14 results on '"N. Kristi"'
Search Results
2. The potential of $\varLambda $ and $\varXi ^-$ studies with PANDA at FAIR
- Author
-
M. Sachs, I. K. Keshk, Xi-Guang Cao, M. Traxler, Yan Liang, G. Mazza, C. Fritzsch, T. Holtmann, S. Godre, A. N. Skachkova, Edward Lisowski, E. Rosenthal, S. Yogesh, Y. K. Sun, H. Pace, D. A. Morozov, H. Deppe, J. Pütz, A. G. Denig, S. Ryzhikov, Hans-Georg Zaunick, Dirk Grunwald, A. Kantsyrev, Paolo Mengucci, Christoph Herold, P. Eugenio, Grzegorz Filo, A. Boukharov, M. Kesselkaul, Concettina Sfienti, A. Kulkarni, M. Lattery, J. Frech, A. Hayrapetyan, W. Zhu, A. A. Piskun, Zbigniew Rudy, V. E. Blinov, S. Spataro, Jens Hartmann, S. Schlimme, D. Branford, C. Schwarz, Michaela Thiel, G. Golovanov, T. Wasem, J. Schwiening, P. Wieczorek, E. Pyata, Ch. Hammann, D. Lehmann, Chinorat Kobdaj, V. Moiseev, P. Balanutsa, B. J. Liu, S. Bodenschatz, F. E. Maas, N. Wongprachanukul, Lorenzo Scalise, M. Hoek, A. K. Saxena, M. Virius, M. Steinke, N. Rathod, A.A. Efremov, A. Samartsev, I. Shein, Alexander Olshevskiy, Herbert Koch, V. Panjushkin, K. Nowakowski, S. Belostotski, S. Bukreeva, Ulrich Wiedner, U. Thöring, A.S. Vodopianov, J. Kellers, L. Robison, Ting Xiao, V. Crede, Egle Tomasi-Gustafsson, R. Karabowicz, P. Srisawad, F. Feldbauer, J. Reher, D. Kazlou, M. Yu. Barabanov, W. Kühn, M. Steinen, P. Wintz, D. Wölbing, A. Dbeyssi, M. Kunze, C. Hargens, A. Pitka, A. Lehmann, I. Augustin, Mathias Fink, P. Terlecki, A. E. Yakutin, Magnus Wolke, I. Kisel, V. Varentsov, U. Thoma, Nicola Bianchi, D. Bettoni, Antoni Szczurek, Dan Pantea, M. Slunecka, D. I. Glazier, H. H. Leithoff, Genady Gavrilov, P. Jiang, T. Simantathammakul, Felice Iazzi, E. Widmann, D. G. Ireland, C. Motzko, K.-T. Brinkmann, M. Schmidt, Johann Marton, J. Tao, W. Eyrich, M. Straube, Krzysztof Swientek, B. Krusche, N. K. Walford, S. Vejdani, G. Perez Andrade, Richard Wheadon, N. Kratochwil, H. Li, L. Jokhovets, S.G. Pivovarov, W. Ikegami Andersson, S. Grieser, A. Gerhardt, H. Qi, W. Lauth, S. Diehl, R. Beck, Krzysztof Korcyl, Angelo Rivetti, K. Makonyi, Yupeng Yan, P. P. Natali, G. Kesik, K. N. Basant, I. Lehmann, A. V. Stavinskiy, W. Esmail, M. Preston, A. Gillitzer, D. Calvo, Ayut Limphirat, A. Demekhin, J. Müllers, M. Pelizäus, Andrew Levin, Gianangelo Bracco, N. Quin, D. Lersch, V. Chernetsky, M. Domagala, N. Minaev, A. Balashoff, U. Müller, N. Hüsken, V. Abramov, Torbjörn Bäck, A. Ali, S. Pflüger, C. Yu, G. Boca, R. Klasen, N. Kristi, J. Zmeskal, T. Nasawad, A. Dolgolenko, A. Belousov, B. Wohlfahrt, H. Xu, R. Dosdall, E. Maslova, Gianni Barucca, M.P. Bussa, B. Seitz, J. S. Díaz, G. Hunter, M. Volf, V.Kh. Dodokhov, Piotr Lebiedowicz, A. Scholl, Grzegorz Korcyl, H. Loehner, Mohammed Al-Turany, Andrzej Kupsc, R. W. Novotny, L. Montalto, A. E. Blinov, J. Kannika, Andrey Uzunian, R. Lalik, P. N. Deepak, P.-E. Tegnér, E. Antokhin, A. Gerasimov, P. De Remigis, X. Zhou, Petr Gallus, P. Orsich, I. Prochazka, Valentino Rigato, S. Maldaner, M. Himmelreich, V. M. Abazov, J. Płażek, Kazem Azizi, James Ritman, S. Wolff, Andrea Bianconi, Nicola Paone, W. Nalti, S. Kegel, I. A. Kuyanov, M. Steinacher, A. Chlopik, V. Lucherini, A. Belias, K. K. Seth, Mario Bragadireanu, C. J. Schmidt, V. Freudenreich, A. Ehret, G. V. Fedotov, J. Li, A. Galoyan, G. Neue, P. Schakel, M. Wojciechowski, B. Kopf, C. Liu, P. Gianotti, X. Ma, R. Kappert, Oleg V. Missevitch, J. Pereira-de-Lira, X. Zhang, D. Melnychuk, Paweł Moskal, I. Köseoglu, Bo Cederwall, K. Götzen, M. Finger, M. Marcisovsky, A. Derevschikov, V. Goryachev, V. Jary, R. Kunne, Y. Zhou, G. Reicherz, C. Schnier, J. G. Messchendorp, M. Michałek, T. Erlen, D. Miehling, G. D. Alexeev, Hasko Stenzel, A. Fechtchenko, L. Schmitt, J. Rieger, M. Zyzak, Michael Papenbrock, F. Schupp, Sean A Dobbs, J. Pochodzalla, S. Chernichenko, S. Shimanski, A. Mustafa, K. Dutta, M. Kümmel, S. Bökelmann, S. Sun, Bruce Yabsley, I. Zimmermann, E.K. Koshurnikov, B. Zwieglinski, O. Malyshev, H. Flemming, O. Korchak, U. Kurilla, F. Nerling, M. Pugach, Claude Amsler, G. Huang, A. Akram, L. Sohl, B. J. Roy, S. Wronka, Andrey V. Izotov, Vaclav Vrba, A. Malige, M. Kuhlmann, E. Prencipe, R. Böhm, R. Schubert, Matthias Richter, M. Krebs, L. Nogach, Frank Goldenbaum, B. Ramstein, X. Y. Shen, Paul Alois Buhler, S. I. Manaenkov, A. Aycock, M. Küßner, A. Khoukaz, E. Luschevskaya, K. Khosonthongkee, C. Wenzel, M. Pfaffinger, J. Lühning, P. Poznański, Fabrizio Daví, S. Koch, O. Corell, M. Kavatsyuk, Bernd Voss, B. Hetz, Daniele Rinaldi, J. Regina, L. Capozza, J. Novy, V. Ferapontov, A. Kozela, D. Y. Kirin, U. Lynen, T. Johansson, S. Orfanitski, M. Tomasek, A. Derichs, Andrea Lavagno, Krisztian Peters, A. Ryazantsev, Daniel Duda, Valery Dormenev, M. Peskova, X. A. Xiong, O. Noll, M. Rossbach, M. Fritsch, N. I. Zhuravlev, Tomasz Fiutowski, S. Zimmermann, Y. Melnik, V. A. Matveev, A. Täschner, P. Salabura, S.A. Kononov, T. Triffterer, J. S. Lange, K. Pysz, K. Kalita, W. Erni, Ajay Kumar Rai, D. P. Watts, Lennart Isaksson, Utpal N. Roy, M. Strickert, M. Böhm, M. Albrecht, Y. Bettner, Boris Batyunya, A. Hamdi, J. Hofmann, Jize Zhao, R. Dzhygadlo, T. Held, V. V. Tokmenin, K. Manasatitpong, Andrei Fedorov, H. Orth, Hans Calén, M. Urban, G. Zhao, F. Lisowski, Witold Przygoda, D. Prasuhn, M. Zambrana, W. Schäfer, S. Bleser, A. K. Hergemöller, M. Pesek, Y. A. Tikhonov, A. Filippi, M. Peter, Volker Metag, M. Moritz, A. Kripko, J. Tarasiuk, S. Schadmand, G. Schepers, S. Poslavskiy, Andreas Martin Heinz, Anne-Laure Martin, L. Brück, Antonin Kveton, V. Mochalov, D. Steinschaden, M. Bölting, N. Er, Ch. Schmidt, Mikhail Korzhik, V. Astakhov, Konstantin Beloborodov, H. Denizli, T. Saito, R. Hagdorn, Pawel Marciniewski, D. Veretennikov, C. Morales Morales, Harphool Kumawat, Karin Schönning, Marek Idzik, M. O. Distler, A. Golubev, E. Ladygina, G. Kozlov, Tobias Stockmanns, C. Hahn, N. Cao, T. Sefzick, Giovanni Lancioni, V. Serdyuk, B. Ketzer, Jerzy Smyrski, D. Bonaventura, P. Wüstner, Yu. Yu. Lobanov, V. Pothodi Chackara, Mariana Nanova, B. Salisbury, E. A. Kravchenko, L. Tomasek, D. Bumrungkoh, Patrick Achenbach, W. Alkakhi, V. Uzhinsky, Y. Goncharenko, Harald Merkel, A. Atac, D. Rodríguez Piñeiro, A. Verkheev, P. Fedorets, S. Nakhoul, F. H. Heinsius, Q. Hu, N. B. Skachkov, S. Pongampai, R. Schmitz, E. A. Strokovsky, Zhiyong Liu, H. Peng, V. Arefiev, K. Föhl, D. Liu, P. Semenov, V. Rodin, Keval Gandhi, P. Kulessa, O. Miklukho, A. Vasiliev, P. Brand, A. A. Zhdanov, R. Kliemt, P. Grasemann, A. Yu. Barnyakov, Z. Li, A. Meschanin, Michael Düren, S. Ahmed, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut de Physique Nucléaire d'Orsay (IPNO), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), PANDA, Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), BAİBÜ, Fen Edebiyat Fakültesi, Fizik Bölümü, Denizli, Haluk, and 0-Belirlenecek
- Subjects
+Antixi+Xi%22">anti-p p --> Antixi Xi ,Hadron ,hyperon: pair production ,correction: efficiency ,01 natural sciences ,13.30.-a ,symmetry: CP ,High Energy Physics - Experiment ,Subatomär fysik ,benchmark ,Subatomic Physics ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Electromagnetic Form-Factors ,Nuclear Experiment ,Spin-½ ,Physics ,Antihyperon Production ,Hyperon ,PANDA ,strong interaction ,Observable ,hyperon: production ,13.88.+ ,+Antilambda+Lambda%22">anti-p p --> Antilambda Lambda ,Production (computer science) ,Low-Energy ,Nuclear and High Energy Physics ,Particle physics ,Cp-Violation ,+Lambda+pi%22">Xi- --> Lambda pi ,Bar (music) ,spin: correlation ,Strong interaction ,Hyperons ,nonperturbative ,13.60.R ,hyperon: decay ,0103 physical sciences ,anti-p p: scattering ,ddc:530 ,anti-p: beam ,010306 general physics ,polarization ,010308 nuclear & particles physics ,background ,High Energy Physics::Phenomenology ,antihyperon ,[No Keywords] ,Exchange ,13.75.-n ,Decay ,hyperon: ground state ,Antiproton ,High Energy Physics::Experiment - Abstract
The antiproton experiment PANDA at FAIR is designed to bring hadron physics to a new level in terms of scope, precision and accuracy. In this work, its unique capability for studies of hyperons is outlined. We discuss ground-state hyperons as diagnostic tools to study non-perturbative aspects of the strong interaction, and fundamental symmetries. New simulation studies have been carried out for two benchmark hyperon-antihyperon production channels: $\bar{p}p \to \bar{\Lambda}\Lambda$ and $\bar{p}p \to \bar{\Xi}^+\Xi^-$. The results, presented in detail in this paper, show that hyperon-antihyperon pairs from these reactions can be exclusively reconstructed with high efficiency and very low background contamination. In addition, the polarisation and spin correlations have been studied, exploiting the weak, self-analysing decay of hyperons and antihyperons. Two independent approaches to the finite efficiency have been applied and evaluated: one standard multidimensional efficiency correction approach, and one efficiency independent approach. The applicability of the latter was thoroughly evaluated for all channels, beam momenta and observables. The standard method yields good results in all cases, and shows that spin observables can be studied with high precision and accuracy already in the first phase of data taking with PANDA., Comment: 26 pages, 16 figures. Changes: Revised title and abstract and corrections/clarifications in the text according to suggestions by journal referees
