12 results on '"Nauer PA"'
Search Results
2. Technical note: Inexpensive modification of Exetainers for the reliable storage of trace-level hydrogen and carbon monoxide gas samples
- Author
-
Nauer, PA, Chiri, E, Jirapanjawat, T, Greening, C, Cook, PLM, Nauer, PA, Chiri, E, Jirapanjawat, T, Greening, C, and Cook, PLM
- Abstract
Atmospheric trace gases such as dihydrogen (H2), carbon monoxide (CO) and methane (CH4) play important roles in microbial metabolism and biogeochemical cycles. Analysis of these gases at trace levels requires reliable storage of discrete samples of low volume. While commercial sampling vials such as Exetainers® have been tested for CH4 and other greenhouse gases, no information on reliable storage is available for H2 and CO. We show that vials sealed with butyl rubber stoppers are not suitable for storing H2 and CO due to release of these gases from rubber material. Treating butyl septa with NaOH reduced trace-gas release, but contamination was still substantial, with H2 and CO mixing ratios in air samples increasing by a factor of 3 and 10 after 30 d of storage in conventional 12 mL Exetainers. All tested materials showed a near-linear increase in H2 and CO mixing ratios, indicating a zero-order reaction and material degradation as the underlying cause. Among the rubber materials tested, silicone showed the lowest potential for H2 and CO release. We thus propose modifying Exetainers by closing them with a silicone plug to minimise contamination and sealing them with a stainless-steel bolt and O-ring as a secondary diffusion barrier for long-term storage. Such modified Exetainers exhibited stable mixing ratios of H2 and CH4 exceeding 60 d of storage at atmospheric and elevated (10 ppm) mixing ratios. The increase of CO was still measurable but was 9 times lower than in conventional Exetainers with treated septa; this can be corrected for due to its linearity by storing a standard gas alongside the samples. The proposed modification is inexpensive, scalable and robust, and thus it enables reliable storage of large numbers of low-volume gas samples from remote field locations.
- Published
- 2021
3. Pulses of labile carbon cause transient decoupling of fermentation and respiration in permeable sediments.
- Author
-
Nauer PA, Kessler AJ, Hall P, Popa ME, Ten Hietbrink S, Hutchinson T, Wong WW, Attard K, Glud RN, Greening C, and Cook PLM
- Abstract
Dihydrogen (H
2 ) is an important intermediate in anaerobic microbial processes, and concentrations are tightly controlled by thermodynamic limits of consumption and production. However, recent studies reported unusual H2 accumulation in permeable marine sediments under anoxic conditions, suggesting decoupling of fermentation and sulfate reduction, the dominant respiratory process in anoxic permeable marine sediments. Yet, the extent, prevalence and potential triggers for such H2 accumulation and decoupling remain unknown. We surveyed H2 concentrations in situ at different settings of permeable sand and found that H2 accumulation was only observed during a coral spawning event on the Great Barrier Reef. A flume experiment with organic matter addition to the water column showed a rapid accumulation of hydrogen within the sediment. Laboratory experiments were used to explore the effect of oxygen exposure, physical disturbance and organic matter inputs on H2 accumulation. Oxygen exposure had little effect on H2 accumulation in permeable sediments suggesting both fermenters and sulfate reducers survive and rapidly resume activity after exposure to oxygen. Mild physical disturbance mimicking sediment resuspension had little effect on H2 accumulation; however, vigorous shaking led to a transient accumulation of H2 and release of dissolved organic carbon suggesting mechanical disturbance and cell destruction led to organic matter release and transient decoupling of fermenters and sulfate reducers. In summary, the highly dynamic nature of permeable sediments and its microbial community allows for rapid but transient decoupling of fermentation and respiration after a C pulse, leading to high H2 levels in the sediment., Competing Interests: None declared., (© 2023 The Authors. Limnology and Oceanography published by Wiley Periodicals LLC on behalf of Association for the Sciences of Limnology and Oceanography.)- Published
