently described in Shewanella oneidensis MR-1 as the accumulation of cells around insoluble electron acceptors (IEA). It is the result of a series of "run-and-reversal" events enabled by modulation of swimming speed and direction. The model proposed that the swimming cells constantly sense their surroundings with specialized outer membrane cytochromes capable of extracellular electron transport (EET). Up to this point, neither the congregation nor attachment behavior have been studied in any other strains. In this study, the wild type of S. oneidensis MR-1 and several deletion mutants as well as eight other Shewanella strains ( Shewanella putrefaciens CN32, S . sp. ANA-3, S . sp. W3-18-1, Shewanella amazonensis SB2B, Shewanella loihica PV-4, Shewanella denitrificans OS217, Shewanella baltica OS155, and Shewanella frigidimarina NCIMB400) were screened for the ability to congregate. To monitor congregation and attachment, specialized cell-tracking techniques, as well as a novel cell accumulation after photo-bleaching (CAAP) confocal microscopy technique were utilized in this study. We found a strong correlation between the ability of strain MR-1 to accumulate on mineral surface and the presence of key EET genes such as mtrBC/omcA (SO_1778, SO_1776, and SO_1779) and gene coding for methyl-accepting protein (MCPs) with Ca
+ channel che motaxis receptor (Cache) domain (SO_2240). These EET and taxis genes were previously identified as essential for characteristic run and reversal swimming around IEA surfaces. CN32, ANA-3, and PV-4 congregated around both Fe(OH)3 and MnO2 . Two other Shewanella spp. showed preferences for one oxide over the other: preferences that correlated with the metal content of the environments from which the strains were isolated: e.g., W3-18-1, which was isolated from an iron-rich habitat congregated and attached preferentially to Fe(OH)3 , while SB2B, which was isolated from a MnO2 -rich environment, preferred MnO2 .- Published
- 2018
- Full Text
- View/download PDF
40. A metabolic-activity-detecting approach to life detection: Restoring a chemostat from stop-feeding using a rapid bioactivity assay.
- Author
-
Li SL, Bai MD, Hsiao CJ, Cheng SS, and Nealson KH
- Subjects
- Clostridium cytology, Dose-Response Relationship, Drug, Electric Conductivity, Electron Transport drug effects, Extracellular Space drug effects, Extracellular Space metabolism, Fermentation drug effects, Ferrocyanides pharmacology, Glucose pharmacology, Time Factors, Bioreactors microbiology, Clostridium drug effects, Clostridium metabolism
- Abstract
A mediated glassy carbon electrode covered by a thin-film polyviologen was used in the present study to rapidly detect bioactivity in a mixed-culture chemostat (dominated by Clostridium sp.). With the addition of 1mM hexacyanoferrate and 9mM glucose, the current increasing rate (dI/dt) measured under a poised potential of 500mV (vs. Ag/AgCl) can be defined as the quantity of metabolic activity. In the experiment of restoring the chemostat from stop-feeding, it is suggested that when the dI/dt was >2μAmin
-1 , the influent pump could be directly turned on to maintain the high dilution rate of 0.5h-1 ; when the dI/dt was lower than 2μAmin-1 , reducing the dilution rate would be needed to avoid cell wash out. Since the soluble mediators and polyviologen film will enhance performances by favorable electron transfer and positively charged surfaces, respectively, we suggest that the method can also be employed to detect the bioactivities in environmental samples., (Copyright © 2017 Elsevier B.V. All rights reserved.)- Published
- 2017
- Full Text
- View/download PDF
41. Unusual metabolic diversity of hyperalkaliphilic microbial communities associated with subterranean serpentinization at The Cedars.
- Author
-
Suzuki S, Ishii S, Hoshino T, Rietze A, Tenney A, Morrill PL, Inagaki F, Kuenen JG, and Nealson KH
- Subjects
- Archaea classification, Archaea genetics, Bacteria classification, Bacteria genetics, Biodiversity, Metagenomics, Natural Springs analysis, Phylogeny, Alkalies metabolism, Archaea isolation & purification, Archaea metabolism, Bacteria isolation & purification, Bacteria metabolism, Natural Springs microbiology
- Abstract
Water from The Cedars springs that discharge from serpentinized ultramafic rocks feature highly basic (pH=~12), highly reducing (E
h <-550 mV) conditions with low ionic concentrations. These conditions make the springs exceptionally challenging for life. Here, we report the metagenomic data and recovered draft genomes from two different springs, GPS1 and BS5. GPS1, which was fed solely by a deep groundwater source within the serpentinizing system, was dominated by several bacterial taxa from the phyla OD1 ('Parcubacteria') and Chloroflexi. Members of the GPS1 community had, for the most part, the smallest genomes reported for their respective taxa, and encoded only archaeal (A-type) ATP synthases or no ATP synthases at all. Furthermore, none of the members encoded respiration-related genes and some of the members also did not encode key biosynthesis-related genes. In contrast, BS5, fed by shallow water, appears to have a community driven by hydrogen metabolism and was dominated by a diverse group of Proteobacteria similar to those seen in many terrestrial serpentinization sites. Our findings indicated that the harsh ultrabasic geological setting supported unexpectedly diverse microbial metabolic strategies and that the deep-water-fed springs supported a community that was remarkable in its unusual metagenomic and genomic constitution.- Published
- 2017
- Full Text
- View/download PDF
42. Population dynamics of electrogenic microbial communities in microbial fuel cells started with three different inoculum sources.
- Author
-
Ishii S, Suzuki S, Yamanaka Y, Wu A, Nealson KH, and Bretschger O
- Subjects
- Electron Transport, Proteobacteria genetics, Proteobacteria metabolism, RNA, Ribosomal, 16S genetics, Bioelectric Energy Sources microbiology
- Abstract
Microbial fuel cells (MFCs) are one of the bioelectrochemical systems that exploit microorganisms as biocatalysts to degrade organic matters and recover energy as electric power. Here, we explored how the established electrogenic microbial communities were influenced by three different inoculum sources; anaerobic sludge of the wastewater plant, rice paddy field soil, and coastal lagoon sediment. We periodically characterized both electricity generation with sucrose consumption and 16S rRNA-basis microbial community composition. The electrochemical features of MFCs were slightly different among three inocula, and the lagoon sediment-inoculated MFC showed the highest performance in terms of the treatment time. Meanwhile, although the inoculated microbial communities were highly diverse and quite different, only twelve genera affiliated with δ-Proteobacteria, γ-Proteobacteria, Bacilli, Clostridia/Negativicutes or Bacteroidetes were abundantly enriched in all MFC anode communities. Within them, several fermentative genera were clearly different due to the inocula, while the inocula-specific phylotypes were identified in an electrogenic genus Geobacter. The relative abundances of phylotypes closely-related to Geobacter metallireducens were increased in later stages of all the sucrose-fed MFCs. These results indicate that key microbial members for the functional electrogenic community widely exist in natural ecosystems, but the community members presenting in inoculum sources affected the MFC performances., (Copyright © 2017 Elsevier B.V. All rights reserved.)
- Published
- 2017
- Full Text
- View/download PDF
43. Bioelectricity (electromicrobiology) and sustainability.
- Author
-
Nealson KH
- Subjects
- Bacteria metabolism, Electricity, Electrodes, Oxidation-Reduction, Renewable Energy, Bacteria chemistry, Bioelectric Energy Sources microbiology
- Abstract
Electromicrobiology is the domain of those prokaryotes able to interact with charged electrodes, using them as electron donors and/or electron acceptors. This is performed via a process called extracellular electron transport, in which outer membrane cytochromes are used to oxidize and/or reduce otherwise unavailable insoluble electron acceptors. EET-capable bacteria can thus be used for a variety of purposes, ranging from small power sources, water reclamation, to pollution remediation and electrosynthesis. Because the study of EET-capable bacteria is in its nascent phase, the applications are mostly in developmental stages, but the potential for significant contributions to environmental quality is high and moving forward., (© 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.)
- Published
- 2017
- Full Text
- View/download PDF
44. In situ electrochemical enrichment and isolation of a magnetite-reducing bacterium from a high pH serpentinizing spring.
- Author
-
Rowe AR, Yoshimura M, LaRowe DE, Bird LJ, Amend JP, Hashimoto K, Nealson KH, and Okamoto A
- Subjects
- Firmicutes isolation & purification, Gammaproteobacteria isolation & purification, Hydrogen chemistry, Hydrogen-Ion Concentration, Oxidation-Reduction, RNA, Ribosomal, 16S, Electron Transport physiology, Ferrosoferric Oxide metabolism, Firmicutes metabolism, Gammaproteobacteria metabolism
- Abstract
Serpentinization is a geologic process that produces highly reduced, hydrogen-rich fluids that support microbial communities under high pH conditions. We investigated the activity of microbes capable of extracellular electron transfer in a terrestrial serpentinizing system known as 'The Cedars'. Measuring current generation with an on-site two-electrode system, we observed daily oscillations in current with the current maxima and minima occurring during daylight hours. Distinct members of the microbial community were enriched. Current generation in lab-scale electrochemical reactors did not oscillate, but was correlated with carbohydrate amendment in Cedars-specific minimal media. Gammaproteobacteria and Firmicutes were consistently enriched from lab electrochemical systems on δ-MnO
2 and amorphous Fe(OH)3 at pH 11. However, isolation of an electrogenic strain proved difficult as transfer cultures failed to grow after multiple rounds of media transfer. Lowering the bulk pH in the media allowed us to isolate a Firmicutes strain (Paenibacillus sp.). This strain was capable of electrode and mineral reduction (including magnetite) at pH 9. This report provides evidence of the in situ activity of microbes using extracellular substrates as sinks for electrons at The Cedars, but also highlights the potential importance of community dynamics for supporting microbial life through either carbon fixation, and/or moderating pH stress., (© 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.)- Published
- 2017
- Full Text
- View/download PDF
45. Nanoelectronic Investigation Reveals the Electrochemical Basis of Electrical Conductivity in Shewanella and Geobacter.
- Author
-
Ding M, Shiu HY, Li SL, Lee CK, Wang G, Wu H, Weiss NO, Young TD, Weiss PS, Wong GC, Nealson KH, Huang Y, and Duan X
- Subjects
- Bioelectric Energy Sources, Biofilms, Electrodes, Electron Transport, Electric Conductivity, Geobacter, Nanotechnology, Shewanella
- Abstract
The electrical conductivity measured in Shewanella and Geobacter spp. is an intriguing physical property that is the fundamental basis for possible extracellular electron transport (EET) pathways. There is considerable debate regarding the origins of the electrical conductivity reported in these microbial cellular structures, which is essential for deciphering the EET mechanism. Here, we report systematic on-chip nanoelectronic investigations of both Shewanella and Geobacter spp. under physiological conditions to elucidate the complex basis of electrical conductivity of both individual microbial cells and biofilms. Concurrent electrical and electrochemical measurements of living Shewanella at both few-cell and the biofilm levels indicate that the apparent electrical conductivity can be traced to electrochemical-based electron transfer at the cell/electrode interface. We further show that similar results and conclusions apply to the Geobacter spp. Taken together, our study offers important insights into previously proposed physical models regarding microbial conductivities as well as EET pathways for Shewanella and Geobacter spp.
- Published
- 2016
- Full Text
- View/download PDF
46. Evolution of Cell Size Homeostasis and Growth Rate Diversity during Initial Surface Colonization of Shewanella oneidensis.
- Author
-
Lee CK, Kim AJ, Santos GS, Lai PY, Lee SY, Qiao DF, Anda J, Young TD, Chen Y, Rowe AR, Nealson KH, Weiss PS, and Wong GCL
- Abstract
Cell size control and homeostasis are fundamental features of bacterial metabolism. Recent work suggests that cells add a constant size between birth and division ("adder" model). However, it is not known how cell size homeostasis is influenced by the existence of heterogeneous microenvironments, such as those during biofilm formation. Shewanella oneidensis MR-1 can use diverse energy sources on a range of surfaces via extracellular electron transport (EET), which can impact growth, metabolism, and size diversity. Here, we track bacterial surface communities at single-cell resolution to show that not only do bacterial motility appendages influence the transition from two- to three-dimensional biofilm growth and control postdivisional cell fates, they strongly impact cell size homeostasis. For every generation, we find that the average growth rate for cells that stay on the surface and continue to divide (nondetaching population) and that for cells that detach before their next division (detaching population) are roughly constant. However, the growth rate distribution is narrow for the nondetaching population, but broad for the detaching population in each generation. Interestingly, the appendage deletion mutants (ΔpilA, ΔmshA-D, Δflg) have significantly broader growth rate distributions than that of the wild type for both detaching and nondetaching populations, which suggests that Shewanella appendages are important for sensing and integrating environmental inputs that contribute to size homeostasis. Moreover, our results suggest multiplexing of appendages for sensing and motility functions contributes to cell size dysregulation. These results can potentially provide a framework for generating metabolic diversity in S. oneidensis populations to optimize EET in heterogeneous environments.