- Published
- 2021
- Full Text
- View/download PDF
3. Study of excited $$arvec{arXi }$$ baryons with the $$overline{ ext{ P }}$$ANDA detector
- Author
-
Egle Tomasi-Gustafsson, R. Karabowicz, A. Kripko, M. Domagala, U. Müller, Pawel Marciniewski, D. Veretennikov, Xuan Zhang, Y. A. Tikhonov, A. Hamdi, J. Hofmann, A. Filippi, A. Golubev, Tobias Stockmanns, V. Abramov, C. Hahn, A. Belias, K. Nowakowski, V. Serdyuk, M. Pelizä, Z. Tavukoglu, B. Ketzer, Jerzy Smyrski, J. Pütz, O. Malyshev, U. Kurilla, Konstantin Beloborodov, V. Chauhan, R. W. Novotny, A. Kantsyrev, P. Balanutsa, B. J. Liu, D. G. Ireland, Petr Gallus, G. D. Alexeev, D. Bonaventura, A. V. Stavinskiy, C. Motzko, K.-T. Brinkmann, H. Denizli, V. Crede, I. Zimmermann, E.K. Koshurnikov, Jize Zhao, R. Dzhygadlo, Kazem Azizi, A. Chlopik, Fabrizio Daví, V. Ferapontov, D. Y. Kirin, P. Wüstner, M. Fritsch, N. I. Zhuravlev, D. Rodríguez Piñeiro, Dan Pantea, A. Täschner, W. Eyrich, T. Held, W. Esmail, T. Triffterer, V. V. Tokmenin, K. Manasatitpong, W. Kühn, A. Khoukaz, A. Ali, Alexander Olshevskiy, S. Koch, J. Rieger, R. Hagdorn, S. Godre, V. Lucherini, T. Erlen, Herbert Koch, Y. K. Sun, Mariana Nanova, A. Verkheev, M. Marcisovsky, P. Fedorets, Yan Liang, Claude Amsler, M. Slunecka, S. Nakhoul, J. Müllers, Krisztian Peters, J. Oppotsch, A. Malige, N. Hüsken, B. Salisbury, G. Huang, S. Sun, F. Nerling, A. A. Piskun, F. H. Heinsius, G. Mazza, S. I. Manaenkov, O. Noll, A. T. Olgun, E. Antokhin, A. Gerasimov, S. Spataro, P. Salabura, D. Bumrungkoh, Q. Hu, Kamal K. Seth, D. P. Watts, S. Shimanski, V. Uzhinsky, M. Krebs, S. Bodenschatz, Karin Schönning, C. Yu, G. Perez-Andrade, G. Boca, Krzysztof Swientek, V. E. Blinov, P. De Remigis, C. J. Schmidt, Paolo Mengucci, Christoph Herold, F. Lisowski, E. A. Strokovsky, N. B. Skachkov, Y. Goncharenko, Harald Merkel, Lennart Isaksson, S. Maldaner, S. Pongampai, F. Khalid, W. Lauth, F. Feldbauer, G. Reicherz, Volker Metag, C. Mannweiler, M. Moritz, L. Montalto, Piotr Lebiedowicz, D. Prasuhn, A. Scholl, Michaela Thiel, R. Schmitz, S. Pflüger, J. Kannika, M. Albrecht, M. Volf, V.Kh. Dodokhov, P. Poznański, Marek Idzik, M. O. Distler, I. Shein, T. Wasem, J. Schwiening, T. Sefzick, Giovanni Lancioni, J. Tarasiuk, E. Ladygina, Hans-Georg Zaunick, A. E. Blinov, N. Wongprachanukul, W. Schäfer, S. Schadmand, G. Schepers, Yu. Yu. Lobanov, I. Augustin, Mathias Fink, D. Lehmann, P. Terlecki, P. Eugenio, Concettina Sfienti, S. Poslavskiy, M. Virius, S. Schlimme, C. Schwarz, Andreas Martin Heinz, Andrey Uzunian, B. Zwieglinski, M. Lattery, A. E. Yakutin, P.-E. Tegnér, H. Peng, J. Pereira-de-Lira, Ting Xiao, A.A. Efremov, James Ritman, L. Brück, Antonin Kveton, V. Mochalov, V. M. Abazov, S. Wolff, E. A. Kravchenko, E. Prencipe, F. E. Maas, R. Beck, Krzysztof Korcyl, Lorenzo Scalise, Gianangelo Bracco, L. Tomasek, Patrick Achenbach, A. Derevschikov, E. Vishnevsky, D. Melnychuk, M. Firlej, P. Srisawad, A. Dbeyssi, J. Petersen, I. Köseoglu, D. Miehling, M. Bölting, J. Regina, P. Wintz, J. Reher, W. Alkakhi, H. H. Leithoff, S. Bleser, S. Kegel, N. Er, S. Pankonin, Antoni Szczurek, D. Kazlou, M. Yu. Barabanov, Dirk Grunwald, L. Capozza, L. Linzen, D. Liu, V. Freudenreich, A. Ehret, C. Liu, Yupeng Yan, P. Gianotti, R. Dosdall, Ch. Schmidt, M. Steinen, Y. Zhou, A. Demekhin, A. Galoyan, M. Preston, Zhengtai Liu, T. Holtmann, Paweł Moskal, Mikhail Korzhik, A. Boukharov, D. Klostermann, S. Orfanitski, E. Pyata, P. P. Natali, G. Golovanov, M. Pesek, Ch. Hammann, C. Schnier, J. G. Messchendorp, P. Semenov, V. Rodin, Valentino Rigato, B. Kopf, Keval Gandhi, Daniel Duda, Andrea Bianconi, D. I. Glazier, A. Gillitzer, A. Akram, H. Flemming, M. Kümmel, M. Steinke, I. A. Kuyanov, N. Rathod, D. Calvo, D. Wölbing, R. Böhm, Ali Yilmaz, F. Schupp, Sean A Dobbs, J. Pochodzalla, U. Lynen, S. Chernichenko, B. Krusche, Felice Iazzi, Richard Wheadon, X. Y. Shen, L. Jokhovets, S.G. Pivovarov, R. Kappert, A. Lehmann, Ayut Limphirat, P. Kulessa, I. Lehmann, Andrea Lavagno, N. Kristi, T. Nasawad, A. Dolgolenko, M. Peskova, J. Płażek, Tomasz Fiutowski, L. Nogach, G. V. Fedotov, E. Luschevskaya, E. Maslova, R. Lalik, K. Khosonthongkee, C. Wenzel, M. Pfaffinger, Grzegorz Korcyl, O. Miklukho, A. N. Skachkova, Edward Lisowski, V. Jary, M. Kavatsyuk, M. Himmelreich, H. Deppe, A. G. Denig, A. Vasiliev, A. Derichs, J. Frech, A. Hayrapetyan, W. Zhu, Chinorat Kobdaj, P. Brand, E. Rosenthal, S. Belostotski, Ulrich Wiedner, A.S. Vodopianov, J. Kellers, U. Keskin, U. Thoma, R. Kliemt, A. Yu. Barnyakov, Bo