1. PdCu nanoalloy decorated photocatalysts for efficient and selective oxidative coupling of methane in flow reactors
- Author
-
Xiyi Li, Chao Wang, Jianlong Yang, Youxun Xu, Yi Yang, Jiaguo Yu, Juan J. Delgado, Natalia Martsinovich, Xiao Sun, Xu-Sheng Zheng, Weixin Huang, and Junwang Tang
- Subjects
Science - Abstract
Abstract Methane activation by photocatalysis is one of the promising sustainable technologies for chemical synthesis. However, the current efficiency and stability of the process are moderate. Herein, a PdCu nanoalloy (~2.3 nm) was decorated on TiO2, which works for the efficient, stable, and selective photocatalytic oxidative coupling of methane at room temperature. A high methane conversion rate of 2480 μmol g−1 h−1 to C2 with an apparent quantum efficiency of ~8.4% has been achieved. More importantly, the photocatalyst exhibits the turnover frequency and turnover number of 116 h−1 and 12,642 with respect to PdCu, representing a record among all the photocatalytic processes (λ > 300 nm) operated at room temperature, together with a long stability of over 112 hours. The nanoalloy works as a hole acceptor, in which Pd softens and weakens C-H bond in methane and Cu decreases the adsorption energy of C2 products, leading to the high efficiency and long-time stability.
- Published
- 2023
- Full Text
- View/download PDF