Mahesh Ramakrishnan, Evan Constable, Andres Cano, Maxim Mostovoy, Jonathan S. White, Namrata Gurung, Enrico Schierle, Sophie de Brion, Claire V. Colin, Frederic Gay, Pascal Lejay, Eric Ressouche, Eugen Weschke, Valerio Scagnoli, Rafik Ballou, Virginie Simonet, Urs Staub, Theory of Condensed Matter, Solid State Materials for Electronics, The Swiss Light Source (SLS) (SLS-PSI), Paul Scherrer Institute (PSI), Magnétisme et Supraconductivité (NEEL - MagSup), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Vienna University of Technology (TU Wien), Théorie de la Matière Condensée (NEEL - TMC), Zernike Institute of Advanced Materials, University of Groningen [Groningen], Department of Materials [ETH Zürich] (D-MATL), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Helmoltz-Zentrum Berlin für Materialien und Energie (GmbH), Matériaux, Rayonnements, Structure (NEEL - MRS), Automatisation & caractérisation (NEEL - AUTOCARAC), Croissance Cristalline et MicroAnalyse (NEEL - C2MA), Magnétisme et Diffusion Neutronique (MDN), Modélisation et Exploration des Matériaux (MEM), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Magnétisme et Supraconductivité (MagSup ), Théorie de la Matière Condensée (TMC ), Matériaux, Rayonnements, Structure (MRS), Automatisation et Caractérisation (AUTOCARAC ), Cristaux Massifs (CrisMass), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Magnetic ground states with peculiar spin textures, such as magnetic skyrmions and multifunctional domains are of enormous interest for the fundamental physics governing their origin as well as potential applications in emerging technologies. Of particular interest are multiferroics, where sophisticated interactions between electric and magnetic phenomena can be used to tailor several functionalities. We report the direct observation of a magnetic field induced long-wavelength spin spiral modulation in the chiral compound Ba3TaFe3Si2O14, which emerges out of a helical ground state, and is hallmarked by the onset of a unique chirality-dependent contribution to the bulk electric polarization. The periodicity of the field-induced modulation, several hundreds of nm depending on the field value, is comparable to the length scales of mesoscopic topological defects such as skyrmions, merons, and solitons. The phase transition and observed threshold behavior are consistent with a phenomenology based on the allowed Lifshitz invariants for the chiral symmetry of langasite, which intriguingly contain all the essential ingredients for the realization of topologically stable antiferromagnetic skyrmions. Our findings open up new directions to explore topological correlations of antiferromagnetic spintronic systems based on non-collinear magnetic systems with additional ferroic functionalities., npj Quantum Materials, 4 (1), ISSN:2397-4648