P. Blumer, M. Charlton, M. Chung, P. Cladé, P. Comini, P. Crivelli, O. Dalkarov, P. Debu, L. Dodd, A. Douillet, S. Guellati, P.-A. Hervieux, L. Hilico, A. Husson, P. Indelicato, G. Janka, S. Jonsell, J.-P. Karr, B.H. Kim, E.S. Kim, S.K. Kim, Y. Ko, T. Kosinski, N. Kuroda, B.M. Latacz, B. Lee, H. Lee, J. Lee, A.M.M. Leite, K. Lévêque, E. Lim, L. Liszkay, P. Lotrus, D. Lunney, G. Manfredi, B. Mansoulié, M. Matusiak, G. Mornacchi, V. Nesvizhevsky, F. Nez, S. Niang, R. Nishi, B. Ohayon, K. Park, N. Paul, P. Pérez, S. Procureur, B. Radics, C. Regenfus, J.-M. Reymond, S. Reynaud, J.-Y. Roussé, O. Rousselle, A. Rubbia, J. Rzadkiewicz, Y. Sacquin, F. Schmidt-Kaler, M. Staszczak, K. Szymczyk, T. Tanaka, B. Tuchming, B. Vallage, A. Voronin, D.P. van der Werf, S. Wolf, D. Won, S. Wronka, Y. Yamazaki, K.H. Yoo, P. Yzombard, C.J. Baker, Department of Physics [ETH Zürich] (D-PHYS), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Swansea University, Ulsan National Institute of Science and Technology (UNIST), Laboratoire Kastler Brossel (LKB [Collège de France]), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Université d'Évry-Val-d'Essonne (UEVE), Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Stockholm University, Institute for Basic Science [Daejeon] (IBS), Seoul National University [Seoul] (SNU), Korea University [Seoul], Narodowe Centrum Badań Jądrowych (NCBJ), The University of Tokyo (UTokyo), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), European Organization for Nuclear Research (CERN), Institut Laue-Langevin (ILL), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Johannes Gutenberg - Universität Mainz = Johannes Gutenberg University (JGU), and GBAR
We present a description of the GBAR positron (e+) trapping apparatus, which consists of a three stage Buffer Gas Trap (BGT) followed by a High Field Penning Trap (HFT), and discuss its performance. The overall goal of the GBAR experiment is to measure the acceleration of the neutral antihydrogen (H¯) atom in the terrestrial gravitational field by neutralising a positive antihydrogen ion (H¯+), which has been cooled to a low temperature, and observing the subsequent H¯ annihilation following free fall. To produce one H¯+ ion, about 1010 positrons, efficiently converted into positronium (Ps), together with about 107 antiprotons (p¯), are required. The positrons, produced from an electron linac-based system, are accumulated first in the BGT whereafter they are stacked in the ultra-high vacuum HFT, where we have been able to trap 1.4(2) × 109 positrons in 1100 s. We present a description of the GBAR positron (e+) trapping apparatus, which consists of a three stage Buffer Gas Trap (BGT) followed by a High Field Penning Trap (HFT), and discuss its performance. The overall goal of the GBAR experiment is to measure the acceleration of the neutral antihydrogen (H) atom in the terrestrial gravitational field by neutralising a positive antihydrogen ion (H+), which has been cooled to a low temperature, and observing the subsequent H annihilation following free fall. To produce one H+ ion, about 10^10 positrons, efficiently converted into positronium (Ps), together with about 10^7 antiprotons (p), are required. The positrons, produced from an electron linac-based system, are accumulated first in the BGT whereafter they are stacked in the ultra-high vacuum HFT, where we have been able to trap 1.4(2) x 10^9 positrons in 1100 seconds.