1. Magnetic upconverting fluorescent NaGdF4:Ln3+ and iron-oxide@NaGdF4:Ln3+ nanoparticles
- Author
-
Navadeep Shrivastava, Uéslen Rocha, Diego Muraca, Carlos Jacinto, Sergio Moreno, J. M. Vargas, and S. K. Sharma
- Subjects
Physics ,QC1-999 - Abstract
Microwave assisted solvothermal method has been employed to synthesize multifunctional upconverting β-NaGdF4:Ln3+ and magnetic-upconverting Fe3O4/γ-Fe2O3@NaGdF4:Ln3+ (Ln = Yb and Er) nanoparticles. The powder x-ray diffraction data confirms the hexagonal structure of NaGdF4:Ln3+ and high resolution transmission electron microscopy shows the formation of rod shaped NaGdF4:Ln3+ (∼ 20 nm) and ovoid shaped Fe3O4/γ-Fe2O3@NaGdF4:Ln3+ (∼ 15 nm) nanoparticles. The magnetic hysteresis at 300 K for β-NaGdF4:Ln3+ demonstrates paramagnetic features, whereas iron-oxide@β-NaGdF4:Ln3+ exhibits superparamagnetic behavior along with a linear component at large applied field due to paramagnetic NaGdF4 matrix. Both nanoparticle samples provide an excellent green emitting [(2H11/2, 4S3/2)→4I15/2 (∼ 540 nm)] upconversion luminescence emission under excitation at 980 nm. The energy migration between Yb and Er in NaGdF4 matrix has been explored from 300-800 nm. Intensity variation of blue, green and red lines and the observed luminescence quenching due to the presence of Fe3O4/γ-Fe2O3 in the composite has been proposed. These kinds of materials contain magnetic and luminescence characteristics into single nanoparticle open new possibility for bioimaging applications.
- Published
- 2018
- Full Text
- View/download PDF