8 results on '"Nawawi DS"'
Search Results
2. Capability lignin from Acacia crassicarpa black liquor as an environmentally benign antibacterial agent to produce antibacterial and hydrophobic textiles.
- Author
-
Solihat NN, Purwanti T, Husna N, Oktaviani M, Zulfiana D, Fatriasari W, and Nawawi DS
- Subjects
- Wettability, Microbial Sensitivity Tests, Bacteria drug effects, Thermogravimetry, Lignin chemistry, Lignin pharmacology, Textiles, Anti-Bacterial Agents pharmacology, Anti-Bacterial Agents chemistry, Hydrophobic and Hydrophilic Interactions, Acacia chemistry
- Abstract
Recently, the growing health awareness of society on the utilization of fabrics has led to an increasing demand for natural-based antibacterial textiles. Lignin, a generous polyphenol compound in nature, is capable of preventing bacterial growth; in particular, it dwells bacteria closely together on human skin, such as Staphylococcus epidermidis, Bacillus subtilis, Propionibacterium acnes, and Staphylococcus aureus. However, the antibacterial properties of lignin are limited by factors such as the lignin concentration, source, and type of bacteria. This study aimed to evaluate the potency of lignin as an antibacterial agent for textiles. Moreover, the thermal properties and wettability of the textile after lignin coating were also investigated. This study showed that lignin isolation methods significantly contributed to the inhibition of bacterial growth in the clear zone diameter. In addition, the lignin structure, lignin concentration, and type of bacteria had notably different antibacterial effects. SEM images showed that lignin was successfully coated on the fiber, and the antibacterial textile was successfully fabricated with clear zones in the range of 0.1-0.5 cm against four different bacteria. Lignin did not significantly improve the thermal stability of the textile, as proven by the TGA results. After the HDTMS coating by dispersion method, the wettability of the lignin-textile improved to that of the hydrophobic material, with a contact angle greater than 119.05° with excellent antibacterial properties (clear zone of 0.1-0.43 cm)., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
3. Optimization of areca leaf sheath nanolignin synthesis by a mechanical method for in situ modification of ultra-low molar ratio urea-formaldehyde adhesives.
- Author
-
Ridho MR, Lubis MAR, Nawawi DS, and Fatriasari W
- Subjects
- Plant Leaves chemistry, Particle Size, Lignin chemistry, Formaldehyde chemistry, Adhesives chemistry, Urea chemistry
- Abstract
This study addresses the optimization of the nanolignin preparation method from the areca leaf sheath (ALS) by a mechanical process using a high shear homogenizer at 13,000-16,000 rpm for 1-4 h and its application in enhancing the performance of ultralow molar ratio urea-formaldehyde (UF) adhesive. Response surface methodology (RSM) with a central composite design (CCD) model was used to determine the optimum nanolignin preparation method. The mathematical model obtained was quadratic for the particle size response and linear for the zeta potential response. Under the optimum conditions, a speed of 16,000 rpm for 4 h resulted in a particle size of 227.7 nm and a zeta potential of -18.57 mV with a high desirability value of 0.970. FE-SEM revealed that the characteristic changes of lignin to nanolignin occur from an irregular or nonuniform shape to an oval shape with uniform particles. Nanolignin was introduced during the addition reaction of UF resin synthesis. UF modified with nanolignin (UF-NL) was analyzed for its adhesive characteristics, functional groups, crystallinity, and thermomechanical properties. The UF-NL adhesive had a slightly greater solid content (73.23 %) than the UF adhesive, a gelation time of 4.10 min, and a viscosity of 1066 mPa
. s. The UF-NL adhesive had similar functional groups as the UF adhesive, with a lower crystallinity of 59.73 %. Compared with the control plywood which has a tensile shear strength value of 0.79 MPa, the plywood bonded with UF-NL had a greater tensile shear strength of 1.07 MPa, with a lower formaldehyde emission of 0.065 mg/L., Competing Interests: Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Widya Fatriasari reports financial support was provided by PT. Greenei Alam Indonesia. If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
4. Properties of Table Tennis Blade from Sorghum Bagasse Particleboard Bonded with Maleic Acid Adhesive at Different Pressing Temperatures and Times.
