1. Unraveling Hypothalamus-Pituitary dysregulation: Hypergonadotropism in F 1 progeny due to prenatal exposure to hexavalent chromium.
- Author
-
Navin AK, Aruldhas MM, Mani KK, Navaneethabalakrishnan S, Venkatachalam S, and Banu SK
- Subjects
- Female, Pregnancy, Humans, Rats, Male, Animals, Estrogen Receptor alpha metabolism, Aromatase, Hypothalamus, Gonadotropin-Releasing Hormone metabolism, Receptors, LHRH metabolism, Prenatal Exposure Delayed Effects metabolism, Chromium
- Abstract
The endocrine disruptor hexavalent chromium [Cr(VI)] is a proven reproductive toxicant. We recently demonstrated that prenatal Cr(VI) exposure causes testicular resistance to gonadotropins, resulting in hypergonadotropic hypoandrogenism in F
1 rats. However, the mechanism driving hypergonadotropism in F1 rats exposed to Cr(VI) prenatally remains an enigma. Therefore, we hypothesized that 'Prenatal Cr(VI) exposure may disrupt steroid hormones-mediated negative feedback regulation of the hypothalamic GnRH, and its receptor in the pituitary of F1 rats, leading to hypergonadotropism.' We administered potassium dichromate (50, 100, or 200 mg/L) to pregnant rats through drinking water between days 9 and 14, and their male F1 offspring were euthanized at 60 days of age. Prenatal Cr(VI) exposure in F1 rats resulted in the accumulation of Cr in the hypothalamus and pituitary. Western blot detected decreased hypothalamic GnRH, Kisspeptin1, and its receptor GPR54, along with diminished ERα, AR, aromatase, and 5α reductase, and GnRH regulatory transcription factors Pit-1 and GATA-4 proteins. Immunohistochemical studies revealed increased immunopositivity of GnRH receptor, AR, 5α reductase, ERα, ERβ, and aromatase proteins in the pituitary, whereas decreased Kisspeptin1, GPR54, and inhibin β. Our findings imply that Cr(VI) exposure during the prenatal period disrupts the hypothalamic Kisspeptin-GPR54-Pit-1/GATA4-GnRH network, boosting the pituitary GnRH receptor. We conclude that prenatal exposure to Cr(VI) alters GnRH expression in the hypothalamus and its receptor in the pituitary of F1 progeny through interfering with the negative feedback effect of androgens and estrogens., (© 2024 Wiley Periodicals LLC.)- Published
- 2024
- Full Text
- View/download PDF