1. Discovery of RNA-Protein Molecular Clamps Using Proteome-Wide Stability Assays.
- Author
-
Goldstein SI, Fan AC, Wang Z, Naineni SK, Cencic R, Garcia-Gutierrez SB, Patel K, Huang S, Brown LE, Emili A, and Porco JA Jr
- Abstract
Uncompetitive inhibition is an effective strategy for suppressing dysregulated enzymes and their substrates, but discovery of suitable ligands depends on often-unavailable structural knowledge and serendipity. Hence, despite surging interest in mass spectrometry-based target identification, proteomic studies of substrate-dependent target engagement remain sparse. Herein, we describe a strategy for the discovery of substrate-dependent ligand binding. Using proteome integral solubility alteration (PISA) assays, we show that simple biochemical additives can enable detection of RNA-protein-small molecule complexes in native cell lysates. We apply our approach to rocaglates, molecules that specifically clamp RNA to eukaryotic translation initiation factor 4A (eIF4A), DEAD-box helicase 3X (DDX3X), and potentially other members of the DEAD-box (DDX) helicase family. To identify unexpected interactions, we used a target class-specific thermal window and compared ATP analog and RNA base dependencies for key rocaglate-DDX interactions. We report and validate novel DDX targets of high-profile rocaglates - including the clinical candidate Zotatifin - using limited proteolysis-mass spectrometry and fluorescence polarization (FP) experiments. We also provide structural insight into divergent DDX3X affinities between synthetic rocaglates. Taken together, our study provides a model for screening uncompetitive inhibitors using a chemical proteomics approach and uncovers actionable DDX clamping targets, clearing a path towards characterization of novel molecular clamps and associated RNA helicases., Competing Interests: DECLARATION OF INTERESTS The authors declare no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
- Published
- 2024
- Full Text
- View/download PDF