Cederwall, K. Götzen, A. Meschanin, Michael Düren, Johann Marton, V. Chernetsky, Gianni Barucca, H. Loehner, Vaclav Vrba, M. Sachs, I. K. Keshk, Xi-Guang Cao, M. Traxler, S. Diehl, Andrew Levin, M.P. Bussa, S. Yerlikaya, Nicola Paone, A. Samartsev, P. Jiang, A. Fechtchenko, L. Schmitt, Michael Papenbrock, Bernd Voss, B. Hetz, Daniele Rinaldi, V. Moiseev, Magnus Wolke, V. Varentsov, M. Schmidt, N. Minaev, A. Balashoff, Mohammed Al-Turany, Andrzej Kupsc, P. Orsich, M. Steinacher, M. Finger, V. Panjushkin, H. Xu, M. Michałek, S. Bökelmann, S. Wronka, Andrey V. Izotov, M. Bukharova, G. Neue, R. Schubert, M. Tomasek, D. A. Morozov, S. Zimmermann, J. Grochowski, P. Wieczorek, S. Ryzhikov, M. Hoek, A. Gerhardt, H. Qi, Jens Hartmann, B. Seitz, S. Bukreeva, X. Zhou, G. Kesik, I. Prochazka, Mario Bragadireanu, K. Pysz, S. Coen, O. Korchak, K. Kalita, M. Küßner, O. Corell, T. Johansson, A. Ryazantsev, Y. Melnik, V. A. Matveev, S.A. Kononov, H. Orth, Hans Calén, M. Urban, G. Zhao, Witold Przygoda, T. Simantathammakul, J. Moron, J. Li, Oleg V. Missevitch, Frank Goldenbaum, Ajay Kumar Rai, M. Strickert, M. Böhm, Grzegorz Filo, M. Kunze, W. Ikegami Andersson, R. Klasen, S. Vestrick, Paul Alois Buhler, J. Lühning, J. Novy, Valery Dormenev, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
- Subjects
Nuclear and High Energy Physics ,hyperon: particle source ,Hadron ,Type (model theory) ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,decay modes ,Combinatorics ,Tree (descriptive set theory) ,excited state: spectrum ,0103 physical sciences ,ddc:530 ,structure ,010306 general physics ,Nuclear Experiment ,Physics ,010308 nuclear & particles physics ,baryon: excited state ,Spectrum (functional analysis) ,Hyperon ,anti-p ,Baryon ,statistics ,efficiency ,Excited state ,Production (computer science) ,acceptance - Abstract
The European physical journal / A 57(4), 149 (2021). doi:10.1140/epja/s10050-021-00444-5, Published by Springer, Heidelberg
- Published
- 2021
- Full Text
- View/download PDF
4. PANDA Phase One: PANDA collaboration
- Author
-
R. Klasen, S. Vestrick, Grzegorz Filo, S. Diehl, M. Kunze, W. Ikegami Andersson, A. V. Stavinskiy, Yupeng Yan, Felice Iazzi, D. Rodríguez Piñeiro, J. Müllers, Andrew Levin, Paul Alois Buhler, J. Lühning, J. Novy, Valery Dormenev, James Ritman, Piotr Lebiedowicz, L. Montalto, M. Küßner, A. Scholl, Frank Goldenbaum, Ali Yilmaz, Yan Liang, W. Esmail, M.P. Bussa, A. Ali, L. Jokhovets, S.G. Pivovarov, D. Bonaventura, A. Verkheev, S. Rimjaem, M. Preston, A. T. Olgun, Konstantin Beloborodov, P. Fedorets, A. Hamdi, M. Volf, S. Yerlikaya, S. Nakhoul, J. Kannika, O. Corell, A. Vasiliev, G. Mazza, E. Antokhin, A. Gerasimov, Egle Tomasi-Gustafsson, J. Hofmann, R. Karabowicz, V.Kh. Dodokhov, A. E. Blinov, P.-E. Tegnér, Andrey Uzunian, S. Wolff, M. Steinen, L. Linzen, Y. Zhou, F. H. Heinsius, Zhengtai Liu, P. De Remigis, C. J. Schmidt, I. Lehmann, H. Denizli, H. Deppe, Ajay Kumar Rai, T. Johansson, T. Holtmann, A. G. Denig, V. Panjushkin, J. Frech, A. Hayrapetyan, W. Zhu, L. Nogach, E. Vishnevsky, D. Melnychuk, Q. Hu, I. Köseoglu, Andrea Bianconi, J. Pereira-de-Lira, A. Derevschikov, A. Belias, O. Malyshev, D. Miehling, Nicola Paone, K. Pysz, A. Ryazantsev, D. I. Glazier, G. Reicherz, R. Hagdorn, M. Strickert, M. Böhm, Chinorat Kobdaj, P. Brand, Vladimir Blinov, P. Wüstner, X. Y. Shen, Paolo Mengucci, Christoph Herold, M. Pelizäus, G. V. Fedotov, T. Nasawad, A. Dolgolenko, N. B. Skachkov, S. Pongampai, S. Coen, Y. Melnik, V. A. Matveev, U. Kurilla, V. Jary, B. Zwieglinski, F. Khalid, A. Gillitzer, D. Calvo, Andreas Martin Heinz, M. Kavatsyuk, Mariana Nanova, S. Belostotski, K. Nowakowski, Claude Amsler, T. Erlen, K. Kalita, M. Domagala, A. Derichs, Ulrich Wiedner, E. Prencipe, L. Brück, R. Schmitz, Antonin Kveton, V. Mochalov, A.S. Vodopianov, J. Kellers, J. Rieger, G. Huang, N. Wongprachanukul, Bo Cederwall, K. Götzen, A. N. Skachkova, Edward Lisowski, J. Pütz, U. Müller, C. Motzko, K.