- Author
-
Sutiawan J, Hartono R, Hermawan D, Hadi YS, Nawawi DS, Abdillah IB, Syahfitri A, Kusumah SS, Adi DS, Kusumaningrum WB, and Lubis MAR
- Abstract
This physical and mechanical properties of a table tennis blade made from sorghum bagasse particleboard (TTBSB-particleboard) bonded maleic acid adhesive was investigated under pressing temperature and time variations. The TTBSB-particleboard was produced via a two-stage process in this study. A pressing temperature of 170-200 °C was used to prepare the first stage for 10 min. Following this, the second stage of the TTBSB-particleboard was produced with a different pressing time of 5-20 min. The TTBSB-particleboard had a specified target density of 0.6 g/cm
3 and a size of 30 cm × 30 cm × 0.6 cm, respectively. For references concerning the tested quality of TTBSB-particleboard, the JIS A 5908-2003 standard has been used. For comparison, the commercial blades of Yuguan Wooden 1011 and Donic Original Carbo Speed were tested under the same conditions. The quality of the TTBSB-particleboard was successfully enhanced by increasing the pressing temperature (170 to 200 °C) and time (5 to 20 min). As a result, the pressing condition of 200 °C and 20 min were effective in this study. The TTBSB-particleboard in this study has a greater weight than the commercial blades of Yuguan and Donic. However, the TTBSB-particleboard in this study had a ball rebound comparable to that of the Donic blade.- Published
- 2022
- Full Text
- View/download PDF
5. Physical Properties of Fast-Growing Wood-Polymer Nano Composite Synthesized through TiO 2 Nanoparticle Impregnation.
- Author
-
Rahayu I, Darmawan W, Nawawi DS, Prihatini E, Ismail R, and Laksono GD
- Abstract
Mangium ( Acacia mangium Willd.) is a fast-growing wood that is widely grown in Indonesia. The impregnation method is needed to improve the qualities of the wood. In this study, TiO
2 nanoparticle (79.17 nm) was produced using the hydrothermal method. The purpose of this study was to analyze the effect of TiO2 nanoparticle impregnation on the density and dimensional stability of mangium and the effectiveness of the presence of TiO2 nanoparticle in wood in degrading pollutants. The mangium samples (2 cm × 2 cm × 2 cm) were placed inside impregnation tube. The impregnation solutions included water (untreated), 1% TiO2 nanoparticle, and 5% TiO2 nanoparticles. The samples were analyzed for density, weight percent gain (WPG) dan bulking effect (BE). Samples were also analyzed by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). TiO2 nanoparticle resulted in an increase in density, WPG, and BE-treated mangium. Based on XRD and FTIR results, TiO2 nanoparticle was successfully impregnated into mangium wood. Scanning electron microscopy-energy-dispersive X-ray spectroscopy analysis indicated that TiO2 nanoparticle covered the surface of the wood cells. The TiO2 -impregnated mangium wood has a higher photocatalyst activity than untreated, indicating better protection from UV radiation and pollutants.- Published
- 2022
- Full Text
- View/download PDF
6. The properties of particleboard composites made from three sorghum (Sorghum bicolor) accessions using maleic acid adhesive.
- Author
-
Sutiawan J, Hadi YS, Nawawi DS, Abdillah IB, Zulfiana D, Lubis MAR, Nugroho S, Astuti D, Zhao Z, Handayani M, Lisak G, Kusumah SS, and Hermawan D
- Subjects
- Adhesives, Formaldehyde, Maleates, Sorghum
- Abstract
It is very important to develop green composite materials owing to increasing global environmental issues. One of the alternative raw materials for the production of green composites is biomass. Bagasse sorghum is a promising alternative raw material for the manufacturing of particleboard composites. The influence of sorghum accessions on the performance of particleboard composites was analyzed in this study. In addition, the particleboard quality was made using maleic acid (MA) adhesive and compared with citric acid (CA) and phenol-formaldehyde (PF) adhesives. Three accessions of sorghum, 4183A, super 1, and Pahat, were used as raw materials in particleboard manufacturing. The 20 wt% MA adhesive was applied in particleboard manufacturing. The board dimensions and density targets were 30 × 30 × 0.9 cm
3 and 0.8 g/cm3 , respectively. The particle mat was pressed 200 °C for 10 min with a maximum of 6.5 MPa. For reference, the JIS A 5908-2003 was used to evaluate physical and mechanical properties, SNI 7207-2014 was used for the resistance against termites, and JIS K 1571-2004 for evaluated the particleboard against decay. The results showed that the sorghum accession in this research did not affect the quality of the particleboard. The thickness swelling (TS), internal bond (IB), modulus of elasticity (MOE), and modulus of rupture (MOR) of particleboard satisfied JIS A 5908-2003 type 8. The particleboard using MA was comparable with those bonded with CA and had better durability against termites and decay than PF adhesives. The ester linkages were formed due to the reaction between MA (carboxyl groups) and the sorghum bagasse (hydroxyl groups) after being analyzed using Fourier transform infrared (FTIR). Therefore, particleboard in this study has good quality., (Copyright © 2021 Elsevier Ltd. All rights reserved.)- Published
