1. Xerostomia prediction in patients with nasopharyngeal carcinoma during radiotherapy using segmental dose distribution in dosiomics and radiomics models.
- Author
-
Zhang X, Zheng W, Huang S, Li H, Bi Z, and Yang X
- Subjects
- Humans, Male, Female, Middle Aged, Retrospective Studies, Adult, Aged, Deep Learning, Radiomics, Xerostomia etiology, Nasopharyngeal Carcinoma radiotherapy, Nasopharyngeal Neoplasms radiotherapy, Radiotherapy Dosage
- Abstract
Objectives: This study aimed to integrate radiomics and dosiomics features to develop a predictive model for xerostomia (XM) in nasopharyngeal carcinoma after radiotherapy. It explores the influence of distinct feature extraction methods and dose ranges on the performance., Materials and Methods: Data from 363 patients with nasopharyngeal carcinoma were retrospectively analyzed. We pioneered a dose-segmentation strategy, where the overall dose distribution (OD) was divided into four segmental dose distributions (SDs) at intervals of 15 Gy. Features were extracted using manual definition and deep learning, applying OD or SD and integrating radiomics and dosiomics, yielding corresponding feature scores (manually defined radiomics, MDR; manually defined dosiomics, MDD; deep learning-based radiomics, DLR; deep learning-based dosiomics, DLD). Subsequently, 18 models were developed by combining features and model types (random forest and support vector machine)., Results and Conclusion: Under OD, O(DLR_DLD) demonstrated exceptional performance, with an optimal area under the curve (AUC) of 0.81 and an average AUC of 0.71. Within SD, S(DLR_DLD) surpassed the other models, achieving an optimal AUC of 0.90 and an average AUC of 0.85. Therefore, the integration of dosiomics into radiomics can augment predictive efficacy. The dose-segmentation strategy can facilitate the extraction of more profound information. This indicates that ScoreDLR and ScoreMDR were negatively associated with XM, whereas ScoreDLD, derived from SD exceeding 15 Gy, displayed a positive association with XM. For feature extraction, deep learning was superior to manual definition., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF