147 results on '"N. Mangold"'
Search Results
2. Going With the Flow: Sedimentary Evolution of the Jezero Western Fan, Mars
- Author
-
S Gupta, K Stack Morgan, N Mangold, L R W Ives, S Gwizd, R M E Williams, N Randazzo, A J Williams, P Russell, B H N Horgan, K L Siebach, M M Tice, J Hurowitz, R Barnes, C Tate, J I Núñez, S Sholes, L C Kah, M E Minitti, G Dromart, J F Bell, III, J Maki, G Paar, A Annex, B P Weiss, O Beyssac, J Frydenvang, M Nachon, R Kronyak, V Sun, A J Jones, D L Shuster, J I Simon, M P Lamb, J P Grotzinger, S Le Mouélic, O Gasnault, R C Wiens, S Maurice, and K A Farley
- Subjects
Lunar and Planetary Science and Exploration - Abstract
Sedimentary fans developed at the mouths of Martian valleys have been interpreted as the deposits of sustained surface water flow on early Mars building either fluvial fan systems or deltas into standing bodies of water. Whilst much insight has been gleaned from orbital observations, it is only possible to constrain the character, relative timing and persistence of ancient aqueous activity on Mars through detailed on-the-ground interrogation of sedimentary successions built during fan growth. A prominent sedimentary fan deposit at the western margin of Jezero crater – the Western fan – has been interpreted from orbital data/observations to be a river delta that prograded into an ancient lake basin during the Late Noachian-Early Hesperian epochs on Mars (~3.6-3.8 Ga). The Western fan deposit forms a point-sourced depositional system developed at the mouth of Neretva Vallis, a valley system that is incised across the crater rim and has an extensive extra-crater catchment draining over diverse ancient geological units in Nili Planum. The mechanism of crater rim breaching remains unconstrained. Between 2022 and 2023, the Mars 2020 Perseverance rover explored the Western fan, with the objective of characterizing its paleoenvironmental context and collecting a diverse suite of sedimentary rock samples for return to Earth via the Mars Sample Return mission. Perseverance has now completed her traverse across the Western fan having commenced in the distal downstream sectors exposed at the erosional front of the fan and then crossing across its upper exposed surface toward the fan apex region near the mouth of Neretva Vallis. This transect provides a unique window into a Martian sediment routing system at a time when climate conditions permitted the flow of surface water. In this contribution, we review the overall sedimentary architecture of the fan and develop a model for its evolution based on detailed mapping of lithofacies changes across the fan. A first-order synoptic overview is presented.
- Published
- 2024
3. Past Variations of Water Level of Jezero Paleolake
- Author
-
N Mangold, G Caravaca, S Gupta, R M E Williams, O Gasnault, S Le Mouélic, E Dehouck, G Dromart, A Annex, J Hurowitz, L R W Ives, L C Kah, N Randazzo, J I Simon, K Stack, M M Tice, J F Bell, III, A Cousin, S Maurice, and R C Wiens
- Subjects
Lunar and Planetary Science and Exploration - Abstract
The western fan of Jezero crater displays features interpreted as fluvial and deltaic sedimentary rocks from orbital data. Images obtained using the SuperCam Remote Micro-Imager (RMI) and the Mastcam-Z camera provide in-situ observations of Jezero crater’s western fan in various locations along the Perseverance traverse. In the last two years, the rover analyzed the fan front from a distance using these imaging tools and at close range using its entire payload. Then, in 2023, the Perseverance rover explored the top of the western Jezero sedimentary fan. Here we show that fluvial topsets and deltaic foresets dominate sedimentary rocks. Determining the boundary between fluvial and prodelta deposits enables us to draw the evolution of the lake level through time.
- Published
- 2024
4. The Complex Exhumation History of Jezero Crater Floor Unit and Its Implication for Mars Sample Return
- Author
-
C Quantin-Nataf, S Alwmark, F J Calef, J Lasue, K Kinch, K M Stack, V Sun, N R Williams, E Dehouck, L Mandon, N Mangold, O Beyssac, E Clave, S H G Walter, J I Simon, A M Annex, B Horgan, James W Rice Jr, D Shuster, B Cohen, L Kah, Steven Sholes, and B P Weiss
- Subjects
Geosciences (General) ,Lunar and Planetary Science and Exploration - Abstract
During the first year of NASA's Mars 2020 mission, Perseverance rover has investigated the dark crater floor unit of Jezero crater and four samples of this unit have been collected. The focus of this paper is to assess the potential of these samples to calibrate the crater-based Martian chronology. We first review the previous estimation of crater-based model age of this unit. Then, we investigate the impact crater density distribution across the floor unit. It reveals that the crater density is heterogeneous from areas which have been exposed to the bombardment during the last 3 Ga to areas very recently exposed to bombardment. It suggests a complex history of exposure to impact cratering. We also display evidence of several remnants of deposits on the top of the dark floor unit across Jezero below which the dark floor unit may have been buried. We propose the following scenario of burying/exhumation: the dark floor unit would have been initially buried below a unit that was a few tens of meters thick. This unit then gradually eroded away due to Aeolian processes from the northeast to the west, resulting in uneven exposure to impact bombardment over 3 Ga. A cratering model reproducing this scenario confirms the feasibility of this hypothesis. Due to the complexity of its exposure history, the Jezero dark crater floor unit will require additional detailed analysis to understand how the Mars 2020 mission samples of the crater floor can be used to inform the Martian cratering chronology.
- Published
- 2023
- Full Text
- View/download PDF
5. Petrological Traverse of the Olivine Cumulate Séítah Formation at Jezero Crater, Mars: A Perspective From SuperCam Onboard Perseverance
- Author
-
O. Beyssac, O. Forni, A. Cousin, A. Udry, L. C. Kah, L. Mandon, O. E. Clavé, Y. Liu, F. Poulet, C.Quantin Nataf, O. Gasnault, J. R. Johnson, K. Benzerara, P. Beck, E. Dehouck, N. Mangold, C. Alvarez Llamas, R. B. Anderson, G. Arana, R. Barnes, S. Bernard, T. Bosak, A. J. Brown, K. Castro, B. Chide, S. M. Clegg, E. Cloutis, T. Fouchet, T. Gabriel, S. Gupta, G. Lacombe, J. Lasue, S. Le Mouelic, G. Lopez-Reyes, J. M. Madariaga, F. M. McCubbin, S. M. McLennan, J. A. Manrique, P. Y. Meslin, F. Montmessin, J. Núñez, A. M. Ollila, A. Ostwald, P. Pilleri, P. Pinet, C. Royer, S. K. Sharma, Susanne Schröder, J. I. Simon, M. J. Toplis, M. Veneranda, P. A. Willis, S. Maurice, and R. C. Wiens
- Subjects
Lunar and Planetary Science and Exploration - Abstract
Séítah is the stratigraphically lowest formation visited by Perseverance in the Jezero crater floor. We present the data obtained by SuperCam: texture by imagery, chemistry by Laser-Induced Breakdown Spectroscopy, and mineralogy by Supercam Visible and Infrared reflectance and Raman spectroscopy. The Séítah formation consists of igneous, weakly altered rocks dominated by millimeter-sized grains of olivine with the presence of low-Ca and high-Ca pyroxenes, and other primary minerals (e.g., plagioclase, Cr-Fe-Ti oxides, phosphates). Along a ∼140 m long section in Séítah, SuperCam analyses showed evidence of geochemical and mineralogical variations, from the contact with the overlying Máaz formation, going deeper in the formation. Bulk rock and olivine Mg#, grain size, olivine content increase gradually further from the contact. Along the section, olivine Mg# is not in equilibrium with the bulk rock Mg#, indicating local olivine accumulation. These observations are consistent with Séítah being the deep ultramafic member of a cumulate series derived from the fractional crystallization and slow cooling of the parent magma at depth. Possible magmatic processes and exhumation mechanisms of Séítah are discussed. Séítah rocks show some affinity with some rocks at Gusev crater, and with some Martian meteorites suggesting that such rocks are not rare on the surface of Mars. Séítah is part of the Nili Fossae regional olivine-carbonate unit observed from orbit. Future exploration of Perseverance on the rim and outside of the crater will help determine if the observations from the crater floor can be extrapolated to the whole unit or if this unit is composed of distinct sub-units with various origins.
- Published
- 2023
- Full Text
- View/download PDF
6. An olivine cumulate outcrop on the floor of Jezero crater, Mars
- Author
-
Y. Liu, M. M. Tice, M. E. Schmidt, A. H. Treiman, T. V. Kizovski, J. A. Hurowitz, A. C. Allwood, J. Henneke, D. A. K. Pedersen, S. J. VanBommel, Michael W. M. Jones, A L Knight, B. J. Orenstein, B. C. Clark, W. T. Elam, C. M. Heirwegh, T. Barber, L. W. Beegle, K. Benzerara, S Bernard, O. Beyssac, Tanya Bosak, A. J. Brown, E. L. Cardarelli, D. C. Catling, J. R. Christian, E. A. Cloutis, B. A. Cohen, S. Davidoff, A. G. Fairén, K. A. Farley, D. T. Flannery, A. Galvin, J. P. Grotzinger, S. Gupta, James Hall, C. D. K. Herd, K. Hickman-lewis, R. P. Hodyss, B. H. N. Horgan, J. R. Johnson, John Leif Jørgensen, L. C. Kah, J. N. Maki, L. Mandon, N. Mangold, F. M. McCubbin, S. M. McLennan, K. Moore, M. Nachon, P. Nemere, L. D. Nothdurft, J. I. Núñez, Lauren O'Neil, C. M. Quantin-Nataf, V. Sautter, D. L Shuster, K. L. Siebach, J. I. Simon, K. P. Sinclair, K. M. Stack, A. Steele, J. D. Tarnas, N. J. Tosca, K. Uckert, A. Udry, L. A. Wade, B. P. Weiss, R. C. Wiens, K. H. Williford, and M.-P. Zorzano
- Subjects
Lunar And Planetary Science And Exploration - Abstract
The geological units on the floor of Jezero crater, Mars, are part of a wider regional stratigraphy of olivine-rich rocks, which extends well beyond the crater. We investigate the petrology of olivine and carbonate-bearing rocks of the Séítah formation in the floor of Jezero. Using multispectral images and x-ray fluorescence data, acquired by the Perseverance rover, we performed a petrographic analysis of the Bastide and Brac outcrops within this unit. We find that these outcrops are composed of igneous rock, moderately altered by aqueous fluid. The igneous rocks are mainly made of coarse-grained olivine, similar to some Martian meteorites. We interpret them as an olivine cumulate, formed by settling and enrichment of olivine through multi-stage cooling of a thick magma body.
- Published
- 2022
- Full Text
- View/download PDF
7. X-Ray Amorphous Sulfur-Bearing Phases in Sedimentary Rocks of Gale Crater, Mars
- Author
-
R. J. Smith, S. M. McLennan, B. Sutter, E. B. Rampe, E. Dehouck, K. L. Siebach, B. H. N. Horgan, V. Sun, A. McAdam, N. Mangold, D. Vaniman, M. Salvatore, M. T. Thorpe, and C. N. Achilles
- Subjects
Geosciences (General) ,Lunar and Planetary Science and Exploration - Abstract
The Curiosity rover in Gale crater is investigating a mineral transition observed from orbit—an older “clay unit” to a younger “sulfate unit”—hypothesized to reflect the aridification of Mars' climate. Below this transition, the rover detected crystalline Ca-sulfates with minor Fe-sulfates but also found that some fraction of a rock's bulk SO3 is often in the poorly constrained X-ray amorphous component. Here, we characterize the abundances and compositions of the X-ray amorphous sulfur-bearing phases in 19 drilled samples using a mass balance approach, and in a subset of 5 samples using evolved SO2 gas measured using the SAM instrument. We find that ∼20–90 wt% of a sample's bulk SO3 is in the X-ray amorphous state and that X-ray amorphous sulfur-bearing phase compositions are consistent with mixtures of Mg-S, Fe-S, and possibly Ca-S phases, likely sulfates or sulfites. These phases reside in the bedrock, perhaps as cementing agents deposited with detrital sediments or during early diagenesis, and in diagenetic alteration halos deposited after lithification during late diagenesis. The likely presence of highly soluble Mg-sulfates in the rocks suggests negligible fluid flow through the bedrock post-Mg-sulfate deposition. The X-ray amorphous sulfur-bearing phases probably became amorphous through dehydration in the current Martian atmosphere or inside the CheMin instrument. X-ray amorphous sulfur-bearing materials likely contribute to orbital spectral detections of sulfates, and so our results help form multiple hypotheses to be tested in the sulfate unit and are important for understanding the evolution of the Martian surface environment at Gale crater.
- Published
- 2022
- Full Text
- View/download PDF
8. Mars Science Laboratory Observations of Chloride Salts in Gale Crater, Mars
- Author
-
N. H. Thomas, B. L. Ehlmann, P.‐Y. Meslin, W. Rapin, D. E. Anderson, F. Rivera‐Hernández, O. Forni, S. Schröder, A. Cousin, N. Mangold, R. Gellert, O. Gasnault, and R. C. Wiens
- Published
- 2019
- Full Text
- View/download PDF
9. Treating Smoking in Cancer Patients: An Essential Component of Cancer Care—The New National Cancer Institute Tobacco Control Monograph
- Author
-
Douglas R. Lowy, Michael C. Fiore, Gordon Willis, Kristen N. Mangold, Michele H. Bloch, and Timothy B. Baker
- Subjects
Oncology ,Oncology (nursing) ,Health Policy - Abstract
PURPOSE: Continued smoking after the diagnosis of cancer can markedly worsen oncology treatment side effects, cancer outcomes, cancer mortality, and all-cause mortality. Conversely, mounting evidence demonstrates that smoking cessation by patients with cancer improves outcomes. A cancer diagnosis often serves as a teachable moment, characterized by high motivation to quit. However, too few patients with cancer who smoke are offered evidence-based smoking cessation treatment, and too few engage in such treatment. METHODS AND MATERIALS: The National Cancer Institute commissioned Tobacco Control Monograph 23, Treating Smoking in Cancer Patients: An Essential Component of Cancer Care, to review and synthesize the evidence that clarifies the need to intervene with smoking in cancer care. RESULTS: Although many patients with newly diagnosed cancer who smoke make quit attempts, many of these are unsuccessful, and among those who successfully quit, relapse is common. Indeed, an estimated 12.2% of adults ever diagnosed with cancer reported they currently smoked (National Health Interview Survey, 2020). Patients with cancer who smoke are likely to benefit from smoking cessation treatments, including counseling and US Food and Drug Administration–approved medications, and there are many effective strategies to increase delivery of smoking cessation treatment in cancer care settings. CONCLUSION: Smoking cessation is among the most effective treatment options for improving the likelihood of survival, quality of life, and overall health of patients with cancer who smoke. It is important for cancer care clinicians and patients to realize that it is never too late to quit smoking and that there are clear benefits to doing so, regardless of cancer type.
- Published
- 2022
10. In Situ Analysis of Opal in Gale Crater, Mars
- Author
-
W. Rapin, B. Chauviré, T. S. J. Gabriel, A. C. McAdam, B. L. Ehlmann, C. Hardgrove, P.‐Y. Meslin, B. Rondeau, E. Dehouck, H. B. Franz, N. Mangold, S. J. Chipera, R. C. Wiens, J. Frydenvang, and S. Schröder
- Published
- 2018
- Full Text
- View/download PDF
11. Chemical variations in Yellowknife Bay formation sedimentary rocks analyzed by ChemCam on board the Curiosity rover on Mars
- Author
-
N. Mangold, O. Forni, G. Dromart, K. Stack, R. C. Wiens, O. Gasnault, D. Y. Sumner, M. Nachon, P.‐Y. Meslin, R. B. Anderson, B. Barraclough, J. F. Bell, G. Berger, D. L. Blaney, J. C. Bridges, F. Calef, B. Clark, S. M. Clegg, A. Cousin, L. Edgar, K. Edgett, B. Ehlmann, C. Fabre, M. Fisk, J. Grotzinger, S. Gupta, K. E. Herkenhoff, J. Hurowitz, J. R. Johnson, L. C. Kah, N. Lanza, J. Lasue, S. Le Mouélic, R. Léveillé, E. Lewin, M. Malin, S. McLennan, S. Maurice, N. Melikechi, A. Mezzacappa, R. Milliken, H. Newsom, A. Ollila, S. K. Rowland, V. Sautter, M. Schmidt, S. Schröder, C. d'Uston, D. Vaniman, and R. Williams
- Published
- 2015
- Full Text
- View/download PDF
12. Shallow subsurface basalt layer along Cerberus Fossae, Mars: Insights from SHARAD, HiRISE, and CRISM analysis
- Author
-
null Harish, K.B. Kimi, S. Tuhi, S. Baliyan, N. Mangold, S. Vijayan, and M.R. El-Maarry
- Subjects
Space and Planetary Science ,Astronomy and Astrophysics - Published
- 2023
13. Perseverance rover reveals an ancient delta-lake system and flood deposits at Jezero crater, Mars
- Author
-
C. Quantin-Nataf, Keyron Hickman-Lewis, Adrian J. Brown, Tanja Bosak, Scott M. McLennan, David L. Shuster, Kenneth H. Williford, R. A. Yingst, Kenneth A. Farley, Benjamin P. Weiss, James F. Bell, Sylvestre Maurice, Amy J. Williams, Linda C. Kah, S. F. Sholes, Gilles Dromart, Vivian Z. Sun, Justin I. Simon, S. Holm-Alwmark, Jorge I. Nunez, Olivier Gasnault, Sunetra Gupta, Ann Ollila, Melissa S. Rice, Allan H. Treiman, K. M. Stack, John P. Grotzinger, N. Mangold, J. Martinez-Frias, Bethany L. Ehlmann, Roger C. Wiens, J. W. Rice, Olivier Beyssac, P. Pilleri, Fred Calef, Briony Horgan, J. D. Tarnas, Nathan R. Williams, S. Le Mouélic, Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
- Subjects
Delta ,Hydrology Geomorphology fluvial 1625 ,010504 meteorology & atmospheric sciences ,Geochemistry ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Mars ,01 natural sciences ,Jezero crater ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,Impact crater ,Margin (machine learning) ,0103 physical sciences ,010303 astronomy & astrophysics ,CORINTH ,0105 earth and related environmental sciences ,ARCHITECTURE ,Multidisciplinary ,Flood myth ,ORIGIN ,Mars Exploration Program ,SCIENCE ,Sedimentology ,13. Climate action ,RIFT ,Sedimentary rock ,Geology - Abstract
Perseverance images of a delta on Mars The Perseverance rover landed in Jezero crater, Mars, in February 2021. Earlier orbital images showed that the crater contains an ancient river delta that was deposited by water flowing into a lake billions of years ago. Mangold et al . analyzed rover images taken shortly after landing that show distant cliff faces at the edge of the delta. The exposed stratigraphy and sizes of boulders allowed them to determine the past lake level and water discharge rates. An initially steady flow transitioned into intermittent floods as the planet dried out. This history of the delta’s geology provides context for the rest of the mission and improves our understanding of Mars’ ancient climate. —KTS
- Published
- 2021
14. Early diagenesis at and below Vera Rubin ridge, Gale crater, Mars
- Author
-
Mark H. Reed, John Parnell, N. Mangold, John Bridges, L. J. Hicks, Cherie N. Achilles, E. B. Rampe, Candice Bedford, Susanne P. Schwenzer, Amy McAdam, A. A. Fraeman, S. M. R. Turner, Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), and Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Mineral ,010504 meteorology & atmospheric sciences ,Geochemistry ,Mars Exploration Program ,Hematite ,010502 geochemistry & geophysics ,01 natural sciences ,Diagenesis ,Igneous rock ,Geophysics ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,Space and Planetary Science ,visual_art ,Group (stratigraphy) ,Ridge (meteorology) ,visual_art.visual_art_medium ,Clay minerals ,Geology ,0105 earth and related environmental sciences - Abstract
International audience; Data returned by NASA’s Mars Science Laboratory Curiosity rover showed evidence for abundant secondary materials, including Fe-oxides, phyllosilicates, and an amorphous component on and below Vera Rubin ridge in the Murray formation. We have used equilibrium thermochemical modeling to test the hypothesis that these altered sediments were deposited predominantly as detrital igneous grains and subsequently underwent diagenetic alteration. Chemical compositions of the altered components were calculated using data returned by the Chemistry and Mineralogy X-ray diffraction instrument and the Alpha Particle X-ray Spectrometer on board Curiosity. Reaction of these alteration compositions with a CO2-poor and oxidizing dilute aqueous solution was modeled at 25 – 100 °C, with varying amounts of Fe3+/Fetot of the host rock. The modeled alteration assemblages contained abundant phyllosilicates and Fe-oxides at >100 water to rock ratios, and were directly comparable to the abundances of hematite and clay minerals observed by Curiosity at 10,000 water to rock at 50 – 100 °C with pH ranging from 7.9 to 9.3. Our modeling results suggest that the hematite-clay mineral assemblage is primarily the result of enhanced groundwater flow compared to the Sheepbed mudstone in the Bradbury Group observed at Yellowknife Bay, and underwent further, localized alteration to produce the mineralogy observed by Curiosity.
- Published
- 2021
15. Pre-landslide topographic reconstruction in Baetis Chaos, mars using a CaSSIS Digital Elevation Model
- Author
-
A. Guimpier, S.J. Conway, M. Pajola, A. Lucchetti, E. Simioni, C. Re, A. Noblet, N. Mangold, N. Thomas, and G. Cremonese
- Subjects
Space and Planetary Science ,Astronomy and Astrophysics - Published
- 2022
16. Investigating the role of anhydrous oxidative weathering on sedimentary rocks in the Transantarctic Mountains and implications for the modern weathering of sedimentary lithologies on Mars
- Author
-
K. Truitt, N. Mangold, Mark R. Salvatore, Nina Lanza, Roger C. Wiens, Samuel M. Clegg, Erwin Dehouck, Elizabeth B. Rampe, K. Roszell, Northern Arizona University [Flagstaff], University of Michigan [Dearborn], University of Michigan System, Los Alamos National Laboratory (LANL), NASA Johnson Space Center (JSC), NASA, Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Martian ,010504 meteorology & atmospheric sciences ,Lithology ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Geochemistry ,Stratigraphic unit ,Astronomy and Astrophysics ,Weathering ,Mars Exploration Program ,15. Life on land ,01 natural sciences ,Igneous rock ,13. Climate action ,Space and Planetary Science ,Martian surface ,0103 physical sciences ,Sedimentary rock ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences - Abstract
International audience; Alteration of the uppermost surfaces of geologic materials is a pervasive process on planetary surfaces that is dependent upon factors including parent composition and the environment under which alteration is occurring. While rapid and pervasive in hot and humid climates on Earth, chemical weathering of rock surfaces has also been found to dominate in some of Earth's coldest and driest landscapes as well. Specifically, surfaces dominated by resistant fine-grained igneous rocks in the Antarctic preserve evidence of oxidative weathering processes, which represent the initial immature surface alteration processes that stagnate due to the lack of available water and kinetics necessary for the production of more mature alteration phases. In this study, we test the hypothesis that oxidative weathering also dominates the surfaces of sedimentary rocks throughout the Antarctic. We investigated the chemistry and mineralogy of a suite of sedimentary rocks from the Transantarctic Mountains ranging from fine-grained tuffs to coarse-grained sandstones and conglomerates. Our results show that, like the previously studied fine-grained igneous rocks in the Antarctic, sedimentary rocks generally showed only minor chemical weathering signatures at their surfaces relative to their interiors. However, unlike the igneous rocks in this earlier study, the sedimentary rocks exhibited a wide variety of non-systematic differences between surface and interior compositions. This variability of surface weathering signatures is equally as complex as the physical properties and compositions inherently present within these different sedimentary lithologies. Based on these analyses, it is apparent that oxidative weathering products do not dominate the surfaces of sedimentary rocks throughout the Transantarctic Mountains, which instead exhibit a wide array of weathering signatures that are likely dependent on both lithological and environmental factors. Considering that sedimentary lithologies are widespread across a significant fraction of the martian surface, our results suggest that observed alteration signatures limited to the surfaces of martian sedimentary rocks are most likely to be minor and to vary as a result of the lithological properties of the specific rock unit and not as a result of the widespread influences of the modern cold and dry climatic conditions.
- Published
- 2019
17. Alternating wet and dry depositional environments recorded in the stratigraphy of Mount Sharp at Gale crater, Mars
- Author
-
Bethany L. Ehlmann, Ryan B. Anderson, William Rapin, J. L. Dickson, D. M. Rubin, Sylvestre Maurice, Gilles Dromart, Lauren A. Edgar, Valerie Fox, Roger C. Wiens, Olivier Gasnault, K. E. Herkenhoff, N. Mangold, S. Le Mouélic, L. Le Deit, Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), California Institute of Technology (CALTECH), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon), University of California, Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), U.S Geological Survey, Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Los Alamos National Laboratory (LANL), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), and University of California (UC)
- Subjects
010504 meteorology & atmospheric sciences ,Geochemistry ,Gale crater ,Geology ,Mars Exploration Program ,15. Life on land ,010502 geochemistry & geophysics ,01 natural sciences ,Mount ,Sedimentary depositional environment ,Stratigraphy ,13. Climate action ,[SDU]Sciences of the Universe [physics] ,0105 earth and related environmental sciences - Abstract
The Curiosity rover is exploring Hesperian-aged stratigraphy in Gale crater, Mars, where a transition from clay-bearing units to a layered sulfate-bearing unit has been interpreted to represent a major environmental transition of unknown character. We present the first description of key facies in the sulfate-bearing unit, recently observed in the distance by the rover, and propose a model for changes in depositional environments. Our results indicate a transition from lacustrine mudstones into thick aeolian deposits, topped by a major deflation surface, above which strata show architectures likely diagnostic of a subaqueous environment. This model offers a reference example of a depositional sequence for layered sulfate-bearing strata, which have been identified from orbit in other locations globally. It differs from the idea of a monotonic Hesperian climate change into long-term aridity on Mars and instead implies a period characterized by multiple transitions between sustained drier and wetter climates.
- Published
- 2021
18. The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description
- Author
-
I. Torre-Fdez, V. Gharakanian, E. Cordoba, Jérôme Parisot, R. Perez, Amaury Fau, Peter Willis, Ruth A. Anderson, Pablo Sobron, K. W. Wong, A. Debus, Julien Mekki, Noureddine Melikechi, K. Mathieu, S. Gauffre, M. Toplis, Jesús Martínez-Frías, Alexandre Cadu, Francois Poulet, B. Quertier, Horton E. Newsom, H. Seran, C. Quantin-Nataf, W. D’anna, Jens Frydenvang, Frédéric Chapron, Pierre Beck, Jean-François Mariscal, B. Chide, Y. André, Y. Michel, G. Orttner, N. Toulemont, A. Dufour, Briana Lucero, Olivier Gilard, Marion Bonafous, D. Pheav, Q.-M. Lee, D. Standarovsky, Franck Montmessin, R. Gonzalez, S. Le Mouélic, Cedric Virmontois, L. Roucayrol, I. Gontijo, M. Deleuze, L. Parès, L. Oudda, Y. Micheau, F. Manni, Bruno Dubois, Bruno Bousquet, G. de los Santos, D. M. Delapp, Guillermo Lopez-Reyes, L. Picot, Clément Royer, E. Clave, Richard Leveille, Erwin Dehouck, Gaetan Lacombe, J. Javier Laserna, Olivier Beyssac, P. Romano, Y. Daydou, Scott M. McLennan, John Michel, V. Sridhar, Driss Kouach, Gabriel Pont, M. Dupieux, Michel Gauthier, Jean-Michel Reess, J. Moros, J.-C. Dameury, T. Fouchet, Ann Ollila, Sophie Jacquinod, P. Y. Meslin, M. Egan, Juan Manuel Madariaga, Karim Benzerara, G. Hervet, Gilles Montagnac, Woodward W. Fischer, Olivier Gasnault, T. Nelson, Stanley M. Angel, Lauren DeFlores, Violaine Sautter, Marco Veneranda, C. Leyrat, Olivier Humeau, Y. Morizet, Jose Antonio Manrique, M. Sodki, P. Pilleri, C. Velasco, Naomi Murdoch, M. J. Schoppers, S. A. Storms, Sylvestre Maurice, Benigno Sandoval, Cedric Pilorget, N. Striebig, S. Robinson, V. Mousset, David Mimoun, Morten Madsen, M. Heim, A. Doressoundiram, Christophe Montaron, Eric Lewin, Patrick Pinet, C. Donny, Susanne Schröder, Agnès Cousin, Sadok Abbaki, John P. Grotzinger, Claude Collin, Xavier Jacob, Jeffrey R. Johnson, Cécile Fabre, K. McCabe, C. Legett, J. P. Berthias, Shiv K. Sharma, Timothy H. McConnochie, A. Sournac, Ralph D. Lorenz, M. Viso, Yann Parot, N. Mangold, W. Rapin, Jérémie Lasue, Gorka Arana, Joan Ervin, E. Le Comte, N. Nguyen Tuong, P. Cais, Olivier Forni, D. Rambaud, T. Battault, D. Venhaus, Anupam K. Misra, K. Clark, M. Tatat, Laurent Lapauw, P. Bernardi, Roger C. Wiens, Samuel M. Clegg, Nina Lanza, Sylvain Bernard, Soren N. Madsen, Kepa Castro, M. Boutillier, Raymond Newell, D. Granena, Y. Hello, Fernando Rull, M. Ruellan, R. Mathon, Edward A. Cloutis, Gilles Dromart, L. Le Deit, Rafik Hassen-Khodja, Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Los Alamos National Laboratory (LANL), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre National d'Études Spatiales [Toulouse] (CNES), Universidad de Valladolid [Valladolid] (UVa), Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), US Geological Survey [Flagstaff], United States Geological Survey [Reston] (USGS), University of South Carolina [Columbia], Universidad del Pais Vasco / Euskal Herriko Unibertsitatea [Espagne] (UPV/EHU), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes Lasers Intenses et Applications (CELIA), Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), University of Winnipeg, Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France, University of Hawai‘i [Mānoa] (UHM), GeoRessources, Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), California Institute of Technology (CALTECH), University of Copenhagen = Københavns Universitet (UCPH), Institut de mécanique des fluides de Toulouse (IMFT), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), PLANETO - LATMOS, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Universidad de Málaga [Málaga] = University of Málaga [Málaga], Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), McGill University = Université McGill [Montréal, Canada], Institut des Sciences de la Terre (ISTerre), Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), University of Maryland [College Park], University of Maryland System, Stony Brook University [SUNY] (SBU), State University of New York (SUNY), University of Massachusetts [Lowell] (UMass Lowell), University of Massachusetts System (UMASS), Laboratoire de Planétologie et Géodynamique - Angers (LPG-ANGERS), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), The University of New Mexico [Albuquerque], Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Institut für Optische Sensorsysteme, Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), SETI Institute, Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Bordeaux (UB), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Institut national des sciences de l'Univers (INSU - CNRS), University of Copenhagen = Københavns Universitet (KU), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), and Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Université Fédérale Toulouse Midi-Pyrénées
- Subjects
Rocks ,010504 meteorology & atmospheric sciences ,Computer science ,[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] ,Mars ,Context (language use) ,Perseverance ,Imaging on Mars ,Mars 2020 Perseverance rover ,01 natural sciences ,SuperCam Instrument ,Unit (housing) ,Mast (sailing) ,Jezero crater ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,imaging on Mars ,Microphone on Mars ,0103 physical sciences ,Calibration ,Rover ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,infrared spectroscopy ,Raman ,010303 astronomy & astrophysics ,Infrared spectroscopy ,0105 earth and related environmental sciences ,[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] ,M2020 ,LIBS ,Payload ,Suite ,Mars2020 ,Astronomy and Astrophysics ,Laser-Induced Breakdown Spectroscopy ,Mars Exploration Program ,microphone on Mars ,Planetary science ,SuperCam ,Space and Planetary Science ,Raman spectroscopy ,Systems engineering ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Mars 2020 PERSEVERANCE rover - Abstract
On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2-7 m, while providing data at sub-mm to mm scales. We report on SuperCam's science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data. In France was provided by the Centre National d'Etudes Spatiales (CNES). Human resources were provided in part by the Centre National de la Recherche Scientifique (CNRS) and universities. Funding was provided in the US by NASA's Mars Exploration Program. Some funding of data analyses at Los Alamos National Laboratory (LANL) was provided by laboratory-directed research and development funds.