- Published
- 2016
- Full Text
- View/download PDF
47. Electromicrobiology: realities, grand challenges, goals and predictions.
- Author
-
Nealson KH and Rowe AR
- Subjects
- Cytochromes metabolism, Electrodes microbiology, Electron Transport, Bioelectric Energy Sources, Geobacter metabolism, Shewanella metabolism
- Abstract
Electromicrobiology is a subdiscipline of microbiology that involves extracellular electron transfer (EET) to (or from) insoluble electron active redox compounds located outside the outer membrane of the cell. These interactions can often be studied using electrochemical techniques which have provided novel insights into microbial physiology in recent years. The mechanisms (and variations) of outward EET are well understood for two model systems, Shewanella and Geobacter, both of which employ multihaem cytochromes to provide an electron conduit to the cell exterior. In contrast, little is known of the intricacies of inward EET, even in these model systems. Given the number of labs now working on EET, it seems likely that most of the mechanistic details will be understood in a few years for the model systems, and the many applications of electromicrobiology will continue to move forward. But emerging work, using electrodes as electron acceptors and donors is providing an abundance of new types of microbes capable of EET inward and/or outward: microbes that are clearly different from our known systems. The extent of this very diverse, and perhaps widely distributed and biogeochemically important ability needs to be determined to understand the mechanisms, importance, and raison d'etre of EET for microbial biology., (© 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.)
- Published
- 2016
- Full Text
- View/download PDF
48. Functional roles of CymA and NapC in reduction of nitrate and nitrite by Shewanella putrefaciens W3-18-1.
- Author
-
Wei H, Dai J, Xia M, Romine MF, Shi L, Beliav A, Tiedje JM, Nealson KH, Fredrickson JK, Zhou J, and Qiu D
- Subjects
- Amino Acid Sequence genetics, Aspartic Acid metabolism, Cytochrome c Group metabolism, Hydroquinones metabolism, Lysine metabolism, Mutagenesis, Site-Directed, Oxidation-Reduction, Sequence Alignment, Shewanella putrefaciens genetics, Nitrate Reductases genetics, Nitrates metabolism, Nitrites metabolism, Shewanella putrefaciens metabolism
- Abstract
Shewanella putrefaciens W3-18-1 harbours two periplasmic nitrate reductase (Nap) gene clusters, NapC-associated nap-alpha (napEDABC) and CymA-dependent nap-beta (napDAGHB), for dissimilatory nitrate respiration. CymA is a member of the NapC/NirT quinol dehydrogenase family and acts as a hub to support different respiratory pathways, including those on iron [Fe(III)] and manganese [Mn(III, IV)] (hydr)oxide, nitrate, nitrite, fumarate and arsenate in Shewanella strains. However, in our analysis it was shown that another NapC/NirT family protein, NapC, was only involved in nitrate reduction, although both CymA and NapC can transfer quinol-derived electrons to a periplasmic terminal reductase or an electron acceptor. Furthermore, our results showed that NapC could only interact specifically with the Nap-alpha nitrate reductase while CymA could interact promiscuously with Nap-alpha, Nap-beta and the NrfA nitrite reductase for nitrate and nitrite reduction. To further explore the difference in specificity, site-directed mutagenesis on both CymA and NapC was conducted and the phenotypic changes in nitrate and nitrite reduction were tested. Our analyses demonstrated that the Lys-91 residue played a key role in nitrate reduction for quinol oxidation and the Asp-166 residue might influence the maturation of CymA. The Asp-97 residue might be one of the key factors that influence the interaction of CymA with the cytochromes NapB and NrfA.