- 2023
- Full Text
- View/download PDF
4. Molecular hydrogen in seawater supports growth of diverse marine bacteria.
- Author
-
Lappan R, Shelley G, Islam ZF, Leung PM, Lockwood S, Nauer PA, Jirapanjawat T, Ni G, Chen YJ, Kessler AJ, Williams TJ, Cavicchioli R, Baltar F, Cook PLM, Morales SE, and Greening C
- Subjects
- Hydrogen, Oxidation-Reduction, Oceans and Seas, Bacteria genetics, Seawater microbiology
- Abstract
Molecular hydrogen (H
2 ) is an abundant and readily accessible energy source in marine systems, but it remains unknown whether marine microbial communities consume this gas. Here we use a suite of approaches to show that marine bacteria consume H2 to support growth. Genes for H2 -uptake hydrogenases are prevalent in global ocean metagenomes, highly expressed in metatranscriptomes and found across eight bacterial phyla. Capacity for H2 oxidation increases with depth and decreases with oxygen concentration, suggesting that H2 is important in environments with low primary production. Biogeochemical measurements of tropical, temperate and subantarctic waters, and axenic cultures show that marine microbes consume H2 supplied at environmentally relevant concentrations, yielding enough cell-specific power to support growth in bacteria with low energy requirements. Conversely, our results indicate that oxidation of carbon monoxide (CO) primarily supports survival. Altogether, H2 is a notable energy source for marine bacteria and may influence oceanic ecology and biogeochemistry., (© 2023. The Author(s).)- Published
- 2023
- Full Text
- View/download PDF
5. Multiple energy sources and metabolic strategies sustain microbial diversity in Antarctic desert soils.
- Author
-
Ortiz M, Leung PM, Shelley G, Jirapanjawat T, Nauer PA, Van Goethem MW, Bay SK, Islam ZF, Jordaan K, Vikram S, Chown SL, Hogg ID, Makhalanyane TP, Grinter R, Cowan DA, and Greening C
- Subjects
- Antarctic Regions, Autotrophic Processes, Biodiversity, Hydrogenase metabolism, Metagenome, Oxidation-Reduction, Phototrophic Processes, Desert Climate, Gases metabolism, Ice Cover microbiology, Microbiota, Soil Microbiology
- Abstract
Numerous diverse microorganisms reside in the cold desert soils of continental Antarctica, though we lack a holistic understanding of the metabolic processes that sustain them. Here, we profile the composition, capabilities, and activities of the microbial communities in 16 physicochemically diverse mountainous and glacial soils. We assembled 451 metagenome-assembled genomes from 18 microbial phyla and inferred through Bayesian divergence analysis that the dominant lineages present are likely native to Antarctica. In support of earlier findings, metagenomic analysis revealed that the most abundant and prevalent microorganisms are metabolically versatile aerobes that use atmospheric hydrogen to support aerobic respiration and sometimes carbon fixation. Surprisingly, however, hydrogen oxidation in this region was catalyzed primarily by a phylogenetically and structurally distinct enzyme, the group 1l [NiFe]-hydrogenase, encoded by nine bacterial phyla. Through gas chromatography, we provide evidence that both Antarctic soil communities and an axenic Bacteroidota isolate ( Hymenobacter roseosalivarius ) oxidize atmospheric hydrogen using this enzyme. Based on ex situ rates at environmentally representative temperatures, hydrogen oxidation is theoretically sufficient for soil communities to meet energy requirements and, through metabolic water production, sustain hydration. Diverse carbon monoxide oxidizers and abundant methanotrophs were also active in the soils. We also recovered genomes of microorganisms capable of oxidizing edaphic inorganic nitrogen, sulfur, and iron compounds and harvesting solar energy via microbial rhodopsins and conventional photosystems. Obligately symbiotic bacteria, including Patescibacteria, Chlamydiae, and predatory Bdellovibrionota, were also present. We conclude that microbial diversity in Antarctic soils reflects the coexistence of metabolically flexible mixotrophs with metabolically constrained specialists., Competing Interests: The authors declare no competing interest.