- Published
- 2021
19. Critical knowledge gaps in the Martian geological record: A rationale for regional-scale in situ exploration by rotorcraft mid-air deployment
- Author
-
Valerie Payre, Bethany L. Ehlmann, N. Mangold, Robert Lillis, J. Bapst, Sylvestre Maurice, Violaine Sautter, A. A. Fraeman, William Rapin, Benoit Langlais, Jessica Flahaut, Anna Mittelholz, Arya Udry, David Baratoux, James Tuttle Keane, Gilles Dromart, C. Quantin-Nataf, and Briony Horgan
- Subjects
Martian ,Scale (ratio) ,Software deployment ,Earth science ,Geologic record ,Geology - Published
- 2021
20. X-ray amorphous components in sedimentary rocks of Gale crater, Mars: Evidence for ancient formation and long-lived aqueous activity
- Author
-
E. B. Rampe, Cherie N. Achilles, Briony Horgan, Erwin Dehouck, Mark R. Salvatore, R. J. Smith, Vivian Z. Sun, N. Mangold, Kirsten L. Siebach, Scott M. McLennan, State University of New York, Stonybrook, State University of New York (SUNY), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), and Université de Nantes (UN)-Université de Nantes (UN)-Université d'Angers (UA)
- Subjects
geography ,geography.geographical_feature_category ,Noachian ,Geochemistry ,Mars ,Context (language use) ,Diagenesis ,Geophysics ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,Volcano ,Impact crater ,Space and Planetary Science ,Geochemistry and Petrology ,[SDU]Sciences of the Universe [physics] ,X ray amorphous ,aqueous alteration ,Earth and Planetary Sciences (miscellaneous) ,Hesperian ,curiosity rover ,Sedimentary rock ,gale crater ,Lithification ,diagenesis - Abstract
International audience; The CheMin instrument on the Mars Science Laboratory rover Curiosity detected ubiquitous high abundances (∼15-70 wt%) of X ray amorphous components (AmCs) in ancient sedimentary rocks of Gale crater. Mechanisms and timing of formation for the AmCs are poorly constrained, and could include volcanic, impact, or aqueous processes. We explore trends in AmC composition and abundance, and look for systematic compositional variation between sites within Gale crater. AmC compositions were estimated indirectly based on bulk chemistry and the nature and abundance of the crystalline phases for 19 sedimentary rock samples. AmC abundances positively correlate with AmC SiO2 contents, and a mixing relationship appears to exist between SiO2 rich and FeOT rich AmC endmembers. Endmember compositions are inconsistent with volcanic or impact glass alone, and so we conclude that the SiO2 and FeOT contents formed largely through aqueous processes. Cross cutting relationships and geologic context provide evidence that the most SiO2 rich AmCs observed in Gale crater thus far may result from interactions with localized fluids during late diagenesis. AmCs with moderate to low SiO2 contents likely formed earlier (before or soon after sediment deposition). Thus, the AmC SiO2 and FeOT contents in Gale crater rocks represent mixtures of sedimentary materials formed over most of the sedimentary history of Gale crater, starting before the first sediments were deposited in the crater (late Noachian), and ending well after the youngest sediments were lithified (at least mid Hesperian). However, it remains unclear how these metastable minerals have persisted through billions of years of diagenesis in Gale crater sediments.
- Published
- 2021
21. Deposition and erosion of a Light-Toned Yardang-forming unit of Mt Sharp, Gale crater, Mars
- Author
-
Horton E. Newsom, C. Quantin-Nataf, Jérémie Lasue, L. A. Scuderi, Sylvestre Maurice, S. Le Mouélic, William Rapin, Patrick Pinet, Olivier Gasnault, N. Mangold, L. Le Deit, Roger C. Wiens, Gilles Dromart, D. M. Rubin, Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), California Institute of Technology (CALTECH), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Department of Earth and Planetary Sciences [Santa Cruz], University of California [Santa Cruz] (UC Santa Cruz), University of California (UC)-University of California (UC), The University of New Mexico [Albuquerque], Los Alamos National Laboratory (LANL), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), University of California [Santa Cruz] (UCSC), University of California-University of California, Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), and Université de Nantes (UN)-Université de Nantes (UN)-Université d'Angers (UA)
- Subjects
010504 meteorology & atmospheric sciences ,Stratigraphy ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Context (language use) ,010502 geochemistry & geophysics ,01 natural sciences ,Yardang ,Paleontology ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,Impact crater ,Geochemistry and Petrology ,Earth and Planetary Sciences (miscellaneous) ,Eolian ,[SDU.STU.GM]Sciences of the Universe [physics]/Earth Sciences/Geomorphology ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,geography ,geography.geographical_feature_category ,Stack (geology) ,Mars Exploration Program ,15. Life on land ,Mars Climate ,Gale Crater ,Geophysics ,Erg (landform) ,13. Climate action ,Space and Planetary Science ,ChemCam ,[SDU.STU.ST]Sciences of the Universe [physics]/Earth Sciences/Stratigraphy ,Hesperian ,Aeolian processes ,Geology - Abstract
International audience; Gale crater is a large impact crater with a ca 5 km thick sequence of stratified rocks in it, expressed today as a central eroded mound (i.e., Aeolis Mons informally named Mt. Sharp). A goal of the current Mars Science Laboratory mission in Gale crater is to investigate the processes that deposited, lithified, and eroded this fill. The Light-Toned Yardang Unit (LTYu) unit, the subject of the present research, is one of the geological units of Mt Sharp. Our specific purpose here is to refine and interpret the imaging documentation of the morphologic and stratal components of the LTYu, at large outcrop scale. In combination with established orbital images, we use the Remote Micro-Imager (RMI) of ChemCam, a remote sensing instrument currently operated onboard Curiosity rover, which provides several types of context imaging. RMI capabilities now include “Long Distance” acquisitions of targets several kilometers away. In these new acquisitions, substantial differences are visible in LTYu yardang attitudes from lowest to uppermost elevations allowing tentative subdivision of the LTYu into subunits. Bedding geometries in the lower LTYu are consistent with eolian dune foresets which collectively prograde towards an average N134° direction. Based on stratal architectures, the LTYu is viewed as an amalgamated stack of at least two, and possibly four, ancient erg systems bounded by large deflationary “supersurfaces”. Observations point to a multistory generation of yardangs interpreted to have been successively buried during the stratigraphic building of Mt Sharp. We conclude that the successive sequences of eolian deposition-erosion recorded by the LTYu have been generated by cyclic changes from semi-arid to arid conditions, coupled in climatic cycles, including wind regime change. The regional unconformity that tops the Lower mound formation of Mt Sharp, and the subsequent emplacement of the LTYu, collectively express a clear tendency toward sustained arid environments for this region of Mars around the Early – Late Hesperian transition. Given the large time scale involved (i.e., a few tens of million years as a minimum), we consider it likely that the local evidence for increased aridity in the Mt Sharp stratigraphy is a manifestation of climate change affecting the whole planet.
- Published
- 2021
22. Housedon-Hill - A ChemCam/RMI mega mosaic to investigate distant features
- Author
-
William Rapin, Olivier Gasnault, Gilles Dromart, Horton E. Newsom, S. Le Mouélic, Roger C. Wiens, Gwénaël Caravaca, N. Mangold, and Alexander B. Bryk
- Subjects
Geography ,Mosaic (geodemography) ,Mega ,Cartography - Published
- 2020
23. Iron Mobility During Diagenesis at Vera Rubin Ridge, Gale Crater, Mars
- Author
-
J. L'Haridon, N. Mangold, A. A. Fraeman, J. R. Johnson, A. Cousin, W. Rapin, G. David, E. Dehouck, V. Sun, J. Frydenvang, O. Gasnault, P. Gasda, N. Lanza, O. Forni, P.‐Y. Meslin, S. P. Schwenzer, J. Bridges, B. Horgan, C. H. House, M. Salvatore, S. Maurice, R. C. Wiens, Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon), California Institute of Technology (CALTECH), Geological Institute [Copenhagen], University of Copenhagen = Københavns Universitet (KU), Los Alamos National Laboratory (LANL), The Open University [Milton Keynes] (OU), University of Leicester, Indiana University - Purdue University Indianapolis (IUPUI), Indiana University System, Pennsylvania State University (Penn State), Penn State System, Université d'Angers (UA)-Université de Nantes - Faculté des Sciences et des Techniques, Centre National de la Recherche Scientifique (CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Université Fédérale Toulouse Midi-Pyrénées-Centre National d'Études Spatiales [Toulouse] (CNES)-Météo France-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Université Fédérale Toulouse Midi-Pyrénées-Centre National d'Études Spatiales [Toulouse] (CNES)-Météo France-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), University of Copenhagen = Københavns Universitet (UCPH), and ANR-16-CE31-0012,MARS-PRIME,Environnement Primitif de Mars(2016)
- Subjects
Recrystallization (geology) ,010504 meteorology & atmospheric sciences ,Outcrop ,sedimentary rocks ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Iron oxide ,Geochemistry ,FOS: Physical sciences ,Mars ,01 natural sciences ,chemistry.chemical_compound ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,Geochemistry and Petrology ,Earth and Planetary Sciences (miscellaneous) ,iron mobility ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Earth and Planetary Astrophysics (astro-ph.EP) ,Hematite ,diagenetic ,Diagenesis ,redox processes ,Geophysics ,Curiosity ,chemistry ,ChemCam ,Space and Planetary Science ,rover ,visual_art ,visual_art.visual_art_medium ,Ridge (meteorology) ,Sedimentary rock ,Pseudomorph ,diagenesis ,Geology ,Astrophysics - Earth and Planetary Astrophysics - Abstract
The Curiosity rover investigated a topographic structure known as Vera Rubin ridge, associated with a hematite signature in orbital spectra. There, Curiosity encountered mudstones interpreted as lacustrine deposits, conformably overlying the 300 m‐thick underlying sedimentary rocks of the Murray formation at the base of Mount Sharp. While the presence of hematite (α‐Fe2O3) was confirmed in‐situ by both Mastcam and ChemCam spectral observations and by the CheMin instrument, neither ChemCam nor APXS observed any significant increase in FeOT (total iron oxide) abundances compared to the rest of the Murray formation. Instead, Curiosity discovered dark‐toned diagenetic features displaying anomalously high FeOT abundances, commonly observed in association with light‐toned Ca‐sulfate veins but also as crystal pseudomorphs in the host rock. These iron‐rich diagenetic features are predominantly observed in “grey” outcrops on the upper part of the ridge, which lack the telltale ferric signature of other Vera Rubin ridge outcrops. Their composition is consistent with anhydrous Fe‐oxide, as the enrichment in iron is not associated with enrichment in any other elements, nor with detections of volatiles. The lack of ferric absorption features in the ChemCam reflectance spectra and the hexagonal crystalline structure associated with dark‐toned crystals points toward coarse “grey” hematite. In addition, the host rock adjacent to these features appears bleached and show low‐FeOT content as well as depletion in Mn, indicating mobilization of these redox‐sensitive elements during diagenesis. Thus, groundwater fluid circulations could account for the remobilization of iron and recrystallization as crystalline hematite during diagenesis on Vera Rubin ridge.
- Published
- 2020
24. The Chemostratigraphy of the Murray Formation and Role of Diagenesis at Vera Rubin Ridge in Gale Crater, Mars, as Observed by the ChemCam Instrument
- Author
-
Patrick J. Gasda, Valerie Payre, Christopher M. Fedo, Fred Calef, Abigail A. Fraeman, Candice Bedford, Jonas L'Haridon, P.-Y. Meslin, Nina Lanza, E. B. Rampe, Lauren A. Edgar, Jens Frydenvang, Roger C. Wiens, N. Mangold, Sylvestre Maurice, John P. Grotzinger, Olivier Gasnault, John Bridges, B. C. Clark, Sunetra Gupta, Christopher H. House, A. M. Olilla, Mark R. Salvatore, Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Los Alamos National Laboratory (LANL), California Institute of Technology (CALTECH), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
- Subjects
Chemical index ,010504 meteorology & atmospheric sciences ,Geochemistry ,Mars ,01 natural sciences ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,Vera Rubin ridge ,Geochemistry and Petrology ,Chemostratigraphy ,Earth and Planetary Sciences (miscellaneous) ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Gale crater ,Mars Science Laboratory ,Mars Exploration Program ,Hematite ,Diagenesis ,Geophysics ,ChemCam ,13. Climate action ,Space and Planetary Science ,visual_art ,Ridge (meteorology) ,visual_art.visual_art_medium ,chemostratigraphy ,Clay minerals ,Geology - Abstract
Geochemical results are presented from Curiosity's exploration of Vera Rubin ridge (VRR), in addition to the full chemostratigraphy of the predominantly lacustrine mudstone Murray formation up to and including VRR. VRR is a prominent ridge flanking Aeolis Mons (informally Mt. Sharp), the central mound in Gale crater, Mars, and was a key area of interest for the Mars Science Laboratory mission. ChemCam data show that VRR is overall geochemically similar to lower-lying members of the Murray formation, even though the top of VRR shows a strong hematite spectral signature as observed from orbit. Although overall geochemically similar, VRR is characterized by a prominent decrease in Li abundance and Chemical Index of Alteration across the ridge. This decrease follows the morphology of the ridge rather than elevation and is inferred to reflect a nondepositionally controlled decrease in clay mineral abundance in VRR rocks. Additionally, a notable enrichment in Mn above baseline levels is observed on VRR. While not supporting a single model, the results suggest that VRR rocks were likely affected by multiple episodes of postdepositional groundwater interactions that made them more erosionally resistant than surrounding Murray rocks, thus resulting in the modern-day ridge after subsequent erosion.