-T. Brinkmann, S.A. Kononov, Dirk Grunwald, G. Neue, U. Thoma, R. Lalik, A. Kantsyrev, S. Sun, M. Virius, B. Salisbury, J. Oppotsch, Jize Zhao, R. Dzhygadlo, T. Held, F. Nerling, G. D. Alexeev, M. Bölting, A. Boukharov, G. Golovanov, I. Zimmermann, N. Er, A. Malige, S. Godre, Ting Xiao, M. Wojciechowski, Ch. Schmidt, T. Simantathammakul, B. Seitz, P. Balanutsa, B. J. Liu, V. Crede, M. Krebs, E. Rosenthal, Y. K. Sun, D. G. Ireland, W. Kühn, V. Abramov, Z. Tavukoglu, Mikhail Korzhik, A. Kripko, S. Spataro, D. Bumrungkoh, V. M. Abazov, R. Schubert, H. Flemming, Vaclav Vrba, S. I. Manaenkov, S. Kegel, A. Lehmann, U. Keskin, Hans-Georg Zaunick, R. Kliemt, V. Uzhinsky, Karin Schönning, X. Zhou, R. Böhm, S. Maldaner, J. Moron, D. P. Watts, E.K. Koshurnikov, M. Slunecka, P. Poznański, M. Firlej, P. Srisawad, A. Yu. Barnyakov, D. Kazlou, M. Yu. Barabanov, J. Płażek, V. Chauhan, R. W. Novotny, S. Schlimme, C. Schwarz, Y. Goncharenko, Lennart Isaksson, P. Eugenio, Kamal K. Seth, Concettina Sfienti, Harald Merkel, H. Xu, A. Meschanin, Marek Idzik, Mario Bragadireanu, Kazem Azizi, M. Lattery, C. Yu, G. Perez-Andrade, G. Boca, C. Liu, A. Chlopik, Johann Marton, Jens Hartmann, A. Samartsev, M. O. Distler, Dan Pantea, W. Eyrich, P. Gianotti, J. Li, E. Ladygina, Michael Düren, M. Albrecht, M. Tomasek, J. Regina, Michaela Thiel, I. Shein, L. Capozza, V. Chernetsky, Y. A. Tikhonov, Oleg V. Missevitch, V. Lucherini, Lorenzo Scalise, Fabrizio Daví, J. Petersen, F. E. Maas, A. Filippi, Gianni Barucca, T. Wasem, J. Reher, J. Schwiening, P. Wintz, O. Korchak, M. Marcisovsky, Volker Metag, S. Zimmermann, N. Hüsken, S. Pankonin, P. Jiang, Antoni Szczurek, C. Schnier, H. Orth, S. Bukreeva, H. Loehner, S. Orfanitski, D. Lehmann, C. Mannweiler, V. Ferapontov, D. Y. Kirin, M. Moritz, C. Hahn, D. A. Morozov, J. Grochowski, A. A. Piskun, Hans Calén, Christoph Hanhart, S. Bodenschatz, J. Tarasiuk, Christian S. Fischer, M. Urban, G. Zhao, T. Sefzick, A. Demekhin, P. Wieczorek, Giovanni Lancioni, Daniel Duda, M. Hoek, A. Akram, S. Ryzhikov, Yu. Yu. Lobanov, E. A. Strokovsky, A. Galoyan, F. Feldbauer, S. Shimanski, A.A. Efremov, Paweł Moskal, H. Peng, G. Kesik, S. Schadmand, B. Kopf, G. Schepers, B. Krusche, J. G. Messchendorp, V. V. Tokmenin, K. Manasatitpong, A. Dbeyssi, M. Fritsch, Witold Przygoda, S. Poslavskiy, Valentino Rigato, A. Khoukaz, M. Kümmel, D. Klostermann, S. Koch, E. A. Kravchenko, M. Sachs, Ayut Limphirat, L. Tomasek, I. K. Keshk, D. Liu, P. P. Natali, A. Gerhardt, H. Qi, I. A. Kuyanov, Patrick Achenbach, Alexander Olshevskiy, W. Alkakhi, N. Kristi, H. H. Leithoff, N. I. Zhuravlev, P. Semenov, V. Rodin, Keval Gandhi, E. Maslova, Xi-Guang Cao, M. Traxler, Herbert Koch, A. Täschner, Grzegorz Korcyl, Krisztian Peters, P. Kulessa, Sinead M. Ryan, F. Schupp, Sean A Dobbs, J. Pochodzalla, M. Himmelreich, S. Chernichenko, O. Noll, T. Triffterer, F. Lisowski, P. Salabura, Krzysztof Swientek, Pawel Marciniewski, D. Veretennikov, W. Lauth, Xuan Zhang, I. Prochazka, D. Prasuhn, Johann Haidenbauer, S. Pflüger, W. Schäfer, A. Golubev, Tobias Stockmanns, S. Bleser, V. Serdyuk, M. Michałek, B. Ketzer, Jerzy Smyrski, S. Bökelmann, V. Freudenreich, A. Ehret, S. Wronka, R. Kappert, Andrey V. Izotov, M. Bukharova, E. Luschevskaya, K. Khosonthongkee, C. Wenzel, M. Pfaffinger, E. Pyata, Ch. Hammann, M. Steinke, A. Fechtchenko, L. Schmitt, Michael Papenbrock, N. Rathod, D. Wölbing, Richard Wheadon, U. Lynen, Andrea Lavagno, M.F.M. Lutz, Bernd Voss, B. Hetz, Daniele Rinaldi, Tomasz Fiutowski, V. Moiseev, Magnus Wolke, V. Varentsov, M. Schmidt, N. Minaev, A. Balashoff, Mohammed Al-Turany, Andrzej Kupsc, P. Orsich, M. Steinacher, M. Finger, I. Augustin, Mathias Fink, P. Terlecki, A. E. Yakutin, R. Beck, Krzysztof Korcyl, Gianangelo Bracco, R. Dosdall, and O. Miklukho
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Luminosity (scattering theory) ,010308 nuclear & particles physics ,Physics::Instrumentation and Detectors ,Physics beyond the Standard Model ,Hadron ,Detector ,Strong interaction ,01 natural sciences ,Antiproton ,0103 physical sciences ,Facility for Antiproton and Ion Research ,010306 general physics ,Nuclear Experiment ,Storage ring - Abstract
The Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany, provides unique possibilities for a new generation of hadron-, nuclear- and atomic physics experiments. The future antiProton ANnihilations at DArmstadt (PANDA or $$\overline{\mathrm{P}}$$ P ¯ ANDA) experiment at FAIR will offer a broad physics programme, covering different aspects of the strong interaction. Understanding the latter in the non-perturbative regime remains one of the greatest challenges in contemporary physics. The antiproton–nucleon interaction studied with PANDA provides crucial tests in this area. Furthermore, the high-intensity, low-energy domain of PANDA allows for searches for physics beyond the Standard Model, e.g. through high precision symmetry tests. This paper takes into account a staged approach for the detector setup and for the delivered luminosity from the accelerator. The available detector setup at the time of the delivery of the first antiproton beams in the HESR storage ring is referred to as the Phase One setup. The physics programme that is achievable during Phase One is outlined in this paper.