- Published
- 2021
- Full Text
- View/download PDF
6. Termite gas emissions select for hydrogenotrophic microbial communities in termite mounds.
- Author
-
Chiri E, Nauer PA, Lappan R, Jirapanjawat T, Waite DW, Handley KM, Hugenholtz P, Cook PLM, Arndt SK, and Greening C
- Subjects
- Animals, Australia, Hydrogen metabolism, Oxygen Consumption, Soil Microbiology, Bacteria metabolism, Gases metabolism, Isoptera microbiology, Microbiota
- Abstract
Organoheterotrophs are the dominant bacteria in most soils worldwide. While many of these bacteria can subsist on atmospheric hydrogen (H
2 ), levels of this gas are generally insufficient to sustain hydrogenotrophic growth. In contrast, bacteria residing within soil-derived termite mounds are exposed to high fluxes of H2 due to fermentative production within termite guts. Here, we show through community, metagenomic, and biogeochemical profiling that termite emissions select for a community dominated by diverse hydrogenotrophic Actinobacteriota and Dormibacterota. Based on metagenomic short reads and derived genomes, uptake hydrogenase and chemosynthetic RuBisCO genes were significantly enriched in mounds compared to surrounding soils. In situ and ex situ measurements confirmed that high- and low-affinity H2 -oxidizing bacteria were highly active in the mounds, such that they efficiently consumed all termite-derived H2 emissions and served as net sinks of atmospheric H2 Concordant findings were observed across the mounds of three different Australian termite species, with termite activity strongly predicting H2 oxidation rates ( R2 = 0.82). Cell-specific power calculations confirmed the potential for hydrogenotrophic growth in the mounds with most termite activity. In contrast, while methane is produced at similar rates to H2 by termites, mounds contained few methanotrophs and were net sources of methane. Altogether, these findings provide further evidence of a highly responsive terrestrial sink for H2 but not methane and suggest H2 availability shapes composition and activity of microbial communities. They also reveal a unique arthropod-bacteria interaction dependent on H2 transfer between host-associated and free-living microbial communities., Competing Interests: The authors declare no competing interest.- Published
- 2021
- Full Text
- View/download PDF
7. Bark-dwelling methanotrophic bacteria decrease methane emissions from trees.
- Author
-
Jeffrey LC, Maher DT, Chiri E, Leung PM, Nauer PA, Arndt SK, Tait DR, Greening C, and Johnston SG
- Subjects
- Melaleuca microbiology, Oxidation-Reduction, Plant Bark metabolism, Plant Bark microbiology, Trees metabolism, Trees microbiology, Carbon Cycle, Melaleuca metabolism, Methane metabolism, Methylococcaceae metabolism, Microbiota physiology
- Abstract
Tree stems are an important and unconstrained source of methane, yet it is uncertain whether internal microbial controls (i.e. methanotrophy) within tree bark may reduce methane emissions. Here we demonstrate that unique microbial communities dominated by methane-oxidising bacteria (MOB) dwell within bark of Melaleuca quinquenervia, a common, invasive and globally distributed lowland species. In laboratory incubations, methane-inoculated M. quinquenervia bark mediated methane consumption (up to 96.3 µmol m
-2 bark d-1 ) and reveal distinct isotopic δ13 C-CH4 enrichment characteristic of MOB. Molecular analysis indicates unique microbial communities reside within the bark, with MOB primarily from the genus Methylomonas comprising up to 25 % of the total microbial community. Methanotroph abundance was linearly correlated to methane uptake rates (R2 = 0.76, p = 0.006). Finally, field-based methane oxidation inhibition experiments demonstrate that bark-dwelling MOB reduce methane emissions by 36 ± 5 %. These multiple complementary lines of evidence indicate that bark-dwelling MOB represent a potentially significant methane sink, and an important frontier for further research.- Published
- 2021
- Full Text
- View/download PDF
8. Trace gas oxidizers are widespread and active members of soil microbial communities.
- Author
-
Bay SK, Dong X, Bradley JA, Leung PM, Grinter R, Jirapanjawat T, Arndt SK, Cook PLM, LaRowe DE, Nauer PA, Chiri E, and Greening C
- Subjects
- Bacteria classification, Bacteria genetics, Metagenomics, Oxidation-Reduction, Phylogeny, Bacteria enzymology, Carbon Monoxide metabolism, Hydrogen metabolism, Microbiota, Soil, Soil Microbiology
- Abstract
Soil microorganisms globally are thought to be sustained primarily by organic carbon sources. Certain bacteria also consume inorganic energy sources such as trace gases, but they are presumed to be rare community members, except within some oligotrophic soils. Here we combined metagenomic, biogeochemical and modelling approaches to determine how soil microbial communities meet energy and carbon needs. Analysis of 40 metagenomes and 757 derived genomes indicated that over 70% of soil bacterial taxa encode enzymes to consume inorganic energy sources. Bacteria from 19 phyla encoded enzymes to use the trace gases hydrogen and carbon monoxide as supplemental electron donors for aerobic respiration. In addition, we identified a fourth phylum (Gemmatimonadota) potentially capable of aerobic methanotrophy. Consistent with the metagenomic profiling, communities within soil profiles from diverse habitats rapidly oxidized hydrogen, carbon monoxide and to a lesser extent methane below atmospheric concentrations. Thermodynamic modelling indicated that the power generated by oxidation of these three gases is sufficient to meet the maintenance needs of the bacterial cells capable of consuming them. Diverse bacteria also encode enzymes to use trace gases as electron donors to support carbon fixation. Altogether, these findings indicate that trace gas oxidation confers a major selective advantage in soil ecosystems, where availability of preferred organic substrates limits microbial growth. The observation that inorganic energy sources may sustain most soil bacteria also has broad implications for understanding atmospheric chemistry and microbial biodiversity in a changing world.