- Published
- 2020
25. Boron and Lithium in Calcium Sulfate Veins: Tracking Precipitation of Diagenetic Materials in Vera Rubin Ridge, Gale Crater
- Author
-
Richard Leveille, Sylvestre Maurice, Kim Berlo, Olivier Forni, Debasish Das, Jens Frydenvang, Olivier Gasnault, Agnes Cousin, Susanne P. Schwenzer, R. E. Kronyak, Patrick J. Gasda, Roger C. Wiens, N. Mangold, McGill University = Université McGill [Montréal, Canada], Los Alamos National Laboratory (LANL), University of Copenhagen = Københavns Universitet (KU), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), University of Tennessee Space Institute (UTSI), The Open University [Milton Keynes] (OU), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), University of Copenhagen = Københavns Universitet (UCPH), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
- Subjects
010504 meteorology & atmospheric sciences ,Evaporite ,chemistry.chemical_element ,Mineralogy ,VRR ,01 natural sciences ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,Geochemistry and Petrology ,Earth and Planetary Sciences (miscellaneous) ,medicine ,Dehydration ,Boron ,Dissolution ,0105 earth and related environmental sciences ,Chemistry ,Gale crater ,medicine.disease ,Diagenesis ,Geophysics ,Curiosity ,13. Climate action ,Space and Planetary Science ,ChemCam ,lithium ,Ridge (meteorology) ,Sedimentary rock ,Clay minerals ,boron - Abstract
International audience; The NASA Curiosity rover's ChemCam instrument suite has detected boron in calcium‐sulfate‐filled fractures throughout the sedimentary strata of Gale crater including Vera Rubin ridge. The presence of elevated B concentration provides insights into Martian subsurface aqueous processes. In this study we extend the data set of B in Ca‐sulfate veins across Gale crater, comparing the detection frequency and relative abundances with Li. We report 33 new detections of B within veins analyzed between Sols 1548 and 2311 where detections increase in Pettegrove Point and Jura members, which form Vera Rubin ridge. The presence of B and Li in the Ca‐sulfate veins is possibly due to dissolution of preexisting B in clays of the bedrock by acids or neutral water and redistribution of the elements into the veins. Elevated frequency of B detection in veins of Gale crater correlates with presence of dehydration features such as desiccation cracks, altered clay minerals and detections of evaporites such as Mg‐sulfates and chloride salts in the host rocks. The increased observations of B also coincide with decreased Li concentration in the veins (average Li concentration of veins drops by ~15 ppm). Boron and Li have varying solubilities, and Li does not form salts as readily upon dehydration as B, causing it to remain in the solution. So the weak negative correlation between B and Li may reflect the crystallization sequence during dehydration on Vera Rubin ridge.
- Published
- 2020
26. Evidence for a diagenetic origin of vera rubin ridge, gale crater, Mars: summary and synthesis of curiosity's exploration campaign
- Author
-
Craig Hardgrove, Kirsten L. Siebach, John P. Grotzinger, Christopher S. Edwards, Alexander B. Bryk, Susanne P. Schwenzer, Sarah Stewart Johnson, William E. Dietrich, Lauren A. Edgar, Sunetra Gupta, Steven G. Banham, Jeffrey G. Catalano, S. Czarnecki, K. M. Stack, Ashwin R. Vasavada, R. V. Morris, Danika Wellington, John Bridges, Christopher H. House, Kristen A. Bennett, S. M. R. Turner, David M. Rubin, Jonas L'Haridon, Jeffrey R. Johnson, Roger C. Wiens, Valerie Fox, S. Jacob, Raymond E. Arvidson, Amy J. Williams, Vivian Z. Sun, Christopher M. Fedo, Jens Frydenvang, Travis Gabriel, Briony Horgan, Woodward W. Fischer, E. B. Rampe, Abigail A. Fraeman, Lucy M. Thompson, N. Mangold, G. M. Wong, Mark R. Salvatore, Nathaniel Stein, G. David, Science and Technology Facilities Council (STFC), UK Space Agency, Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), and Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Geochemistry & Geophysics ,010504 meteorology & atmospheric sciences ,Outcrop ,Lacustrine ,Geochemistry ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Mars ,Hematite ,FLUID-FLOW ,Geologic record ,01 natural sciences ,Diagenesis ,Geochemistry and Petrology ,0201 Astronomical and Space Sciences ,Earth and Planetary Sciences (miscellaneous) ,0402 Geochemistry ,CHEMCAM INSTRUMENT SUITE ,0105 earth and related environmental sciences ,geography ,geography.geographical_feature_category ,Spectral signature ,Science & Technology ,SEDIMENTARY-ROCKS ,MOUNT SHARP ,Bedrock ,DYNAMIC ALBEDO ,Gale crater ,Mars Exploration Program ,MURRAY FORMATION ,15. Life on land ,ATOM EXCHANGE ,Geophysics ,Curiosity ,0403 Geology ,Space and Planetary Science ,visual_art ,Physical Sciences ,visual_art.visual_art_medium ,PAHRUMP HILLS ,(U-TH)/HE DATES ,Geology - Abstract
This paper provides an overview of the Curiosity rover's exploration at Vera Rubin ridge and summarizes the science results. Vera Rubin ridge (VRR) is a distinct geomorphic feature on lower Aeolis Mons (informally known as Mt. Sharp) that was identified in orbital data based on its distinct texture, topographic expression, and association with a hematite spectral signature. Curiosity conducted extensive remote sensing observations, acquired data on dozens of contact science targets, and drilled three outcrop samples from the ridge, as well as one outcrop sample immediately below the ridge. Our observations indicate that strata composing VRR were deposited in a predominantly lacustrine setting and are part of the Murray formation. The rocks within the ridge are chemically in family with underlying Murray formation strata. Red hematite is dispersed throughout much of the VRR bedrock, and this is the source of the orbital spectral detection. Gray hematite is also present in isolated, gray‐colored patches concentrated towards the upper elevations of VRR, and these gray patches also contain small, dark Fe‐rich nodules. We propose that VRR formed when diagenetic event(s) preferentially hardened rocks, which were subsequently eroded into a ridge by wind. Diagenesis also led to enhanced crystallization and/or cementation that deepened the ferric‐related spectral absorptions on the ridge, which helped make them readily distinguishable from orbit. Results add to existing evidence of protracted aqueous environments at Gale crater and give new insight into how diagenesis shaped Mars’ rock record.
- Published
- 2020
27. Feasibility of collecting patient-generated health data to enhance cancer registry surveillance
- Author
-
Kristen N, Mangold, Lisa, Gallicchio, Anna, Gaysynsky, Erin E, Kent, Kristen, Constantine, and Bradford W, Hesse
- Subjects
Male ,Cancer Survivors ,Neoplasms ,Quality of Life ,Feasibility Studies ,Humans ,Registries ,Survivors - Abstract
Patient-generated health data (PGHD) can provide information about population-level patterns in health outcomes that patients experience during cancer survivorship. Cancer registries do not collect PGHD as part of routine operations. This study assessed the feasibility of online collection of PGHD to augment cancer registry data.Cancer survivors who (1) were aged 50 or older, (2) had been diagnosed with breast, prostate, or colorectal cancer, and (3) received their diagnosis within 10 years of the study start date were recruited at four Surveillance, Epidemiology, and End Results (SEER) cancer registry program sites. Each site was required to collect PGHD at baseline and a future time point to assess the feasibility of longitudinal methods. All sites collected data through a survey or questionnaire(s); each site employed unique methods to administer their surveys.Across the sites, initial recruitment appeared to be the most challenging aspect in establishing a longitudinal cohort from the SEER sampling frame, with participation rates ranging from 3 to 17%. However, once enrolled, the percentage of survivors completing surveys at multiple time points was relatively high, ranging from 48 to 91%.Augmenting cancer registry data with longitudinally collected PGHD is feasible, although more work is needed to overcome barriers of initial patient recruitment and adoption of online PGHD collection techniques for public health surveillance.Registry data, including PGHD, can provide the medical community with patient perspectives on treatment effects and quality of life and can offer cancer survivors information about symptom management and advances in research.
- Published
- 2020
28. Evidence for thermal-stress-induced rockfalls on Mars impact crater slopes
- Author
-
Susan J. Conway, Daniel Mège, Stephen R. Lewis, P.-A. Tesson, Jakub Ciazela, N. Mangold, Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Space Research Centre of Polish Academy of Sciences (CBK), Polska Akademia Nauk = Polish Academy of Sciences (PAN), School of Physical Sciences [Milton Keynes], Faculty of Science, Technology, Engineering and Mathematics [Milton Keynes], and The Open University [Milton Keynes] (OU)-The Open University [Milton Keynes] (OU)
- Subjects
geography ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,Outcrop ,Bedrock ,Astronomy and Astrophysics ,Weathering ,Mars Exploration Program ,Spatial distribution ,01 natural sciences ,Rockfall ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,Impact crater ,13. Climate action ,Space and Planetary Science ,0103 physical sciences ,Aeolian processes ,[SDU.STU.GM]Sciences of the Universe [physics]/Earth Sciences/Geomorphology ,010303 astronomy & astrophysics ,Geomorphology ,Geology ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences - Abstract
Here we study rocks falling from exposed outcrops of bedrock, which have left tracks on the slope over which they have bounced and/or rolled, in fresh impact craters (1–10 km in diameter) on Mars. The presence of these tracks shows that these rocks have fallen relatively recently because aeolian processes are known to infill topographic lows over time. Mapping of rockfall tracks indicate trends in frequency with orientation, which in turn depend on the latitudinal position of the crater. Craters in the equatorial belt (between 15°N and 15°S) exhibit higher frequencies of rockfall on their north-south oriented slopes compared to their east-west ones. Craters >15° N/S have notably higher frequencies on their equator-facing slopes as opposed to the other orientations. We computed solar radiation on the surface of crater slopes to compare insolation patterns with the spatial distribution of rockfalls, and found statistically significant correlations between maximum diurnal insolation and rockfall frequency. Our results indicate that solar-induced thermal stress plays a more important role under relatively recent climate conditions in rock breakdown and preconditioning slopes for rockfalls than phase transitions of H2O or CO2, at mid- and equatorial-latitudes. Thermal stress should thus be considered as an important factor in promoting mass-wasting process on impact crater walls and other steep slopes on Mars.
- Published
- 2020
29. Evidence for a Diagenetic Origin of Vera Rubin Ridge, Gale Crater, Mars: Summary and Synthesis of
- Author
-
A A, Fraeman, L A, Edgar, E B, Rampe, L M, Thompson, J, Frydenvang, C M, Fedo, J G, Catalano, W E, Dietrich, T S J, Gabriel, A R, Vasavada, J P, Grotzinger, J, L'Haridon, N, Mangold, V Z, Sun, C H, House, A B, Bryk, C, Hardgrove, S, Czarnecki, K M, Stack, R V, Morris, R E, Arvidson, S G, Banham, K A, Bennett, J C, Bridges, C S, Edwards, W W, Fischer, V K, Fox, S, Gupta, B H N, Horgan, S R, Jacob, J R, Johnson, S S, Johnson, D M, Rubin, M R, Salvatore, S P, Schwenzer, K L, Siebach, N T, Stein, S M R, Turner, D F, Wellington, R C, Wiens, A J, Williams, G, David, and G M, Wong
- Subjects
Atmospheres ,Introduction to a Special Section ,Lacustrine ,Mars ,Hematite ,Planetary Geochemistry ,Diagenesis ,Planetary Mineralogy and Petrology ,Geochemistry ,Planetary Sciences: Solar System Objects ,Curiosity ,Investigations of Vera Rubin Ridge, Gale Crater ,Planetary Sciences: Comets and Small Bodies ,Erosion and Weathering ,Planetary Sciences: Solid Surface Planets ,Planetary Sciences: Fluid Planets ,Mineralogy and Petrology ,Composition - Abstract
This paper provides an overview of the Curiosity rover's exploration at Vera Rubin ridge (VRR) and summarizes the science results. VRR is a distinct geomorphic feature on lower Aeolis Mons (informally known as Mount Sharp) that was identified in orbital data based on its distinct texture, topographic expression, and association with a hematite spectral signature. Curiosity conducted extensive remote sensing observations, acquired data on dozens of contact science targets, and drilled three outcrop samples from the ridge, as well as one outcrop sample immediately below the ridge. Our observations indicate that strata composing VRR were deposited in a predominantly lacustrine setting and are part of the Murray formation. The rocks within the ridge are chemically in family with underlying Murray formation strata. Red hematite is dispersed throughout much of the VRR bedrock, and this is the source of the orbital spectral detection. Gray hematite is also present in isolated, gray‐colored patches concentrated toward the upper elevations of VRR, and these gray patches also contain small, dark Fe‐rich nodules. We propose that VRR formed when diagenetic event(s) preferentially hardened rocks, which were subsequently eroded into a ridge by wind. Diagenesis also led to enhanced crystallization and/or cementation that deepened the ferric‐related spectral absorptions on the ridge, which helped make them readily distinguishable from orbit. Results add to existing evidence of protracted aqueous environments at Gale crater and give new insight into how diagenesis shaped Mars' rock record., Key Points We summarize Curiosity's campaign at Vera Rubin ridge (Sols 1726–2302) and the high‐level results from articles in this special issueVera Rubin ridge formed when diagenesis hardened rocks along the base of Aeolis Mons; wind subsequently etched the feature into a ridgeResults add evidence for protracted aqueous environments at Gale crater and give new insight into how diagenesis shaped Mars' rock record
- Published
- 2020
30. Refining the age, emplacement and alteration scenarios of the olivine-rich unit in the Nili Fossae region, Mars
- Author
-
N. Mangold, C. Quantin-Nataf, Gilles Dromart, Pierre Beck, Erwin Dehouck, L. Lozac'h, L. Mandon, Sylvain Breton, Matthieu Volat, C. Millot, Patrick Thollot, Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géodynamique UMR6112 (LPG), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Université d'Angers (UA), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon), and Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)
- Subjects
geography ,geography.geographical_feature_category ,Olivine ,010504 meteorology & atmospheric sciences ,Bedrock ,Geochemistry ,Noachian ,Pyroclastic rock ,Astronomy and Astrophysics ,Crust ,Volcanism ,Mars Exploration Program ,engineering.material ,01 natural sciences ,Impact crater ,13. Climate action ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,0103 physical sciences ,engineering ,010303 astronomy & astrophysics ,Geology ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences - Abstract
The Nili Fossae region of Mars exhibits from remote sensing spectral data the largest exposures of olivine-rich materials on the planet. However, it is not clearly constrained how and when these terrains formed. Some of the proposed scenarios favor a mode of formation closely related to Isidis impact basin: either under intense effusive volcanism following the impact, from cooling of an immediate impact melt sheet or silicate impact vapor condensate. These deposits might also be pyroclastic products ejected from now eroded or buried vents. Recent studies also proposed that lag deposits could be responsible for enrichment in olivine after deposition. In this contribution, we mapped the olivine-rich unaltered and altered bedrock exposures using near infrared and thermal inertia data, investigated the geometry and key contacts of the olivine-rich unit, and determined its surface age using crater counts and stratigraphical relationships. We find that the olivine-rich bedrock extends over at least ~18,000 km2 in the Nili Fossae region, with a large part of it being unaltered. Olivine-rich material that overlaps the northern rim of Jezero crater corresponds to a primary deposit (i.e. rather than reworked material). Since this crater is younger than Isidis, we favor the hypothesis of a post-Isidis origin, rather than the impact melt (consistently with Bramble et al., 2017) and impact condensate origin. Based on our observations and crater counts, we estimate an emplacement age of 3.82 ± 0.07 Ga (Mid to Late Noachian). We discuss the origin of the unit, with the most likely scenarios being ash falls and/or pyroclastic surges. To explain the circum-Isidis distribution of these deposits, we favor the hypothesis of a thinned and weakened crust in the region subsequently to the giant impact of Isidis, as suggested by Tornabene et al. (2008). Finally, the distribution of altered bedrock conflicts with the contact metamorphism scenario. As the olivine-rich unit exposed at Jezero crater, future home of the Mars 2020 rover, is a regional stratigraphic marker, return samples for precise dating of this unit should be made one of the major mission targets.