- Published
- 2021
5. 2 Tandem Measurement of D-Dimer and Myeloperoxidase Decreases Unnecessary Pulmonary Vascular Imaging in Emergency Department Patients Evaluated for Pulmonary Embolism
- Author
-
Nordenholz, Kristen E., Mitchell, Alice M., Kline, Jeffrey A., Shapiro, Sharon, Stanley, Kristi, Henderson, Sean O, Massopust, Kristy, Stanley, N Kristi A., Henderson, Sean O., Laeben, Lester, Niles, Christopher, Crandall, Cameron, Braude, Darren, Tran, T. Paul, Zeger, Wes, Moreno-Walton, Lisa, Ryan, Mary T., Nunez, Ramon, Alexander, Brigette, Ramarajan, Naresh, Krishnamoorthi, Rajesh, Strehlow, Matthew, Quinn, James, Mahadevan, Swaminatha V., Snyder, Quinn, Hiller, Katherine M., Bogert, James, Sanders, Art, Fredrickson, Asia, Fernandez, Marissa, Swartzberg, Jeremy, Jang, Timothy, Bradley, Richard N., Huff, Ester N., Stone, Susan C., Kilker, Bret, McClung, Christian, Gabel, Eilon, Yee, Kandra, Iserson, Kenneth V., Lotfipour, Shahram, Moheban, Adam, Gupta, Prahbas, Anderson, Craig, Vaca, Federico, Hoonpongsimanont, Wirachin, Winn, Diane, Agran, Phyllis, White, Douglas, Warren, Otis, Scribner, Alicia, Norton, Robert L., Granger, Gary, DeLuca, Lawrence, Bitar, Jamil, Leeson, Kimberly, Keim, Samuel M., Colwell, Christopher, Mehler, Phillip, Sabel, Allison, Harper, Justin, Johnson, Luke, and Cassell, Lisa
- Subjects
Abstracts - Published
- 2008
6. The 2019 Raikoke volcanic eruption – Part 2: Particle-phase dispersion and concurrent wildfire smoke emissions
- Author
-
M. J. Osborne, J. de Leeuw, C. Witham, A. Schmidt, F. Beckett, N. Kristiansen, J. Buxmann, C. Saint, E. J. Welton, J. Fochesatto, A. R. Gomes, U. Bundke, A. Petzold, F. Marenco, and J. Haywood
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Between 27 June and 14 July 2019 aerosol layers were observed by the United Kingdom (UK) Raman lidar network in the upper troposphere and lower stratosphere. The arrival of these aerosol layers in late June caused some concern within the London Volcanic Ash Advisory Centre (VAAC) as according to dispersion simulations the volcanic plume from the 21 June 2019 eruption of Raikoke was not expected over the UK until early July. Using dispersion simulations from the Met Office Numerical Atmospheric-dispersion Modelling Environment (NAME), and supporting evidence from satellite and in situ aircraft observations, we show that the early arrival of the stratospheric layers was not due to aerosols from the explosive eruption of the Raikoke volcano but due to biomass burning smoke aerosols associated with intense forest fires in Alberta, Canada, that occurred 4 d prior to the Raikoke eruption. We use the observations and model simulations to describe the dispersion of both the volcanic and forest fire aerosol clouds and estimate that the initial Raikoke ash aerosol cloud contained around 15 Tg of volcanic ash and that the forest fires produced around 0.2 Tg of biomass burning aerosol. The operational monitoring of volcanic aerosol clouds is a vital capability in terms of aviation safety and the synergy of NAME dispersion simulations, and lidar data with depolarising capabilities allowed scientists at the Met Office to interpret the various aerosol layers over the UK and attribute the material to their sources. The use of NAME allowed the identification of the observed stratospheric layers that reached the UK on 27 June as biomass burning aerosol, characterised by a particle linear depolarisation ratio of 9 %, whereas with the lidar alone the latter could have been identified as the early arrival of a volcanic ash–sulfate mixed aerosol cloud. In the case under study, given the low concentration estimates, the exact identification of the aerosol layers would have made little substantive difference to the decision-making process within the London VAAC. However, our work shows how the use of dispersion modelling together with multiple observation sources enabled us to create a more complete description of atmospheric aerosol loading.
- Published
- 2022
- Full Text
- View/download PDF
7. Long-term outcome of atrial fibrillation ablation: impact and predictors of very late recurrence
- Author
-
M R N Christine Bluhm, Stephen C. Hammill, Paul A. Friedman, Anita Wokhlu, Thomas M. Munger, Win-Kuang Shen, H R N Kristi Monahan, Samuel J. Asirvatham, David O. Hodge, Peter A. Brady, Yong-Mei Cha, M R N Janis Haroldson, and Douglas L. Packer
- Subjects
Male ,medicine.medical_specialty ,medicine.medical_treatment ,Minnesota ,Catheter ablation ,Risk Assessment ,Pulmonary vein ,Recurrence ,Risk Factors ,Physiology (medical) ,Diabetes mellitus ,Internal medicine ,Late Recurrence ,Atrial Fibrillation ,Prevalence ,Medicine ,Humans ,In patient ,Longitudinal Studies ,Initial rate ,business.industry ,Atrial fibrillation ,Middle Aged ,Ablation ,medicine.disease ,Treatment Outcome ,Cardiology ,Catheter Ablation ,Female ,Cardiology and Cardiovascular Medicine ,business - Abstract
Ablation eliminates atrial fibrillation (AF) in studies with 1 year follow-up, but very late recurrences may compromise long-term efficacy. In a large cohort, we sought to describe the determinants of delayed recurrence after AF ablation.Seven hundred and seventy-four patients with AF (428 paroxysmal [PAF, 55%] and 346 persistent or longstanding persistent [PersAF, 45%]) underwent wide area circumferential ablation (WACA, 62%) or pulmonary vein isolation (38%). Over 3.0 ± 1.9 years, there were 135 recurrences in PAF patients and 142 in PersAF patients. AF elimination was achieved in 61% of patients with PersAF at 2 years after last ablation and in 71% of patients with PAF (P = 0.04). This finding was related to a higher initial rate of very late recurrence in PersAF. From 1.0 to 2.5 years, the recurrence increased by 20% (from 37% to 57%) in PersAF patients versus only 12% (from 27% to 39%) in PAF patients. Independent predictors of overall recurrence included diabetes (HR 1.9 [1.3-2.9], P = 0.002) and PersAF (HR 1.6 [1.2-2.0], P0.001). Independent predictors of very late recurrence included PersAF (HR 1.7 [1.1-2.7], P = 0.018) and WACA (HR 1.8 [1.1-2.7], P = 0.018), while diabetes came close to significance. In PAF patients, left atrial size45 mm was identified as an AF-type specific predictor (HR 2.4 [1.3-4.7], P = 0.009), whereas in PersAF patients, no unique predictors were identified.Late recurrences reduced the long-term efficacy of AF ablation, particularly in patients with PersAF and underlying cardiovascular diseases.