- Published
- 2021
- Full Text
- View/download PDF
9. Termite mounds contain soil-derived methanotroph communities kinetically adapted to elevated methane concentrations.
- Author
-
Chiri E, Greening C, Lappan R, Waite DW, Jirapanjawat T, Dong X, Arndt SK, and Nauer PA
- Subjects
- Animals, Australia, Methane, Oxidation-Reduction, Soil Microbiology, Isoptera, Soil
- Abstract
Termite mounds have recently been confirmed to mitigate approximately half of termite methane (CH
4 ) emissions, but the aerobic CH4 oxidising bacteria (methanotrophs) responsible for this consumption have not been resolved. Here, we describe the abundance, composition and CH4 oxidation kinetics of the methanotroph communities in the mounds of three distinct termite species sampled from Northern Australia. Results from three independent methods employed show that methanotrophs are rare members of microbial communities in termite mounds, with a comparable abundance but distinct composition to those of adjoining soil samples. Across all mounds, the most abundant and prevalent methane monooxygenase sequences were affiliated with upland soil cluster α (USCα), with sequences homologous to Methylocystis and tropical upland soil cluster (TUSC) also detected. The reconstruction of a metagenome-assembled genome of a mound USCα representative highlighted the metabolic capabilities of this group of methanotrophs. The apparent Michaelis-Menten kinetics of CH4 oxidation in mounds were estimated from in situ reaction rates. Methane affinities of the communities were in the low micromolar range, which is one to two orders of magnitude higher than those of upland soils, but significantly lower than those measured in soils with a large CH4 source such as landfill cover soils. The rate constant of CH4 oxidation, as well as the porosity of the mound material, were significantly positively correlated with the abundance of methanotroph communities of termite mounds. We conclude that termite-derived CH4 emissions have selected for distinct methanotroph communities that are kinetically adapted to elevated CH4 concentrations. However, factors other than substrate concentration appear to limit methanotroph abundance and hence these bacteria only partially mitigate termite-derived CH4 emissions. Our results also highlight the predominant role of USCα in an environment with elevated CH4 concentrations and suggest a higher functional diversity within this group than previously recognised.- Published
- 2020
- Full Text
- View/download PDF
10. Termite mounds mitigate half of termite methane emissions.
- Author
-
Nauer PA, Hutley LB, and Arndt SK
- Subjects
- Animals, Atmosphere, Australia, Biomass, Ecosystem, Oxidation-Reduction, Soil, Soil Microbiology, Isoptera metabolism, Methane metabolism
- Abstract
Termites are responsible for ∼1 to 3% of global methane (CH
4 ) emissions. However, estimates of global termite CH4 emissions span two orders of magnitude, suggesting that fundamental knowledge of CH4 turnover processes in termite colonies is missing. In particular, there is little reliable information on the extent and location of microbial CH4 oxidation in termite mounds. Here, we use a one-box model to unify three independent field methods-a gas-tracer test, an inhibitor approach, and a stable-isotope technique-and quantify CH4 production, oxidation, and transport in three North Australian termite species with different feeding habits and mound architectures. We present systematic in situ evidence of widespread CH4 oxidation in termite mounds, with 20 to 80% of termite-produced CH4 being mitigated before emission to the atmosphere. Furthermore, closing the CH4 mass balance in mounds allows us to estimate in situ termite biomass from CH4 turnover, with mean biomass ranging between 22 and 86 g of termites per kilogram of mound for the three species. Field tests with excavated mounds show that the predominant location of CH4 oxidation is either in the mound material or the soil beneath and is related to species-specific mound porosities. Regardless of termite species, however, our data and model suggest that the fraction of oxidized CH4 ( fox ) remains well buffered due to links among consumption, oxidation, and transport processes via mound CH4 concentration. The mean fox of 0.50 ± 0.11 (95% CI) from in situ measurements therefore presents a valid oxidation factor for future global estimates of termite CH4 emissions., Competing Interests: The authors declare no conflict of interest.- Published