- Published
- 2020
31. Water‐Ice Exposing Scarps Within the Northern Midlatitude Craters on Mars
- Author
-
N. Mangold, Anil Bhardwaj, S. Vijayan, Harish, Indian Institute of Technology [Gandhinagar] ( IIT Gandhinagar ), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), and Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010504 meteorology & atmospheric sciences ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Mars Exploration Program ,Fault scarp ,01 natural sciences ,Geophysics ,Impact crater ,13. Climate action ,Middle latitudes ,0103 physical sciences ,General Earth and Planetary Sciences ,Water ice ,010303 astronomy & astrophysics ,Geomorphology ,Geology ,0105 earth and related environmental sciences - Abstract
International audience; We report new exposures of water ice along the scarps wall located within craters in the northern midlatitude region of Mars using high‐resolution imagery and spectral data of Mars Reconnaissance Orbiter. The exposed water‐ice deposits are shallower and exhibit 1.5 and 2 μm absorption. These scarps are located on the pole‐facing walls and equator‐facing wall origin floor deposits which formed over the latitude dependent mantle. Our observations advance in bracketing the younger ice deposits through the crater size‐frequency distributions of host craters, which formed around ~25 and ~95 Myr and exposed around ~1 Myr. This reveals that ice transportation, accumulation, compaction, and ice‐dust mixing occurred in recent epochs. Our study complements the earlier studies that shallow water ice is spatially widespread and consistent with subsurface water‐ice detection by neutron spectrometer. We interpret the ice remnants likely to preserve in craters pole‐facing wall and equator‐facing wall‐associated floor deposits, which demonstrates widespread water‐ice resources on Mars.
- Published
- 2020
32. Dynamics of recent landslides (<20 My) on Mars: Insights from high-resolution topography on Earth and Mars and numerical modelling
- Author
-
Alice Lucchetti, Anne Mangeney, G. Munaretto, Susan J. Conway, G. Cremonese, Maurizio Pajola, Peter Grindrod, Antoine Lucas, A. Guimpier, Joel Davis, N. Thomas, L. Le Deit, Andreas Johnsson, T. Sæmundsson, N. Mangold, Marc Peruzzetto, Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique du Globe de Paris (IPGP), Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Bureau de Recherches Géologiques et Minières (BRGM) (BRGM), INAF - Osservatorio Astronomico di Padova (OAPD), Istituto Nazionale di Astrofisica (INAF), Science Institute [Reykjavik], University of Iceland [Reykjavik], University of Gothenburg (GU), The Natural History Museum [London] (NHM), and University of Bern
- Subjects
SHALTOP ,Martian ,010504 meteorology & atmospheric sciences ,520 Astronomy ,Amazonian ,Earth science ,High resolution ,Geomorphology ,Astronomy and Astrophysics ,Landslide ,Mars Exploration Program ,620 Engineering ,010502 geochemistry & geophysics ,01 natural sciences ,Modelling ,Tectonics ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,13. Climate action ,Space and Planetary Science ,Digital elevation model ,Landslides ,Geology ,0105 earth and related environmental sciences - Abstract
International audience; Landslides are common features found on steep slopes on Mars and the role of water in their formation is an open question. Our study focuses on three young martian landslides whose mechanism of formation is unknown and knowing their formation mechanism could give us key information on recent martian climate and/or tectonics. They are less than 5 km long, and formed during the Late Amazonian Epoch, with an age
- Published
- 2021
33. Evidence for fluvial and glacial activities within impact craters that excavated into a Noachian volcanic dome on Mars
- Author
-
N. Mangold, S. Vijayan, Harish Harish, Planetary and Geosciences Division [Ahmedabad], Physical Research Laboratory [Ahmedabad] (PRL), Indian Space Research Organisation (ISRO)-Indian Space Research Organisation (ISRO), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), and Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010504 meteorology & atmospheric sciences ,fluvial ,Amazonian ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Geochemistry ,Noachian ,Mars ,Astronomy and Astrophysics ,Mars Exploration Program ,15. Life on land ,impact crater ,01 natural sciences ,CRISM ,Dome (geology) ,Impact crater ,13. Climate action ,Space and Planetary Science ,Mars Orbiter Laser Altimeter ,0103 physical sciences ,Hesperian ,010303 astronomy & astrophysics ,Geology ,0105 earth and related environmental sciences - Abstract
International audience; Impact craters on Mars preserve diverse records of volcanic, fluvial, and glacial activities. Enigmatically, the preservation of these major activities or records altogether within impact craters is rare. We report one such new observation of impact craters that formed on a volcanic dome studied using data from the Mars Reconnaissance Orbiter's (MRO) Context Camera (CTX), High-Resolution Imaging Science Experiment (HiRISE), and Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), Mars Global Surveyor's Mars Orbiter Laser Altimeter (MOLA), and Mars Express' High-Resolution Stereo Camera (HRSC). A ~ 20 km diameter impact crater, informally named as Degana-A, is formed within the ~50 km diameter impact crater Degana. Mineralogical analysis reveals exposures of low-calcium pyroxene and olivine deposits, which occupy Degana-A's eastern walls, leading to the idea that pristine Noachian bedrocks might be exposed from beneath the volcanic dome. Degana-A floor is completely covered by alluvial fans from all sides with distributaries. Within Degana crater, multiple fans are observed along its eastern to southern side only. The most likely source of water was the accumulation of snow on Degana crater walls, which possibly melted as a result of the impact of Degana-A. We observed a ~ 1 km wide breach on the eastern wall of Degana-A and the estimated maximum flow velocity is ~2 m/s and a run-off ~2.25 mm/h. Over the south-facing walls, multiple moraine-like ridges superposed the fans, which suggests overprinting by glacial activities. The presence of fans and superposed moraine-like ridges located at the mid-latitudes (~23°S) implies atmosphere-derived snow/ice precipitation was possible. Chronologically, the dome is of Noachian age, whereas Degana crater formed in the Hesperian period and crater retention on the fans indicates late Hesperian to Amazonian ages. Overall, the preserved Noachian crustal material underneath a volcanic dome is rarely exposed in its pristine context, which offers a rare window into early igneous processes. This intriguing location also witnessed a climatic transition as implied by water/ice derived landforms formed by non-coeval events.
- Published
- 2021
34. Diagenetic silica enrichment and late-stage groundwater activity in Gale crater, Mars
- Author
-
Violaine Sautter, N. Mangold, Horton E. Newsom, Insoo Jun, Fred Calef, Candice Bedford, P. Edwards, William Rapin, R. Gellert, Kenneth S. Edgett, David T. Vaniman, Lucy M. Thompson, P. Y. Meslin, J. A. Watkins, Martin R. Fisk, Ryan B. Anderson, John Bridges, Melissa S. Rice, John P. Grotzinger, Jeffrey R. Johnson, Ralph E. Milliken, Nina Lanza, Patrick J. Gasda, Kjartan M. Kinch, Dawn Y. Sumner, B. C. Clark, Nathaniel Stein, David F. Blake, Morten Madsen, Sanjeev Gupta, Agnès Cousin, Ashwin R. Vasavada, Joel A. Hurowitz, I. G. Mitrofanov, Sylvestre Maurice, Jens Frydenvang, Roger C. Wiens, Samuel M. Clegg, Valerie Payre, Abigail A. Fraeman, Susanne P. Schwenzer, and J. Van Beek
- Subjects
geography ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,Earth science ,Bedrock ,Geochemistry ,Mars Exploration Program ,Structural basin ,01 natural sciences ,Deposition (geology) ,Diagenesis ,Geophysics ,13. Climate action ,0103 physical sciences ,General Earth and Planetary Sciences ,Aeolian processes ,Sedimentary rock ,010303 astronomy & astrophysics ,Geology ,Groundwater ,0105 earth and related environmental sciences - Abstract
Diagenetic silica enrichment in fracture-associated halos that crosscut lacustrine and unconformably overlying aeolian sedimentary bedrock is observed on the lower north slope of Aeolis Mons in Gale crater, Mars. The diagenetic silica enrichment is colocated with detrital silica enrichment observed in the lacustrine bedrock yet extends into a considerably younger, unconformably draping aeolian sandstone, implying that diagenetic silica enrichment postdates the detrital silica enrichment. A causal connection between the detrital and diagenetic silica enrichment implies that water was present in the subsurface of Gale crater long after deposition of the lacustrine sediments and that it mobilized detrital amorphous silica and precipitated it along fractures in the overlying bedrock. Although absolute timing is uncertain, the observed diagenesis likely represents some of the most recent groundwater activity in Gale crater and suggests that the timescale of potential habitability extended considerably beyond the time that the lacustrine sediments of Aeolis Mons were deposited.
- Published
- 2017
35. Alkali trace elements in Gale crater, Mars, with ChemCam: Calibration update and geological implications
- Author
-
Ann Ollila, Jérémie Lasue, Marion Nachon, Roger C. Wiens, Samuel M. Clegg, Olivier Forni, Olivier Gasnault, N. Mangold, Nina Lanza, Agnes Cousin, L. Le Deit, Violaine Sautter, P. Y. Meslin, Sylvestre Maurice, Valerie Payre, Cécile Fabre, and W. Rapin
- Subjects
010504 meteorology & atmospheric sciences ,Calibration (statistics) ,Gale crater ,Mineralogy ,Weathering ,Mars Exploration Program ,Alkali metal ,01 natural sciences ,Trace (semiology) ,Geophysics ,Space and Planetary Science ,Geochemistry and Petrology ,0103 physical sciences ,Earth and Planetary Sciences (miscellaneous) ,Igneous differentiation ,Laser-induced breakdown spectroscopy ,010303 astronomy & astrophysics ,Geology ,0105 earth and related environmental sciences - Published
- 2017
36. An interval of high salinity in ancient Gale crater lake on Mars
- Author
-
Gilles Dromart, Frances Rivera-Hernandez, Travis Gabriel, Woodward W. Fischer, Juergen Schieber, Valerie Fox, Bethany L. Ehlmann, William Rapin, N. Mangold, N. H. Thomas, Nathaniel Stein, Marion Nachon, H. A. Meyer, Craig Hardgrove, B. C. Clark, Roger C. Wiens, Linda C. Kah, Ashwin R. Vasavada, Lucy M. Thompson, Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Division of Geological and Planetary Sciences [Pasadena], California Institute of Technology (CALTECH), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Department of Geological Sciences [Bloomington], Indiana University [Bloomington], Indiana University System-Indiana University System, Texas A&M International University [Laredo], ASU School of Earth and Space Exploration (SESE), Arizona State University [Tempe] (ASU), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Darmouth College [Hanover, New Hampshire], Los Alamos National Laboratory (LANL), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon)
- Subjects
Martian ,010504 meteorology & atmospheric sciences ,Lithology ,Geochemistry ,Mars Exploration Program ,010502 geochemistry & geophysics ,01 natural sciences ,Diagenesis ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,Stratigraphy ,13. Climate action ,General Earth and Planetary Sciences ,Hesperian ,Sulfate minerals ,Sedimentary rock ,Geology ,0105 earth and related environmental sciences - Abstract
Precipitated minerals, including salts, are primary tracers of atmospheric conditions and water chemistry in lake basins. Ongoing in situ exploration by the Curiosity rover of Hesperian (around 3.3–3.7 Gyr old) sedimentary rocks within Gale crater on Mars has revealed clay-bearing fluvio-lacustrine deposits with sporadic occurrences of sulfate minerals, primarily as late-stage diagenetic veins and concretions. Here we report bulk enrichments, disseminated in the bedrock, of 30–50 wt% calcium sulfate intermittently over about 150 m of stratigraphy, and of 26–36 wt% hydrated magnesium sulfate within a thinner section of strata. We use geochemical analysis, primarily from the ChemCam laser-induced breakdown spectrometer, combined with results from other rover instruments, to characterize the enrichments and their lithology. The deposits are consistent with early diagenetic, pre-compaction salt precipitation from brines concentrated by evaporation, including magnesium sulfate-rich brines from extreme evaporative concentration. This saline interval represents a substantial hydrological perturbation of the lake basin, which may reflect variations in Mars’ obliquity and orbital parameters. Our findings support stepwise changes in Martian climate during the Hesperian, leading to more arid and sulfate-dominated environments as previously inferred from orbital observations. Brines from evaporation of a lake in Gale crater on Mars are inferred from bulk enrichments of Ca- and Mg-sulfates in Hesperian sedimentary rocks, identified by geochemical analyses and observations by NASA’s rover Curiosity.