- Published
- 2010
8. Outcomes after cardiac perforation during radiofrequency ablation of the atrium
- Author
-
Thomas M. Munger, H R N Kristi Monahan, Douglas L. Packer, T. Jared Bunch, Paul A. Friedman, Robert F. Rea, Lawrence J. Sinak, and Samuel J. Asirvatham
- Subjects
Tachycardia ,Adult ,Male ,Tachycardia, Ectopic Atrial ,medicine.medical_specialty ,Radiofrequency ablation ,medicine.medical_treatment ,Heart Ventricles ,Pericardial Effusion ,Statistics, Nonparametric ,law.invention ,law ,Physiology (medical) ,Internal medicine ,Atrial Fibrillation ,medicine ,Humans ,Heart Atria ,Atrium (heart) ,Aged ,business.industry ,Atrial fibrillation ,Middle Aged ,medicine.disease ,Ablation ,Surgery ,medicine.anatomical_structure ,Treatment Outcome ,Ventricle ,Pericardiocentesis ,Echocardiography ,cardiovascular system ,Cardiology ,Catheter Ablation ,Female ,Tamponade ,medicine.symptom ,Cardiology and Cardiovascular Medicine ,business - Abstract
Background: Perforation during catheter procedures in either the atrium or ventricle is relatively uncommon, but potentially fatal if tamponade ensues. This study analyzes the occurrence and outcomes of cardiac perforation during catheter-based radiofrequency ablation procedures in the left atrium. Methods: All patients with a periprocedure perforation who have undergone radiofrequency ablation for atrial fibrillation (AF) or tachycardia were included. Results: Of 632 procedures performed from January 1999 to October 2004, 15 (2.4%) were complicated by perforation requiring pericardiocentesis. The perforation site was left atrium in 9 (60.0%), right atrium in 1 (6.7%), and right ventricle in 5 (33.3%). Intracardiac echocardiography was used in 13 (86.7%) and revealed an effusion before overt instability in 11 (73.3%). Thirteen (86.7%) patients developed a blood pressure
- Published
- 2005
9. A model sensitivity study of the impact of clouds on satellite detection and retrieval of volcanic ash
- Author
-
A. Kylling, N. Kristiansen, A. Stohl, R. Buras-Schnell, C. Emde, and J. Gasteiger
- Subjects
Environmental engineering ,TA170-171 ,Earthwork. Foundations ,TA715-787 - Abstract
Volcanic ash is commonly observed by infrared detectors on board Earth-orbiting satellites. In the presence of ice and/or liquid-water clouds, the detected volcanic ash signature may be altered. In this paper the sensitivity of detection and retrieval of volcanic ash to the presence of ice and liquid-water clouds was quantified by simulating synthetic equivalents to satellite infrared images with a 3-D radiative transfer model. The sensitivity study was made for the two recent eruptions of Eyjafjallajökull (2010) and Grímsvötn (2011) using realistic water and ice clouds and volcanic ash clouds. The water and ice clouds were taken from European Centre for Medium-Range Weather Forecast (ECMWF) analysis data and the volcanic ash cloud fields from simulations by the Lagrangian particle dispersion model FLEXPART. The radiative transfer simulations were made both with and without ice and liquid-water clouds for the geometry and channels of the Spinning Enhanced Visible and Infrared Imager (SEVIRI). The synthetic SEVIRI images were used as input to standard reverse absorption ash detection and retrieval methods. Ice and liquid-water clouds were on average found to reduce the number of detected ash-affected pixels by 6–12%. However, the effect was highly variable and for individual scenes up to 40% of pixels with mass loading >0.2 g m−2 could not be detected due to the presence of water and ice clouds. For coincident pixels, i.e. pixels where ash was both present in the FLEXPART (hereafter referred to as "Flexpart") simulation and detected by the algorithm, the presence of clouds overall increased the retrieved mean mass loading for the Eyjafjallajökull (2010) eruption by about 13%, while for the Grímsvötn (2011) eruption ash-mass loadings the effect was a 4% decrease of the retrieved ash-mass loading. However, larger differences were seen between scenes (standard deviations of ±30 and ±20% for Eyjafjallajökull and Grímsvötn, respectively) and even larger ones within scenes. The impact of ice and liquid-water clouds on the detection and retrieval of volcanic ash, implies that to fully appreciate the location and amount of ash, hyperspectral and spectral band measurements by satellite instruments should be combined with ash dispersion modelling.