- 2018
- Full Text
- View/download PDF
11. High Temporal and Spatial Variability of Atmospheric-Methane Oxidation in Alpine Glacier Forefield Soils.
- Author
-
Chiri E, Nauer PA, Rainer EM, Zeyer J, and Schroth MH
- Abstract
Glacier forefield soils can provide a substantial sink for atmospheric CH
4 , facilitated by aerobic methane-oxidizing bacteria (MOB). However, MOB activity, abundance, and community structure may be affected by soil age, MOB location in different forefield landforms, and temporal fluctuations in soil physical parameters. We assessed the spatial and temporal variability of atmospheric-CH4 oxidation in an Alpine glacier forefield during the snow-free season of 2013. We quantified CH4 flux in soils of increasing age and in different landforms (sandhill, terrace, and floodplain forms) by using soil gas profile and static flux chamber methods. To determine MOB abundance and community structure, we employed pmoA gene-based quantitative PCR and targeted amplicon sequencing. Uptake of CH4 increased in magnitude and decreased in variability with increasing soil age. Sandhill soils exhibited CH4 uptake rates ranging from -3.7 to -0.03 mg CH4 m-2 day-1 Floodplain and terrace soils exhibited lower uptake rates and even intermittent CH4 emissions. Linear mixed-effects models indicated that soil age and landform were the dominating factors shaping CH4 flux, followed by cumulative rainfall (weighted sum ≤4 days prior to sampling). Of 31 MOB operational taxonomic units retrieved, ∼30% were potentially novel, and ∼50% were affiliated with upland soil clusters gamma and alpha. The MOB community structures in floodplain and terrace soils were nearly identical but differed significantly from the highly variable sandhill soil communities. We concluded that soil age and landform modulate the soil CH4 sink strength in glacier forefields and that recent rainfall affects its short-term variability. This should be taken into account when including this environment in future CH4 inventories. IMPORTANCE Oxidation of methane (CH4 ) in well-drained, "upland" soils is an important mechanism for the removal of this potent greenhouse gas from the atmosphere. It is largely mediated by aerobic, methane-oxidizing bacteria (MOB). Whereas there is abundant information on atmospheric-CH4 oxidation in mature upland soils, little is known about this important function in young, developing soils, such as those found in glacier forefields, where new sediments are continuously exposed to the atmosphere as a result of glacial retreat. In this field-based study, we investigated the spatial and temporal variability of atmospheric-CH4 oxidation and associated MOB communities in Alpine glacier forefield soils, aiming at better understanding the factors that shape the sink for atmospheric CH4 in this young soil ecosystem. This study contributes to the knowledge on the dynamics of atmospheric-CH4 oxidation in developing upland soils and represents a further step toward the inclusion of Alpine glacier forefield soils in global CH4 inventories., (Copyright © 2017 American Society for Microbiology.)- Published
- 2017
- Full Text
- View/download PDF
12. Poly-use multi-level sampling system for soil-gas transport analysis in the vadose zone.
- Author
-
Nauer PA, Chiri E, and Schroth MH
- Subjects
- Environmental Monitoring methods, Temperature, Environmental Monitoring instrumentation, Gases analysis, Methane analysis, Soil chemistry, Water analysis
- Abstract
Soil-gas turnover is important in the global cycling of greenhouse gases. The analysis of soil-gas profiles provides quantitative information on below-ground turnover and fluxes. We developed a poly-use multi-level sampling system (PMLS) for soil-gas sampling, water-content and temperature measurement with high depth resolution and minimal soil disturbance. It is based on perforated access tubes (ATs) permanently installed in the soil. A multi-level sampler allows extraction of soil-gas samples from 20 locations within 1 m depth, while a capacitance probe is used to measure volumetric water contents. During idle times, the ATs are sealed and can be equipped with temperature sensors. Proof-of-concept experiments in a field lysimeter showed good agreement of soil-gas samples and water-content measurements compared with conventional techniques, while a successfully performed gas-tracer test demonstrated the feasibility of the PMLS to determine soil-gas diffusion coefficients in situ. A field application of the PMLS to quantify oxidation of atmospheric CH4 in a field lysimeter and in the forefield of a receding glacier yielded activity coefficients and soil-atmosphere fluxes well in agreement with previous studies. With numerous options for customization, the presented tool extends the methodological choices to investigate soil-gas transport in the vadose zone.
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.