- 2022
- Full Text
- View/download PDF
7. Recent Advances in the Development of Fire-Resistant Biocomposites-A Review.
- Author
-
Madyaratri EW, Ridho MR, Aristri MA, Lubis MAR, Iswanto AH, Nawawi DS, Antov P, Kristak L, Majlingová A, and Fatriasari W
- Abstract
Biocomposites reinforced with natural fibers represent an eco-friendly and inexpensive alternative to conventional petroleum-based materials and have been increasingly utilized in a wide variety of industrial applications due to their numerous advantages, such as their good mechanical properties, low production costs, renewability, and biodegradability. However, these engineered composite materials have inherent downsides, such as their increased flammability when subjected to heat flux or flame initiators, which can limit their range of applications. As a result, certain attempts are still being made to reduce the flammability of biocomposites. The combustion of biobased composites can potentially create life-threatening conditions in buildings, resulting in substantial human and material losses. Additives known as flame-retardants (FRs) have been commonly used to improve the fire protection of wood and biocomposite materials, textiles, and other fields for the purpose of widening their application areas. At present, this practice is very common in the construction sector due to stringent fire safety regulations on residential and public buildings. The aim of this study was to present and discuss recent advances in the development of fire-resistant biocomposites. The flammability of wood and natural fibers as material resources to produce biocomposites was researched to build a holistic picture. Furthermore, the potential of lignin as an eco-friendly and low-cost FR additive to produce high-performance biocomposites with improved technological and fire properties was also discussed in detail. The development of sustainable FR systems, based on renewable raw materials, represents a viable and promising approach to manufacturing biocomposites with improved fire resistance, lower environmental footprint, and enhanced health and safety performance.
- Published
- 2022
- Full Text
- View/download PDF
8. A Comprehensive Review on Natural Fibers: Technological and Socio-Economical Aspects.
- Author
-
Karimah A, Ridho MR, Munawar SS, Ismadi, Amin Y, Damayanti R, Lubis MAR, Wulandari AP, Nurindah, Iswanto AH, Fudholi A, Asrofi M, Saedah E, Sari NH, Pratama BR, Fatriasari W, Nawawi DS, Rangappa SM, and Siengchin S
- Abstract
Asian countries have abundant resources of natural fibers, but unfortunately, they have not been optimally utilized. The facts showed that from 2014 to 2020, there was a shortfall in meeting national demand of over USD 2.75 million per year. Therefore, in order to develop the utilization and improve the economic potential as well as the sustainability of natural fibers, a comprehensive review is required. The study aimed to demonstrate the availability, technological processing, and socio-economical aspects of natural fibers. Although many studies have been conducted on this material, it is necessary to revisit their potential from those perspectives to maximize their use. The renewability and biodegradability of natural fiber are part of the fascinating properties that lead to their prospective use in automotive, aerospace industries, structural and building constructions, bio packaging, textiles, biomedical applications, and military vehicles. To increase the range of applications, relevant technologies in conjunction with social approaches are very important. Hence, in the future, the utilization can be expanded in many fields by considering the basic characteristics and appropriate technologies of the natural fibers. Selecting the most prospective natural fiber for creating national products can be assisted by providing an integrated management system from a digitalized information on potential and related technological approaches. To make it happens, collaborations between stakeholders from the national R&D agency, the government as policy maker, and academic institutions to develop national bioproducts based on domestic innovation in order to move the circular economy forward are essential.
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.