- Published
- 2015
- Full Text
- View/download PDF
10. Photooxidation crosslinking to recover residual stress in decellularized blood vessel.
- Author
-
Wang J, Kong L, Gafur A, Peng X, Kristi N, Xu J, Ma X, Wang N, Humphry R, Durkan C, Zhang H, Ye Z, and Wang G
- Abstract
Decellularization method based on trypsin-digestion is widely used to construct small diameter vascular grafts. However, this method will reduce the opening angle of the blood vessel and result in the reduction of residual stress. Residual stress reduced has an adverse effect on the compliance and permeability of small diameter vascular grafts. To improve the situation, acellular blood vessels were treated with glutaraldehyde and photooxidation crosslinking respectively, and the changes of opening angle, circumferential residual strain of native blood vessels, decellularized arteries and crosslinked blood vessels were measured by means of histological examination, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) in this study. The opening angle of decellularized arteries significantly restored after photooxidation crosslinking ( P = 0.0216), while that of glutaraldehyde crosslinking blood vessels reduced. The elastic fibers inside the blood vessels became densely rearranged after photooxidation crosslinking. The results of finite element simulation showed that the residual stress increased with the increase of opening angle. In this study, we found at the first time that photooxidation crosslinking method could significantly increase the residual stress of decellularized vessels, which provides biomechanical support for the development of new biomaterials of vascular grafts., (© The Author(s) 2021. Published by Oxford University Press.)
- Published
- 2021
- Full Text
- View/download PDF
11. Atomic force microscopy in food preservation research: New insights to overcome spoilage issues.
- Author
-
Zhao L, Kristi N, and Ye Z
- Subjects
- Food, Humans, Mechanical Phenomena, Microscopy, Atomic Force, Food Preservation, Nanotechnology
- Abstract
A higher level of food safety is required due to the fast-growing human population along with the increased awareness of healthy lifestyles. Currently, a large percentage of food is spoiled during storage and processing due to enzymes and microbial activity, causing huge economic losses to both producers and consumers. Atomic force microscopy (AFM), as a powerful scanning probe microscopy, has been successfully and widely used in food preservation research. This technique allows a non-invasive examination of food products, providing high-resolution images of surface structure and individual polymers as well as the physical properties and adhesion of single molecules. In this paper, detailed applications of AFM in food preservation are reviewed. AFM has been used to provide comprehensive information in food preservation by evaluating the spoilage with its related structure modification. By utilizing AFM imaging and force measurement function, the main mechanisms involved in the loss of food quality and preservation technologies development can be further elucidated. It is also capable of exploring the activities of enzymes and microbes in influencing the quality of food products during storage. AFM provides comprehensive solutions to overcome spoilage issues with its versatile functions and high-throughput outcomes. Further research and development of this novel technique in order to solve integrated problems in food preservation are necessary., (Copyright © 2020 Elsevier Ltd. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
12. From bulk to nano-delivery of essential phytochemicals: recent progress and strategies for antibacterial resistance.
- Author
-
Gafur A, Sukamdani GY, Kristi N, Maruf A, Xu J, Chen X, Wang G, and Ye Z
- Subjects
- Animals, Anti-Bacterial Agents pharmacology, Bacteria drug effects, Bacterial Infections drug therapy, Bacterial Infections microbiology, Drug Resistance, Bacterial drug effects, Humans, Models, Molecular, Oils, Volatile pharmacology, Phytochemicals pharmacology, Quorum Sensing drug effects, Anti-Bacterial Agents administration & dosage, Drug Carriers chemistry, Nanostructures chemistry, Oils, Volatile administration & dosage, Phytochemicals administration & dosage
- Abstract
Bacterial biofilms caused by antibiotic resistance are a severe cause of infection threatening human health nowadays. The primary causes of this emerging threat are poor penetration of conventional antibiotics and the growing number of varied strains of resistant bacteria. Recently, bulk phytochemical oils have been widely explored for their potential as antibacterial agents. However, due to their poor solubility, low stability, and highly volatile properties, essential oils are not effective for in vitro and in vivo antibacterial applications and require further preparation. In this review, we discuss the recent progress and strategies to overcome the drawbacks of bulk phytochemical oils using nano-delivery, as well as the current challenges and future outlook of these nano-delivery systems against bacterial resistance.
- Published
- 2020
- Full Text
- View/download PDF
13. Atomic Force Microscopy in Mechanoimmunology Analysis: A New Perspective for Cancer Immunotherapy.
- Author
-
Kristi N, Gafur A, Kong L, Ma X, Ye Z, and Wang G
- Subjects
- Animals, Humans, Mechanotransduction, Cellular, Immunotherapy methods, Immunotherapy trends, Microscopy, Atomic Force, Neoplasms therapy
- Abstract
Immunotherapy has remarkable success outcomes against hematological malignancies with high rates of complete remission. To date, many studies have been conducted to increase its effectiveness in other types of cancer. However, it still yields unsatisfying results in solid tumor therapy. This limitation is partly attributed to the lack of understanding of how immunotherapy works in cancer from other perspectives. The traditional studies focus on the biological and chemical perspectives to determine which molecular substrates are involved in the immune system that can eradicate cancer cells. In the last decades, accumulating evidence has shown that physical properties also play important roles in the immune system to combat cancer, which is studied in mechanoimmunology. Mechanoimmunology analysis requires special tools; and herein, atomic force microscopy (AFM) appears as a versatile tool to determine and quantify the mechanical properties of a sample in nanometer precisions. Owing to its multifunctional capabilities, AFM can be used to explore immune system function from the physical perspective. This review paper explains the mechanoimmunology of how immune systems work through AFM, which includes mechanosignaling, mechanosensing, and mechanotransduction, with the aim to deepen the understanding of the mechanistic role of immunotherapy for further development in cancer treatment., (© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)
- Published
- 2020
- Full Text
- View/download PDF
14. Transforming stealthy to sticky nanocarriers: a potential application for tumor therapy.
- Author
-
Gafur A, Kristi N, Maruf A, Wang G, and Ye Z
- Subjects
- Animals, Drug Delivery Systems, Drug Liberation, Humans, Hydrogen-Ion Concentration, Nanomedicine methods, Particle Size, Permeability, Polymers chemistry, Surface Properties, Antineoplastic Agents administration & dosage, Nanocapsules chemistry
- Abstract
Nanomedicine has shown remarkable progress in preclinical studies of tumor treatment. Over the past decade, scientists have developed various nanocarriers (NCs) for delivering drugs into the tumor area. However, the average amount of accumulated drugs in tumor sites is far from satisfactory. This limitation is strongly related to the corona formation during blood circulation. To overcome this issue, NCs should be designed to become highly stealthy by modifying their surface charge. However, at the same time, stealthy effects not only prevent protein formation but also alleviate the cellular uptake of NCs. Therefore, it is necessary to develop NCs with switchable properties, which are stealthy in the circulation system and sticky when arriving at tumor sites. In this review, we discuss the recent strategies to develop passive and active charge-switchable NCs, known as chameleon-like drug delivery systems, which can reversibly transform their surface from stealthy to sticky and have various designs.
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.