- Published
- 2019
37. New Constraints on Early Mars Weathering Conditions From an Experimental Approach on Crust Simulants
- Author
-
Jean-Pierre Lorand, N. Mangold, Fabien Baron, A. Gaudin, Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), and Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Martian ,Mineral ,010504 meteorology & atmospheric sciences ,Geochemistry ,Crust ,Weathering ,Mars Exploration Program ,15. Life on land ,01 natural sciences ,chemistry.chemical_compound ,Geophysics ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,chemistry ,13. Climate action ,Space and Planetary Science ,Geochemistry and Petrology ,Earth and Planetary Sciences (miscellaneous) ,Environmental science ,Carbonate ,Chemical composition ,Earth (classical element) ,0105 earth and related environmental sciences - Abstract
International audience; A denser CO 2 atmosphere and higher temperatures than present-day conditions are frequently invoked as prevailing conditions for the formation of some ancient hydrous mineralogical associations present at the surface of Mars. The environmental conditions are of particular interest to better understand and constrain the weathering processes of the early Martian crust. For this purpose, 6-month-long batch weathering experiments on Martian crust simulants and individual Martian mineral analogs were performed at low temperature (45°C) under a dense CO 2 atmosphere (1 atm). Constraints on the weathering conditions are deduced from the solution properties and thermodynamic calculations, as well as mass balance calculations. Experimental solutions vary from mildly acidic to near neutral (4.75-6.48 pH). The Eh-pH conditions (Eh from 0.189-0.416 V/standard hydrogen electrode) suggest favorable conditions for the formation of ferric minerals despite an anoxic CO 2 atmosphere. The chemical weathering appears to be 4 times more intense for Martian simulants under a CO 2 atmosphere than under Earth ambient air. The weathering trend under a CO 2 atmosphere involves leaching of alkali and alkaline earth elements (Mg, Ca, Na, and K) and Si and enrichments of the solid phases in Al, Fe, and to a lesser extent Si compared to the initial chemical composition of the starting minerals. This geochemical partitioning between solution and solids resembles those deduced from weathering profiles on Earth. Our results strongly support the idea that carbonates could not have extensively formed at the surface of early Mars despite a dense CO 2 atmosphere. Plain Language Summary Mars orbital and landed missions have provided mineralogical, morphological, and field evidence for liquid water at the surface approximately 3.5 billion years ago. The chemical and mineralogical composition of the Martian rocks have potentially been modified by interaction with this liquid water. The purpose of our study is to use laboratory experiments to constrain the physicochemical conditions of water resulting from the chemical weathering of Martian crust simulants under an atmosphere composed of carbon dioxide, as is the case for Mars. The water in contact with simulants is mildly acidic. The partitioning of chemical elements between the solution and minerals is similar to what is observed on Earth, but weathering is more intense. Despite that Mars had a primitive CO 2-dense atmosphere, the conditions were not favorable to the extensive formation of carbonate at the surface.
- Published
- 2019
38. Mars Science Laboratory Observations of Chloride Salts in Gale Crater, Mars
- Author
-
Frances Rivera-Hernandez, P.-Y. Meslin, N. Mangold, Olivier Forni, William Rapin, R. Gellert, Dana E. Anderson, Olivier Gasnault, Susanne Schröder, Agnes Cousin, N. H. Thomas, Roger C. Wiens, Bethany L. Ehlmann, Division of Geological and Planetary Sciences [Pasadena], California Institute of Technology (CALTECH), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Department of Physics [Guelph], University of Guelph, Los Alamos National Laboratory (LANL), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
- Subjects
Atmospheres ,010504 meteorology & atmospheric sciences ,Mars Science Laboratory Curiosity rover ,salts ,Geochemistry ,Mars ,Planets ,engineering.material ,010502 geochemistry & geophysics ,01 natural sciences ,Chloride ,Planetary Geochemistry ,chemistry.chemical_compound ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,Planetary Sciences: Solar System Objects ,groundwater ,medicine ,Research Letter ,Sulfate ,Planetary Sciences: Solid Surface Planets ,Planetary Sciences: Fluid Planets ,0105 earth and related environmental sciences ,Mineralogy and Petrology ,geography ,geography.geographical_feature_category ,Bedrock ,halite ,Mars Exploration Program ,Research Letters ,Diagenesis ,Planetary Mineralogy and Petrology ,Geophysics ,chemistry ,13. Climate action ,chlorine ,engineering ,General Earth and Planetary Sciences ,Aeolian processes ,Halite ,Sedimentary rock ,Planetary Sciences: Comets and Small Bodies ,Geology ,medicine.drug ,Composition - Abstract
The Mars Science Laboratory Curiosity rover is traversing a sequence of stratified sedimentary rocks in Gale crater that contain varied eolian, fluviodeltaic, and lake deposits, with phyllosilicates, iron oxides, and sulfate salts. Here, we report the chloride salt distribution along the rover traverse. Chlorine is detected at low levels (, Key Points Isolated Cl enrichments in bedrock, in nodular textures, and at calcium sulfate vein margins, correlated with Na, indicate haliteMapping of Cl along the Curiosity traverse in Gale Crater indicates Cl enrichments are more common in select Murray formation membersThe scattered, isolated occurrences of chlorides are consistent with late groundwater reworking and remobilization of original deposits
- Published
- 2019
39. The potential science and engineering value of samples delivered to Earth by Mars sample return: International MSR Objectives and Samples Team (iMOST)
- Author
-
D. W. Beaty, M. M. Grady, H. Y. McSween, E. Sefton-Nash, B. L. Carrier, F. Altieri, Y. Amelin, E. Ammannito, M. Anand, L. G. Benning, J. L. Bishop, L. E. Borg, D. Boucher, J. R. Brucato, H. Busemann, K. A. Campbell, A. D. Czaja, V. Debaille, D. J. Des Marais, M. Dixon, B. L. Ehlmann, J. D. Farmer, D. C. Fernandez-Remolar, J. Filiberto, J. Fogarty, D. P. Glavin, Y. S. Goreva, L. J. Hallis, A. D. Harrington, E. M. Hausrath, C. D. K. Herd, B. Horgan, M. Humayun, T. Kleine, J. Kleinhenz, R. Mackelprang, N. Mangold, L. E. Mayhew, J. T. McCoy, F. M. McCubbin, S. M. McLennan, D. E. Moser, F. Moynier, J. F. Mustard, P. B. Niles, G. G. Ori, F. Raulin, P. Rettberg, M. A. Rucker, N. Schmitz, S. P. Schwenzer, M. A. Sephton, R. Shaheen, Z. D. Sharp, D. L. Shuster, S. Siljeström, C. L. Smith, J. A. Spry, A. Steele, T. D. Swindle, I. L. ten Kate, N. J. Tosca, T. Usui, M. J. Van Kranendonk, M. Wadhwa, B. P. Weiss, S. C. Werner, F. Westall, R. M. Wheeler, J. Zipfel, and M. P. Zorzano
- Subjects
Martian ,Planetary protection ,Earth science ,Sample (statistics) ,Mars Exploration Program ,15. Life on land ,010502 geochemistry & geophysics ,Geologic record ,Exploration of Mars ,01 natural sciences ,Geophysics ,13. Climate action ,Space and Planetary Science ,Martian surface ,0103 physical sciences ,Sample collection ,010303 astronomy & astrophysics ,Geology ,0105 earth and related environmental sciences - Abstract
Return of samples from the surface of Mars has been a goal of the international Mars science community for many years. Affirmation by NASA and ESA of the importance of Mars exploration led the agencies to establish the international MSR Objectives and Samples Team (iMOST). The purpose of the team is to re-evaluate and update the sample-related science and engineering objectives of a Mars Sample Return (MSR) campaign. The iMOST team has also undertaken to define the measurements and the types of samples that can best address the objectives. Seven objectives have been defined for MSR, traceable through two decades of previously published international priorities. The first two objectives are further divided into sub-objectives. Within the main part of the report, the importance to science and/or engineering of each objective is described, critical measurements that would address the objectives are specified, and the kinds of samples that would be most likely to carry key information are identified. These seven objectives provide a framework for demonstrating how the first set of returned Martian samples would impact future Martian science and exploration. They also have implications for how analogous investigations might be conducted for samples returned by future missions from other solar system bodies, especially those that may harbor biologically relevant or sensitive material, such as Ocean Worlds (Europa, Enceladus, Titan) and others. Summary of Objectives and Sub-Objectives for MSR Identified by iMOST: Objective 1 Interpret the primary geologic processes and history that formed the Martian geologic record, with an emphasis on the role of water. Intent To investigate the geologic environment(s) represented at the Mars 2020 landing site, provide definitive geologic context for collected samples, and detail any characteristics that might relate to past biologic processesThis objective is divided into five sub-objectives that would apply at different landing sites. 1.1 Characterize the essential stratigraphic, sedimentologic, and facies variations of a sequence of Martian sedimentary rocks. Intent To understand the preserved Martian sedimentary record. Samples A suite of sedimentary rocks that span the range of variation. Importance Basic inputs into the history of water, climate change, and the possibility of life 1.2 Understand an ancient Martian hydrothermal system through study of its mineralization products and morphological expression. Intent To evaluate at least one potentially life-bearing “habitable” environment Samples A suite of rocks formed and/or altered by hydrothermal fluids. Importance Identification of a potentially habitable geochemical environment with high preservation potential. 1.3 Understand the rocks and minerals representative of a deep subsurface groundwater environment. Intent To evaluate definitively the role of water in the subsurface. Samples Suites of rocks/veins representing water/rock interaction in the subsurface. Importance May constitute the longest-lived habitable environments and a key to the hydrologic cycle. 1.4 Understand water/rock/atmosphere interactions at the Martian surface and how they have changed with time. Intent To constrain time-variable factors necessary to preserve records of microbial life. Samples Regolith, paleosols, and evaporites. Importance Subaerial near-surface processes could support and preserve microbial life. 1.5 Determine the petrogenesis of Martian igneous rocks in time and space. Intent To provide definitive characterization of igneous rocks on Mars. Samples Diverse suites of ancient igneous rocks. Importance Thermochemical record of the planet and nature of the interior. Objective 2 Assess and interpret the potential biological history of Mars, including assaying returned samples for the evidence of life. Intent To investigate the nature and extent of Martian habitability, the conditions and processes that supported or challenged life, how different environments might have influenced the preservation of biosignatures and created nonbiological “mimics,” and to look for biosignatures of past or present life.This objective has three sub-objectives: 2.1 Assess and characterize carbon, including possible organic and pre-biotic chemistry. Samples All samples collected as part of Objective 1. Importance Any biologic molecular scaffolding on Mars would likely be carbon-based. 2.2 Assay for the presence of biosignatures of past life at sites that hosted habitable environments and could have preserved any biosignatures. Samples All samples collected as part of Objective 1. Importance Provides the means of discovering ancient life. 2.3 Assess the possibility that any life forms detected are alive, or were recently alive. Samples All samples collected as part of Objective 1. Importance Planetary protection, and arguably the most important scientific discovery possible. Objective 3 Quantitatively determine the evolutionary timeline of Mars. Intent To provide a radioisotope-based time scale for major events, including magmatic, tectonic, fluvial, and impact events, and the formation of major sedimentary deposits and geomorphological features. Samples Ancient igneous rocks that bound critical stratigraphic intervals or correlate with crater-dated surfaces. Importance Quantification of Martian geologic history. Objective 4 Constrain the inventory of Martian volatiles as a function of geologic time and determine the ways in which these volatiles have interacted with Mars as a geologic system. Intent To recognize and quantify the major roles that volatiles (in the atmosphere and in the hydrosphere) play in Martian geologic and possibly biologic evolution. Samples Current atmospheric gas, ancient atmospheric gas trapped in older rocks, and minerals that equilibrated with the ancient atmosphere. Importance Key to understanding climate and environmental evolution. Objective 5 Reconstruct the processes that have affected the origin and modification of the interior, including the crust, mantle, core and the evolution of the Martian dynamo. Intent To quantify processes that have shaped the planet's crust and underlying structure, including planetary differentiation, core segregation and state of the magnetic dynamo, and cratering. Samples Igneous, potentially magnetized rocks (both igneous and sedimentary) and impact-generated samples. Importance Elucidate fundamental processes for comparative planetology. Objective 6 Understand and quantify the potential Martian environmental hazards to future human exploration and the terrestrial biosphere. Intent To define and mitigate an array of health risks related to the Martian environment associated with the potential future human exploration of Mars. Samples Fine-grained dust and regolith samples. Importance Key input to planetary protection planning and astronaut health. Objective 7 Evaluate the type and distribution of in-situ resources to support potential future Mars exploration. Intent To quantify the potential for obtaining Martian resources, including use of Martian materials as a source of water for human consumption, fuel production, building fabrication, and agriculture. Samples Regolith. Importance Production of simulants that will facilitate long-term human presence on Mars. Summary of iMOST Findings: Several specific findings were identified during the iMOST study. While they are not explicit recommendations, we suggest that they should serve as guidelines for future decision making regarding planning of potential future MSR missions. The samples to be collected by the Mars 2020 (M-2020) rover will be of sufficient size and quality to address and solve a wide variety of scientific questions. Samples, by definition, are a statistical representation of a larger entity. Our ability to interpret the source geologic units and processes by studying sample sub sets is highly dependent on the quality of the sample context. In the case of the M-2020 samples, the context is expected to be excellent, and at multiple scales. (A) Regional and planetary context will be established by the on-going work of the multi-agency fleet of Mars orbiters. (B) Local context will be established at field area- to outcrop- to hand sample- to hand lens scale using the instruments carried by M-2020. A significant fraction of the value of the MSR sample collection would come from its organization into sample suites, which are small groupings of samples designed to represent key aspects of geologic or geochemical variation. If the Mars 2020 rover acquires a scientifically well-chosen set of samples, with sufficient geological diversity, and if those samples were returned to Earth, then major progress can be expected on all seven of the objectives proposed in this study, regardless of the final choice of landing site. The specifics of which parts of Objective 1 could be achieved would be different at each of the final three candidate landing sites, but some combination of critically important progress could be made at any of them. An aspect of the search for evidence of life is that we do not know in advance how evidence for Martian life would be preserved in the geologic record. In order for the returned samples to be most useful for both understanding geologic processes (Objective 1) and the search for life (Objective 2), the sample collection should contain BOTH typical and unusual samples from the rock units explored. This consideration should be incorporated into sample selection and the design of the suites. The retrieval missions of a MSR campaign should (1) minimize stray magnetic fields to which the samples would be exposed and carry a magnetic witness plate to record exposure, (2) collect and return atmospheric gas sample(s), and (3) collect additional dust and/or regolith sample mass if possible.
- Published
- 2019
40. Chemical alteration of fine-grained sedimentary rocks at Gale crater
- Author
-
Roger C. Wiens, Thomas F. Bristow, C. Fedo, Erwin Dehouck, Frances Rivera-Hernandez, Horton E. Newsom, Mark R. Salvatore, Cherie N. Achilles, Olivier Gasnault, Scott M. McLennan, Jonas L'Haridon, Olivier Forni, W. Rapin, P. Y. Meslin, Jens Frydenvang, Robert T. Downs, N. Mangold, L. Le Deit, Shaunna M. Morrison, Sylvestre Maurice, E. B. Rampe, Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Exobiology Branch [Moffett Field], NASA Ames Research Center (ARC), Stony Brook University [SUNY] (SBU), State University of New York (SUNY), Institute of Meteoritics [Albuquerque] (IOM), The University of New Mexico [Albuquerque], NASA Johnson Space Center (JSC), NASA, ANR-16-CE31-0012,MARS-PRIME,Environnement Primitif de Mars(2016), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géodynamique UMR6112 (LPG), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Université d'Angers (UA), Centre National de la Recherche Scientifique (CNRS)-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS), University of Copenhagen = Københavns Universitet (KU), and Los Alamos National Laboratory (LANL)
- Subjects
010504 meteorology & atmospheric sciences ,Geochemistry ,Gale crater ,Astronomy and Astrophysics ,Weathering ,engineering.material ,Curiosity rover ,01 natural sciences ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,13. Climate action ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,0103 physical sciences ,engineering ,Plagioclase ,Sedimentary rock ,Mafic ,010303 astronomy & astrophysics ,Bay ,Dissolution ,Geology ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences - Abstract
From Sol 750 to 1550, the Curiosity rover documented>100 m thick stack of fine-grained sedimentary rocks making up part of the Murray formation, at the base of Mt Sharp, Gale crater. Here, we use data collected by the ChemCam instrument to estimate the level of chemical weathering in these sedimentary rocks. Both the Chemical Index of Alteration (CIA) and the Weathering Index Scale (WIS) indicate a progressive increase in alteration up section, reaching values of CIA of 63 and WIS of 25%. The increase in CIA and WIS values is coupled with a decrease in calcium abundance, suggesting partial dissolution of Ca-bearing minerals (clinopyroxene and plagioclase). Mineralogy from the CheMin X-ray diffraction instrument indicates a decrease in mafic minerals compared with previously analyzed strata and a significant proportion of phyllosilicates consistent with this interpretation. These observations suggest that the sediments were predominantly altered in an open system, before or during their emplacement, contrasting with the rock-dominated conditions inferred in sedimentary deposits analyzed at Yellowknife Bay.
