1. Portable Devices for In-Vitro Characterization Based on Ultrasound
- Author
-
Nabavi, Seyedfakhreddin
- Subjects
Physics - Medical Physics - Abstract
We propose a portable cartridge based lab-on-a-chip platform. The main sensing mechanism uses high frequency acoustic waves. Feasibility of two different transducers has been investigated for biological measurements. We used zincoxide (ZnO) based piezoelectric transducers for blood coagulation time measurements. The method is based on the measurement of amplitude of acoustic reflections from a microfluidic channel which is filled with blood. The volume of the microfluidic channel could be as low as 1 micro-litre. A low cost disposable cartridge made of glass has been designed to perform the measurements. The cartridge is composed of two glass substrates and a double sided tape layer where the channel is defined. One of the glass substrates has a micromachined ZnO based transducer that operates at 400 MHz on the outer surface of the cartridge where electrical connections are also provided. The transducer is aligned with the channel to generate acoustic pulses in the fluid that is filling the channel. The reflections coming from the top of the channel propagate through the liquid therefore their amplitude and phase are affected by the fluid properties. In the experiments whole blood was used without any sample preparation. The viscosity of the blood changes during coagulation therefore by monitoring the amplitude of the reflection coming from the top of the channel one can measure the coagulation time. The method which requires only 1 micro-litre of blood has been tested with calcium and activated partial thromboplastin (aPTT) reagents. The proposed method has a potential to be used in a low cost portable coagulation time measurement system for patient self-testing. The second transducer was made of CMUTs (Capacitive Micromachined Ultrasonic Transducers). We introduce this technology for immersion in liquids as a biological sensor for viscosity measurements., Comment: Master Thesis, Ozyegin University, Istanbul, Turkey 2015
- Published
- 2017