- Published
- 2016
- Full Text
- View/download PDF
49. Real-Time Manganese Phase Dynamics during Biological and Abiotic Manganese Oxide Reduction.
- Author
-
Johnson JE, Savalia P, Davis R, Kocar BD, Webb SM, Nealson KH, and Fischer WW
- Subjects
- Biodegradation, Environmental, Carbonates chemistry, Carbonates metabolism, Iron chemistry, Manganese chemistry, Manganese metabolism, Manganese Compounds metabolism, Organometallic Compounds chemistry, Organometallic Compounds metabolism, Oxidation-Reduction, Oxides metabolism, Spectrum Analysis, Raman, Sulfides chemistry, Water metabolism, X-Ray Absorption Spectroscopy, X-Ray Diffraction, Manganese Compounds chemistry, Oxides chemistry, Shewanella metabolism
- Abstract
Manganese oxides are often highly reactive and easily reduced, both abiotically, by a variety of inorganic chemical species, and biologically during anaerobic respiration by microbes. To evaluate the reaction mechanisms of these different reduction routes and their potential lasting products, we measured the sequence progression of microbial manganese(IV) oxide reduction mediated by chemical species (sulfide and ferrous iron) and the common metal-reducing microbe Shewanella oneidensis MR-1 under several endmember conditions, using synchrotron X-ray spectroscopic measurements complemented by X-ray diffraction and Raman spectroscopy on precipitates collected throughout the reaction. Crystalline or potentially long-lived phases produced in these experiments included manganese(II)-phosphate, manganese(II)-carbonate, and manganese(III)-oxyhydroxides. Major controls on the formation of these discrete phases were alkalinity production and solution conditions such as inorganic carbon and phosphate availability. The formation of a long-lived Mn(III) oxide appears to depend on aqueous Mn(2+) production and the relative proportion of electron donors and electron acceptors in the system. These real-time measurements identify mineralogical products during Mn(IV) oxide reduction, contribute to understanding the mechanism of various Mn(IV) oxide reduction pathways, and assist in interpreting the processes occurring actively in manganese-rich environments and recorded in the geologic record of manganese-rich strata.
- Published
- 2016
- Full Text
- View/download PDF
50. Nanocalorimetric Characterization of Microbial Activity in Deep Subsurface Oceanic Crustal Fluids.
- Author
-
Robador A, LaRowe DE, Jungbluth SP, Lin HT, Rappé MS, Nealson KH, and Amend JP
- Abstract
Although fluids within the upper oceanic basaltic crust harbor a substantial fraction of the total prokaryotic cells on Earth, the energy needs of this microbial population are unknown. In this study, a nanocalorimeter (sensitivity down to 1.2 nW ml(-1)) was used to measure the enthalpy of microbially catalyzed reactions as a function of temperature in samples from two distinct crustal fluid aquifers. Microorganisms in unamended, warm (63°C) and geochemically altered anoxic fluids taken from 292 meters sub-basement (msb) near the Juan de Fuca Ridge produced 267.3 mJ of heat over the course of 97 h during a step-wise isothermal scan from 35.5 to 85.0°C. Most of this heat signal likely stems from the germination of thermophilic endospores (6.66 × 10(4) cells ml(-1) FLUID) and their subsequent metabolic activity at temperatures greater than 50°C. The average cellular energy consumption (5.68 pW cell(-1)) reveals the high metabolic potential of a dormant community transported by fluids circulating through the ocean crust. By contrast, samples taken from 293 msb from cooler (3.8°C), relatively unaltered oxic fluids, produced 12.8 mJ of heat over the course of 14 h as temperature ramped from 34.8 to 43.0°C. Corresponding cell-specific energy turnover rates (0.18 pW cell(-1)) were converted to oxygen uptake rates of 24.5 nmol O2 ml(-1) FLUID d(-1), validating previous model predictions of microbial activity in this environment. Given that the investigated fluids are characteristic of expansive areas of the upper oceanic crust, the measured metabolic heat rates can be used to constrain boundaries of habitability and microbial activity in the oceanic crust.
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.