- Published
- 2019
41. The potassic sedimentary rocks in Gale Crater, Mars, as seen by ChemCam on boardCuriosity
- Author
-
Horton E. Newsom, Jérémie Lasue, K. M. Stack, Diana L. Blaney, Dawn Y. Sumner, Martin R. Fisk, William Rapin, S. Le Mouélic, Valerie Payre, Gilles Dromart, Scott M. McLennan, P. Y. Meslin, Allan H. Treiman, Olivier Gasnault, Ryan B. Anderson, Nina Lanza, Cécile Fabre, N. Mangold, Olivier Forni, Melissa S. Rice, S. Maurice, John P. Grotzinger, Susanne Schröder, Sanjeev Gupta, Violaine Sautter, Agnès Cousin, Roger C. Wiens, Samuel M. Clegg, L. Le Deit, and Marion Nachon
- Subjects
Basalt ,Martian ,Olivine ,010504 meteorology & atmospheric sciences ,Outcrop ,Geochemistry ,Crust ,Mars Exploration Program ,engineering.material ,01 natural sciences ,On board ,Geophysics ,Space and Planetary Science ,Geochemistry and Petrology ,0103 physical sciences ,Earth and Planetary Sciences (miscellaneous) ,engineering ,Sedimentary rock ,010303 astronomy & astrophysics ,Geology ,0105 earth and related environmental sciences - Abstract
Key Points: • Mean K2O abundance in sedimentary rocks >5 times higher than that of the average Martian crust • Presence of alkali feldspars and K-phyllosilicates in basaltic sedimentary rocks along the traverse • The K-bearing minerals likely have a detrital origin
- Published
- 2016
42. Observation of > 5 wt % zinc at the Kimberley outcrop, Gale crater, Mars
- Author
-
Sylvestre Maurice, N. Mangold, Jérémie Lasue, L. Le Deit, Olivier Forni, S. Le Mouélic, William Rapin, Valerie Payre, Agnès Cousin, Roger C. Wiens, Marion Nachon, Samuel M. Clegg, Jeff A. Berger, Jeffrey R. Johnson, Cécile Fabre, Walter Goetz, Olivier Gasnault, K. M. Stack, Diana L. Blaney, Nina Lanza, and Dawn Y. Sumner
- Subjects
Supergene (geology) ,010504 meteorology & atmospheric sciences ,Hypogene ,chemistry.chemical_element ,Mineralogy ,Mars Exploration Program ,Zinc ,engineering.material ,01 natural sciences ,Geophysics ,Sphalerite ,chemistry ,13. Climate action ,Space and Planetary Science ,Geochemistry and Petrology ,Sauconite ,0103 physical sciences ,Earth and Planetary Sciences (miscellaneous) ,engineering ,Siliciclastic ,010303 astronomy & astrophysics ,Geology ,Gossan ,0105 earth and related environmental sciences - Abstract
Zinc-enriched targets have been detected at the Kimberley formation, Gale crater, Mars, using the Chemistry Camera (ChemCam) instrument. The Zn content is analyzed with a univariate calibration based on the 481.2 nm emission line. The limit of quantification for ZnO is 3 wt % (at 95% confidence level) and 1 wt % (at 68% confidence level). The limit of detection is shown to be around 0.5 wt %. As of sol 950, 12 targets on Mars present high ZnO content ranging from 1.0 wt % to 8.4 wt % (Yarrada, sol 628). Those Zn-enriched targets are almost entirely located at the Dillinger member of the Kimberley formation, where high Mn and alkali contents were also detected, probably in different phases. Zn enrichment does not depend on the textures of the rocks (coarse-grained sandstones, pebbly conglomerates, and resistant fins). The lack of sulfur enhancement suggests that Zn is not present in the sphalerite phase. Zn appears somewhat correlated with Na2O and the ChemCam hydration index, suggesting that it could be in an amorphous clay phase (such as sauconite). On Earth, such an enrichment would be consistent with a supergene alteration of a sphalerite gossan cap in a primary siliciclastic bedrock or a possible hypogene nonsulfide zinc deposition where Zn, Fe, Mn would have been transported in a reduced sulfur-poor fluid and precipitated rapidly in the form of oxides.
- Published
- 2016
43. Martian Eolian Dust Probed by ChemCam
- Author
-
María Paz Zorzano, Erwin Dehouck, Gilles Berger, William Rapin, S. Le Mouélic, Olivier Gasnault, Jeffrey R. Johnson, P.-Y. Meslin, Horton E. Newsom, Olivier Forni, Javier Martin-Torres, Ann Ollila, Jérémie Lasue, N. Mangold, Nina Lanza, Claude d’Uston, Ruth A. Anderson, Agnes Cousin, Violaine Sautter, Morten Madsen, Cécile Fabre, Noureddine Melikechi, B. C. Clark, Diana L. Blaney, Walter Goetz, Sylvestre Maurice, Roger C. Wiens, Samuel M. Clegg, S. Schroeder, Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Los Alamos National Laboratory (LANL), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research (MPS), Max-Planck-Gesellschaft, The University of New Mexico [Albuquerque], Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Centre d'étude spatiale des rayonnements (CESR), Laboratoire Kastler Brossel (LKB (Jussieu)), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Optical Science Center for Applied Research (OSCAR), Delaware State University (DSU), Institute of Meteoritics [Albuquerque] (IOM), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Max-Planck-Institut für Sonnensystemforschung (MPS), Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, Université Pierre et Marie Curie - Paris 6 (UPMC)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Université Fédérale Toulouse Midi-Pyrénées-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), and Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Université Fédérale Toulouse Midi-Pyrénées-Météo-France -Institut de Recherche pour le Développement (IRD)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
- Subjects
Martian ,010504 meteorology & atmospheric sciences ,Rock cycle ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Mars ,Mineralogy ,Mars Exploration Program ,15. Life on land ,01 natural sciences ,Atmosphere ,Geophysics ,[SDU]Sciences of the Universe [physics] ,ChemCam ,13. Climate action ,Planet ,0103 physical sciences ,General Earth and Planetary Sciences ,Environmental science ,Aeolian processes ,dust ,010303 astronomy & astrophysics ,Chemical composition ,Volatiles ,0105 earth and related environmental sciences - Abstract
International audience; The ubiquitous eolian dust on Mars plays important roles in the current sedimentary and atmospheric processes of the planet. The ChemCam instrument retrieves a consistent eolian dust composition at the submillimeter scale from every first laser shot on Mars targets. Its composition presents significant differences with the Aeolis Palus soils and the Bagnold dunes as it contains lower CaO and higher SiO2. The dust FeO and TiO2 contents are also higher, probably associated with nanophase oxide components. The dust spectra show the presence of volatile elements (S and Cl), and the hydrogen content is similar to Bagnold sands but lower than Aeolis Palus soils. Consequently, the dust may be a contributor to the amorphous component of soils, but differences in composition indicate that the two materials are not equivalent. Plain Language Summary Eolian dust on Mars is very fine dust that covers the entire surface of the planet, gives it its typical red hue, and is mobilized by wind. It plays a significant role in the current rock cycle of the planet and for the temperature of the atmosphere. ChemCam uses a series of pulsed laser shots to analyze the chemical composition of target materials. Each first laser shot by ChemCam gives the composition of the deposited dust. These measurements have been constant over the duration of the Mars Science Laboratory mission. The dust is homogeneous at the millimeter scale (approximately the size of the ChemCam analysis spot). Compared to local soils and sands at Gale crater, the dust contains higher levels of iron and titanium, associated with volatile elements like hydrogen, sulfur, and chlorine. We infer from this difference that the dust does not entirely originate locally and may be part of a separate global cycle.
- Published
- 2018
44. Desiccation cracks provide evidence of lake drying on Mars, Sutton Island member, Murray formation, Gale Crater
- Author
-
P.-Y. Meslin, S. Le Mouélic, Juergen Schieber, Erwin Dehouck, Bernard Hallet, Horton E. Newsom, Nathaniel Stein, Ralf Gellert, Kirsten L. Siebach, Christopher H. House, Christopher M. Fedo, Jens Frydenvang, Agnes Cousin, Jeff A. Berger, Valerie Payre, Roger C. Wiens, N. Mangold, Sanjeev Gupta, Michelle E. Minitti, John P. Grotzinger, Olivier Forni, Lucy M. Thompson, Dawn Y. Sumner, Ashwin R. Vasavada, K. M. Stack, Leibniz Institute of Plant Genetics and Crop Plant Research, California Institute of Technology (CALTECH), Department of Geological Sciences [Bloomington], Indiana University [Bloomington], Indiana University System-Indiana University System, Laboratoire de Planétologie et Géodynamique UMR6112 (LPG), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Université d'Angers (UA), Department of Earth and Space Sciences [Seattle], University of Washington [Seattle], Institute of Meteoritics [Albuquerque] (IOM), The University of New Mexico [Albuquerque], Jet Propulsion Laboratory (JPL), California Institute of Technology (CALTECH)-NASA, Los Alamos National Laboratory (LANL), ASU School of Earth and Space Exploration (SESE), Arizona State University [Tempe] (ASU), Department of Physics and Materials Science & Centre for Functional Photonics (CFP), The University of Hong Kong (HKU), Department of Physics [Guelph], University of Guelph, Institut de recherche en astrophysique et planétologie (IRAP), Centre National de la Recherche Scientifique (CNRS)-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS), Laboratoire Ecologie Fonctionnelle et Environnement (ECOLAB), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), NASA-California Institute of Technology (CALTECH), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), University of Copenhagen = Københavns Universitet (UCPH), Université de Lorraine (UL), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Science and Technology Facilities Council (STFC), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), University of Copenhagen = Københavns Universitet (KU), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon)
- Subjects
Geochemistry & Geophysics ,010504 meteorology & atmospheric sciences ,04 Earth Sciences ,Climate change ,Gale crater ,Geology ,Mars Exploration Program ,15. Life on land ,010502 geochemistry & geophysics ,01 natural sciences ,Paleontology ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,13. Climate action ,[SDU]Sciences of the Universe [physics] ,Facies ,Subaerial ,Aeolian processes ,Climate model ,Desiccation ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences - Abstract
International audience; Mars Science Laboratory (MSL) Curiosity rover data are used to describe the morphology of desiccation cracks observed in ancient lacustrine strata at Gale crater, Mars, and to interpret their paleoenvironmental setting. The desiccation cracks indicate subaerial exposure of lacustrine facies in the Sutton Island member of the Murray formation. In association with ripple cross-stratification and possible eolian cross-bedding, these facies indicate a transition from longer-lived perennial lakes recorded by older strata to younger lakes characterized by intermittent exposure. The transition from perennial to episodically exposed lacustrine environments provides evidence for local to regional climate change that can help constrain Mars climate models.
- Published
- 2018
45. In Situ Analysis of Opal in Gale Crater, Mars
- Author
-
Boris Chauviré, William Rapin, Craig Hardgrove, Travis Gabriel, P.-Y. Meslin, Roger C. Wiens, Jens Frydenvang, Erwin Dehouck, Amy McAdam, Benjamin Rondeau, Steve J. Chipera, Heather B. Franz, N. Mangold, Bethany L. Ehlmann, Susanne Schröder, Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), and ANR-16-CE31-0012,MARS-PRIME,Environnement Primitif de Mars(2016)
- Subjects
Materials science ,010504 meteorology & atmospheric sciences ,Hydrogen ,water ,chemistry.chemical_element ,Mineralogy ,Mars ,Context (language use) ,01 natural sciences ,chemistry.chemical_compound ,opal ,Geochemistry and Petrology ,0103 physical sciences ,Earth and Planetary Sciences (miscellaneous) ,MSL ,Spectroscopy ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Hydrated silica ,Mars Exploration Program ,Gale crater ,Diagenesis ,Geophysics ,chemistry ,13. Climate action ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,hydrogen ,Sample Analysis at Mars ,Sedimentary rock - Abstract
Silica enrichments resulting in up to ~90 wt% SiO_2 have been observed by the Curiosity rover's instruments in Gale crater, Mars, within the Murray and Stimson formations. Samples acquired by the rover drill revealed a significant abundance of an X‐ray amorphous silica phase. Laser‐induced breakdown spectroscopy (LIBS) highlights an overall correlation of the hydrogen signal with silica content for these Si‐enriched targets. The increased hydration of the high‐silica rocks compared to the surrounding bedrock is also confirmed by active neutron spectroscopy. Laboratory LIBS experiments have been performed to calibrate the hydrogen signal and show that the correlation observed on Mars is consistent with a silica phase containing on average 6.3 ± 1.4 wt% water. X‐ray diffraction and LIBS measurements indicate that opal‐A, amorphous hydrated silica, is the most likely phase containing this water in the rocks. Pyrolysis experiments were also performed on drilled samples by the Sample Analysis at Mars (SAM) instrument to measure volatile content, but the data suggests that most of the water was released during handling prior to pyrolysis. The inferred low‐temperature release of water helps constrain the nature of the opal. Given the geological context and the spatial association with other phases such as calcium sulfates, the opal was likely formed from multiple diagenetic fluid events and possibly represents the latest significant water‐rock interaction in these sedimentary rocks.
- Published
- 2018
46. Chemical variability in mineralized veins observed by ChemCam on the lower slopes of Mount Sharp in Gale crater, Mars
- Author
-
Valerie Payre, Olivier Forni, Jonas L'Haridon, N. Mangold, Erwin Dehouck, Olivier Gasnault, Marion Nachon, Agnes Cousin, William Rapin, Sylvestre Maurice, Roger C. Wiens, L. Le Deit, Jeffrey R. Johnson, P.-Y. Meslin, Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), and ANR-16-CE31-0012,MARS-PRIME,Environnement Primitif de Mars(2016)
- Subjects
010504 meteorology & atmospheric sciences ,Outcrop ,Geochemistry ,Mars ,010502 geochemistry & geophysics ,01 natural sciences ,Diagenesis ,0105 earth and related environmental sciences ,geography ,Plateau ,geography.geographical_feature_category ,Calcium sulfate ,Gale crater ,Astronomy and Astrophysics ,Authigenic ,Mars Exploration Program ,15. Life on land ,Stratigraphy ,13. Climate action ,Space and Planetary Science ,ChemCam ,[SDU]Sciences of the Universe [physics] ,Groundwater ,Geology - Abstract
ChemCam has observed a wide range of diagenetic features along the Curiosity rover traverse including pervasive Ca-sulfate veins. Observations by multiple instruments on Curiosity indicate that these veins are hydrated, formed during diagenetic fluid event(s). In this study, we delve into the chemical variability in these Ca-sulfate bearing veins and have identified two subsets in the Murray formation with enrichments in Fe and Fe + Mg. These chemical trends do not reflect a sampling mixture with the surrounding host rock but likely indicates the presence of authigenic phases formed during the emplacement of these veins. Based on passive reflectance spectral analysis and correlation with other elements, Fe3+ oxides and/or sulfates are proposed to account for the Fe-rich observations in the vicinity of the Naukluft Plateau whereas the Fe + Mg trend is also observed in adjacent dark-toned features with elevated Mn and P near the Old Soaker outcrop. The specific localization of these observations in the Gale stratigraphy implies changing pH and redox conditions in the groundwater at the time of formation of these veins, from oxidizing and likely more acidic near the Naukluft Plateau to more reducing conditions in the upper part of the Murray formation. (C) 2018 Elsevier Inc. All rights reserved.
- Published
- 2018
47. Formation of clay minerals on Mars: insights from long- term experimental weathering of olivine
- Author
-
A. Gaudin, Olivier Grauby, N. Mangold, Erwin Dehouck, Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Interactions et dynamique des environnements de surface (IDES), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Centre de la Recherche sur les Mécanismes de la Croissance Cristalline (CRMC2), Université de la Méditerranée - Aix-Marseille 2-Centre National de la Recherche Scientifique (CNRS), ANR-16-CE31-0012,MARS-PRIME,Environnement Primitif de Mars(2016), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon)
- Subjects
Mars surface ,Materials science ,Olivine ,010504 meteorology & atmospheric sciences ,Mineralogy ,Astronomy and Astrophysics ,Weathering ,Mars Exploration Program ,Atmosphere of Mars ,engineering.material ,010502 geochemistry & geophysics ,01 natural sciences ,Mars, surface Mars, atmosphere Mineralogy ,Atmosphere ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,Mars atmosphere ,13. Climate action ,Space and Planetary Science ,engineering ,Kaolinite ,Saponite ,Clay minerals ,0105 earth and related environmental sciences ,[SDU.STU.MI]Sciences of the Universe [physics]/Earth Sciences/Mineralogy - Abstract
Laboratory experiments are useful to constrain the environmental parameters that have allowed the formation of the ancient hydrous mineralogical assemblages observed at the surface of Mars, which are dominated by ferric smectites. Weathering under a dense CO2 atmosphere on early Mars is a process frequently invoked to explain their formation, but has proven difficult to test in the laboratory due to low reaction rates. Here, we present a long-term weathering experiment (470 days, at 45 °C) of forsteritic olivine specially designed to increase as much as possible the amount of reaction products and thus allow their detailed mineralogical, petrological and chemical characterization by FTIR, SEM and TEM. Our results show the formation of crystalline smectites both under 1 bar of CO2 and under ambient air. However, important differences are observed between the two types of conditions. The smectite formed under CO2 has an average chemical formula per half unit-cell of Si3.92Al0.16Fe3+0.78Mg1.66 Cr0.01Ni0.06K0.04Ca0.04.O10(OH)2. It is thus intermediate between a trioctahedral Mg-rich saponite and a dioctahedral ferric smectite. It is also clearly enriched in Fe compared its counterpart formed under ambient air, which has an average chemical formula per half unit-cell of Si3.68Al0.12Fe3+0.37Mg2.61Cr0.01Ni0.02K0.04Ca0.25.O10(OH)2. This result demonstrates that the enrichment in Fe observed for Martian smectites is to be expected if they were formed by low-temperature weathering under a dense CO2 atmosphere. Another difference is the nature of the accompanying phases, which includes amorphous silica (in the form of opal spheres 10 to 100 nm in diameter) and Mg-carbonates under CO2, but is limited to rare kaolinite under ambient air. The observation of kaolinite particles under air and the significant amount of Al measured in smectites under both atmospheres, despite the Al-poor nature of the initial material, shows that this element is easily concentrated by low-temperature weathering processes. At a larger scale, this concentration mechanism could be responsible for the formation of Al-rich upper horizons, as frequently observed on Mars.
- Published
- 2018
48. History of the clay-rich unit at Mawrth Vallis, Mars: High-resolution mapping of a candidate landing site
- Author
-
Janice L. Bishop, J. P. Bibring, Joseph R. Michalski, Francois Poulet, Cathy Quantin, D. Loizeau, and N. Mangold
- Subjects
Water on Mars ,Outcrop ,Window (geology) ,Context (language use) ,Mars Exploration Program ,15. Life on land ,Geologic map ,CRISM ,Astrobiology ,Geophysics ,Geologic time scale ,13. Climate action ,Space and Planetary Science ,Geochemistry and Petrology ,Earth and Planetary Sciences (miscellaneous) ,Geology - Abstract
The Mawrth Vallis region is covered by some of the largest phyllosilicate-rich outcrops on Mars, making it a unique window into the past history of Mars in terms of water alteration, potential habitability, and the search for past life. A landing ellipse had been proposed for the Curiosity rover. This area has been extensively observed by the High Resolution Imaging Science Experiment and the Compact Reconnaissance Imaging Spectrometer for Mars, offering the possibility to produce geologic, structural, and topographic maps at very high resolution. These observations provide an unprecedented detailed context of the rocks at Mawrth Vallis, in terms of deposition, alteration, erosion, and mechanical constraints. Our analyses demonstrate the presence of a variety of alteration environments on the surface and readily accessible to a rover, the presence of flowing water at the surface postdating the formation of the clay-rich units, and evidence for probable circulation of fluids in the rocks at different depths. These rocks undergo continuous erosion, creating fresh outcrops where potential biomarkers may have been preserved. The diversity of aqueous environments over geological time coupled to excellent preservation properties make the area a very strong candidate for future robotic investigation on Mars, like the NASA Mars 2020 mission.
- Published
- 2015
49. Chemical variations in Yellowknife Bay formation sedimentary rocks analyzed by ChemCam on board the Curiosity rover on Mars
- Author
-
Horton E. Newsom, Fred Calef, Mariek E. Schmidt, Linda C. Kah, Gilles Dromart, Gilles Berger, James F. Bell, Jérémie Lasue, Cécile Fabre, Ryan B. Anderson, S. Le Mouélic, Nina Lanza, A. Mezzacappa, Olivier Forni, Ann Ollila, Sanjeev Gupta, Sylvestre Maurice, K. E. Herkenhoff, Olivier Gasnault, Agnes Cousin, Martin R. Fisk, Scott M. McLennan, Claude d’Uston, Eric Lewin, John Bridges, Jeffrey R. Johnson, Ralph E. Milliken, Susanne Schröder, B. L. Barraclough, John P. Grotzinger, Marion Nachon, Noureddine Melikechi, Rebecca M. E. Williams, Richard Leveille, Scott K. Rowland, K. M. Stack, Diana L. Blaney, P.-Y. Meslin, Bethany L. Ehlmann, Dawn Y. Sumner, D. T. Vaniman, Michael C. Malin, Roger C. Wiens, Samuel M. Clegg, Lauren A. Edgar, B. C. Clark, N. Mangold, Violaine Sautter, Kenneth S. Edgett, Joel A. Hurowitz, Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), California Institute of Technology (CALTECH), Space Remote Sensing Group (ISR-2), Los Alamos National Laboratory (LANL), Department of Earth and Planetary Science [UC Berkeley] (EPS), University of California [Berkeley] (UC Berkeley), University of California (UC)-University of California (UC), United States Geological Survey [Reston] (USGS), Planetary Science Institute [Tucson] (PSI), ASU School of Earth and Space Exploration (SESE), Arizona State University [Tempe] (ASU), Space Research Centre [Leicester], University of Leicester, Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Space Science Institute [Boulder] (SSI), GeoRessources, Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), College of Earth, Ocean and Atmospheric Sciences [Corvallis] (CEOAS), Oregon State University (OSU), Department of Earth Science and Technology [Imperial College London], Imperial College London, Department of Geosciences [Stony Brook], Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY), College of Marine and Environmental Sciences [Cairns], James Cook University (JCU), C2O Consulting, Department of Natural Resource Sciences, McGill University = Université McGill [Montréal, Canada], Institut des Sciences de la Terre (ISTerre), Université Joseph Fourier - Grenoble 1 (UJF)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-PRES Université de Grenoble-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), State University of New York (SUNY), Optical Science Center for Applied Research (OSCAR), Delaware State University (DSU), Department of Civil and Environmental Engineering and Earth Science [Notre Dame] (CEEES), University of Notre Dame [Indiana] (UND), Department of Earth and Planetary Sciences [Albuquerque] (EPS), The University of New Mexico [Albuquerque], Institute of Meteoritics [Albuquerque] (IOM), Muséum national d'Histoire naturelle (MNHN), Institut für Umweltphysik [Heidelberg], Universität Heidelberg [Heidelberg] = Heidelberg University, ICG-2, Centre d'étude spatiale des rayonnements (CESR), Centre for Ultrahigh Bandwidth Devices for Optical Systems (CUDOS), Macquarie University, Université d'Angers (UA)-Université de Nantes - Faculté des Sciences et des Techniques, Centre National de la Recherche Scientifique (CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS), California Institute of Technology (CALTECH)-NASA, University of California [Davis] (UC Davis), University of California, Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Laboratoire de Photophysique et Photochimie Supramoléculaires et Macromoléculaires (PPSM), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Cachan (ENS Cachan), Division of Geological and Planetary Sciences [Pasadena], Department of Physics and Materials Science & Centre for Functional Photonics (CFP), The University of Hong Kong (HKU), Astrogeology Science Center [Flagstaff], Centre for Infection and Immunity, Canadian Space Agency (CSA), Centre National de la Recherche Scientifique (CNRS)-PRES Université de Grenoble-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), University of Hawaii, Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de recherche pour le développement [IRD] : UR206-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), University of California [Berkeley], University of California-University of California, Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Institut national des sciences de l'Univers (INSU - CNRS), Universität Heidelberg [Heidelberg], Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, and Muséum national d'Histoire naturelle (MNHN)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de recherche pour le développement [IRD] : UR206-Centre National de la Recherche Scientifique (CNRS)
- Subjects
LIBS ,Outcrop ,Earth science ,sediments ,Geochemistry ,Mars ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Mars Exploration Program ,Gale crater ,Diagenesis ,Sedimentary depositional environment ,Geophysics ,[SDU]Sciences of the Universe [physics] ,ChemCam ,Space and Planetary Science ,Geochemistry and Petrology ,Stratigraphic section ,Earth and Planetary Sciences (miscellaneous) ,Sedimentary rock ,Lithification ,ComputingMilieux_MISCELLANEOUS ,Geology ,Stratigraphic column - Abstract
International audience; The Yellowknife Bay formation represents a similar to 5m thick stratigraphic section of lithified fluvial and lacustrine sediments analyzed by the Curiosity rover in Gale crater, Mars. Previous works have mainly focused on the mudstones that were drilled by the rover at two locations. The present study focuses on the sedimentary rocks stratigraphically above the mudstones by studying their chemical variations in parallel with rock textures. Results show that differences in composition correlate with textures and both manifest subtle but significant variations through the stratigraphic column. Though the chemistry of the sediments does not vary much in the lower part of the stratigraphy, the variations in alkali elements indicate variations in the source material and/or physical sorting, as shown by the identification of alkali feldspars. The sandstones contain similar relative proportions of hydrogen to the mudstones below, suggesting the presence of hydrous minerals that may have contributed to their cementation. Slight variations in magnesium correlate with changes in textures suggesting that diagenesis through cementation and dissolution modified the initial rock composition and texture simultaneously. The upper part of the stratigraphy (similar to 1m thick) displays rocks with different compositions suggesting a strong change in the depositional system. The presence of float rocks with similar compositions found along the rover traverse suggests that some of these outcrops extend further away in the nearby hummocky plains.
- Published
- 2015
50. Quantification of water content by laser induced breakdown spectroscopy on Mars
- Author
-
Susanne Schröder, Roger C. Wiens, Marion Nachon, William Rapin, Pierre Beck, Nathalie Thomas, Erwin Dehouck, Sylvestre Maurice, Pierre-Yves Meslin, Olivier Beyssac, Olivier Gasnault, Noureddine Melikechi, Agnes Cousin, Olivier Forni, Benjamin Rondeau, Christophe Drouet, Boris Chauviré, Steven C. Bender, Didier Laporte, N. Mangold, Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Laboratoire Magmas et Volcans (LMV), Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut de Recherche pour le Développement et la société-Université Clermont Auvergne (UCA)-Centre National de la Recherche Scientifique (CNRS)-Observatoire de Physique du Globe de Clermont-Ferrand (OPGC), Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne (UCA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géodynamique UMR6112 (LPG), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Université d'Angers (UA), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Planetary Science Institute [Tucson] (PSI), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Groupe de Recherche et d'Etudes du Processus Inflammatoire (GREPI), Université Joseph Fourier - Grenoble 1 (UJF), Optical Science Center for Applied Research (OSCAR), Delaware State University (DSU), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Institut de Recherche pour le Développement et la société-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)-Observatoire de Physique du Globe de Clermont-Ferrand (OPGC), Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Centre interuniversitaire de recherche et d'ingenierie des matériaux (CIRIMAT), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - INPT (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut de Recherche pour le Développement et la société-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)-Observatoire de Physique du Globe de Clermont-Ferrand (OPGC), Groupe de Recherche et d'Etude du Processus Inflammatoire (GREPI), Centre National de la Recherche Scientifique (CNRS)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), and Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
- Subjects
Normalization (statistics) ,010504 meteorology & atmospheric sciences ,Hydrogen ,Calibration curve ,Matériaux ,Analytical chemistry ,Mars ,chemistry.chemical_element ,Mineralogy ,Hydration ,Laser-induced breakdown spectroscopy ,01 natural sciences ,law.invention ,Analytical Chemistry ,[SPI.MAT]Engineering Sciences [physics]/Materials ,law ,Calibration ,Instrumentation ,Spectroscopy ,0105 earth and related environmental sciences ,LIBS ,010401 analytical chemistry ,Water ,Mars Exploration Program ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Laser ,Atomic and Molecular Physics, and Optics ,0104 chemical sciences ,chemistry ,13. Climate action ,ChemCam ,Carbon - Abstract
International audience; Laser induced breakdown spectroscopy (LIBS), as performed by the ChemCam instrument, provides a new technique to measure hydrogen at the surface of Mars. Using a laboratory replica of the LIBS instrument onboard the Curiosity rover, different types of hydrated samples (basalts, calcium and magnesium sulfates, opals and apatites) covering a range of targets observed on Mars have been characterized and analyzed. A number of factors related to laser parameters, atmospheric conditions and differences in targets properties can affect the standoff LIBS signal, and in particular the hydrogen emission peak. Dedicated laboratory tests were run to identify a normalization of the hydrogen signal which could best compensate for these effects and enable the application of the laboratory calibration to Mars data. We check that the hydrogen signal increases linearly with water content; and normalization of the hydrogen emission peak using to oxygen and carbon emission peaks (related to the breakdown of atmospheric carbon dioxide) constitutes a robust approach. Moreover, the calibration curve obtained is relatively independent of the samples types
- Published
- 2017
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.